JPH0148201B2 - - Google Patents

Info

Publication number
JPH0148201B2
JPH0148201B2 JP59016871A JP1687184A JPH0148201B2 JP H0148201 B2 JPH0148201 B2 JP H0148201B2 JP 59016871 A JP59016871 A JP 59016871A JP 1687184 A JP1687184 A JP 1687184A JP H0148201 B2 JPH0148201 B2 JP H0148201B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
gas
main component
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59016871A
Other languages
Japanese (ja)
Other versions
JPS60161310A (en
Inventor
Yasuo Nishizawa
Masami Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP59016871A priority Critical patent/JPS60161310A/en
Publication of JPS60161310A publication Critical patent/JPS60161310A/en
Publication of JPH0148201B2 publication Critical patent/JPH0148201B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、酸素を主成分とする一酸化炭素含有
ガスから一酸化炭素を除去する方法に関するもの
である。 〔従来技術〕 酸素は不活性ガスとの共存下における有機合成
用酸化剤、活魚類の移送時における生存域形成
用、地下発掘作業時における保安用等広い用途を
有するガス体であるが、その生成原料や製造工程
の如何によつては、少量の一酸化炭素が含まれる
ことがある。しかして、酸素を一酸化炭素の存在
のまま、例えば有機合成用の酸化剤に用いた場
合、一酸化炭素が還元剤として作用するので、酸
化反応が円滑に進行しない。また、一酸化炭素は
有毒ガスであり、これを少量含む酸素は、前記活
魚類の移送時における生存域形成用や地下発掘作
業における保安用としては甚だ不適当である。 酸素を主成分とし、少量の一酸化炭素を含むガ
スから一酸化炭素を除去するには、該ガスを銅触
媒と接触させ、一酸化炭素を二酸化炭素として吸
着除去する方法が知られている。しかし、この種
の公知触媒は活性が低いだけでなく、触媒寿命が
短かく、耐硫黄性も低いため、該ガスの予熱、脱
一酸化炭素塔の大型化、触媒の頻繁な取り替え等
を行う必要があり、更に、該ガスに硫黄化合物が
含有されている場合には予め除去しておく必要が
ある。従つて、上記のような公知の触媒は一酸化
炭素除去のための所要経費が高くつくという欠点
があつた。 〔発明の目的〕 本発明者等は、上記のような問題点を解消する
一酸化炭素含有の酸素を主成分とするガスから一
酸化炭素を除去する方法につき鋭意検討の結果、
該ガスを銅系および悪鉛系の組み合わせからなる
触媒と接触させることにより、含有されている一
酸化炭素をほぼ100%除去することができ、しか
も触媒自体は耐硫黄性にすぐれ、耐用性があり、
長期の使用によつても活性を失うことがないとの
知見を得て、本発明に到達した。 〔発明の構成〕 即ち、本発明は、酸素(以下O2と表わす)を
主成分とする一酸化炭素(以下COと表わす)含
有ガスを、部分還元処理した酸化銅および酸化亜
鉛の組み合わせよりなる二元組成系触媒と接触さ
せることを特徴とする酸素を主成分とする一酸化
炭素含有ガスから一酸化炭素を除去する方法を要
旨とするものである。 本発明を更に詳細に説明するに、本発明方法で
は触媒として基質が部分還元した酸化銅(CuO)
及び酸化亜鉛(ZnO)よりなる二元組成系触媒で
あり、その組成割合がCuO:10〜40重量%、好ま
しくは20〜40重量%、ZnO:90〜60重量%好まし
くは80〜60重量%の範囲で、これに、例えばグラ
フアイトのようなバインダーを4〜10重量%を加
え、直径及び高さがそれぞれ3m/m程度の円柱
状に成型してなるものが使用される。 上記の触媒は、公知の各種方法によつて調製さ
れる。例えば、銅及び亜鉛の硝酸塩のような無機
酸塩の混合溶液に、アルカリを加えてPHを調整
し銅及び亜鉛の水酸化物を共沈させ析出した水酸
化物を熱分解して酸化物としたのち成型し、N2
ガスのような不活性ガスに少量のH2ガスまたは
COガスを存在させた還元性ガスで接触処理して、
部分還元する方法;銅及び亜鉛の硝酸塩の混合溶
液を担体例えば、アルミナのような担体に浸漬し
て、熱分解し、酸化物としたのち成型し、N2
スのような不活性ガスに少量のH2ガスまたはCO
ガスを存在させた還元性ガスで接触処理して、部
分還元する方法;銅及び亜鉛の酢酸塩のような有
機酸塩の混合物にグラフアイトのような無機質バ
インダーを加えて混練し成型したのち、熱分解し
て酸化物とし、前記のような不活性ガス中にH2
ガスやCOガスを少量存在させた還元性ガスで接
触処理する方法などにより調製される。 上記触媒の調整に当たつての部分還元処理は、
触媒活性を発現させるためには不可欠である。そ
の理由は次のように推測される。二元組成系触媒
が部分還元されることによつて、そのうちの酸化
銅(CuO)から一価の銅イオンが生じるととも
に、その銅イオンが還元の際に存在する酸化亜鉛
中の亜鉛と置換してその酸化亜鉛中に固溶し、安
定に存在することとなる。その一価の銅イオンが
一酸化炭素除去に対して活性を示す。そしてその
活性の発現は、一価の銅イオンが安定に存在する
ために、長期に渡る。 又、本発明方法においてこの部分還元処理は熱
処理後のCuO及びZnOの組合わせよりなる二元組
成系触媒を触媒充填塔に充填し、還元性ガスを直
接導通することによつて行うことができる。 本発明方法はO2を主成分とし、少量のCOが存
在するガス中のCOをO2と反応させCO2に変化さ
せるものである。しかして生成したCO2はCO除
去工程の次の工程で吸収法あるいは吸着法を適用
して分離除去すればよい。本発明方法における
O2とCOとの反応は発熱反応であり、自らの燃焼
熱により、一定の温度が保持され、外部からの熱
源の供給を必要としないか、あるいは、少なくて
済むという利点を有する。例えば、触媒充填塔に
おける保持温度は140〜150℃の低温範囲で充分
CO除去反応が完結する。尚、被処理ガスである
O2を主成分とするガスの触媒充填塔への導通空
間速度は500〜600000hr-1の範囲で行つて存在す
る少量のCOをほぼ完全に除去することができる。 本発明方法に用いられる上記触媒は従来公知の
銅触媒に較べて、O2を主成分とするガスからそ
の中に含まれる少量のCOの除去効率が極めて高
く、触媒寿命も長い。又、該ガス中にCO以外に
触媒毒として作用する硫黄が微量存在しても、被
毒性は低いという利点がある。 〔発明の効果〕 本発明方法は以上のべたように、O2を主成分
とし少量のCOを含有するガスを部分還元処理し
た酸化銅および酸化亜鉛の組合わせよりなる二元
組成系触媒と接触させることによつて少量に存在
する該COをほぼ完全に除去するもので、CO除去
率、触媒寿命、反応条件等いずれも従来公知の方
法よりも格段に勝つており、その工業的利用価値
は極めて大である。 次に本発明を実施例を掲げて説明する本発明は
その要旨を超えない限り以下の実施例に限定され
ることはない。 〔実施例〕 実施例 1 共沈法により調製した80wt%のCuO−20wt%
のZnOよりなる二元組成系触媒(1c.c.)を充填し
た反応管(10m/mφ×400m/m)に、N2
99.0vol%、CO:1.0vol%よりなる還元性ガス
(100c.c./min)を導通し、該触媒を温度170℃、
圧力1Kg/cm2Gで部分還元したのち、組成が
O2:93.3vol%、CO:6.7vol%からなるO2を主成
分とする原料ガスを圧力1Kg/cm2G、空間速度
6000hr-1の割合で第1図に示す触媒層の温度条件
下通過させた。このときの触媒層の保持温度と
CO除去率との関係を第1図に示す。尚、本実施
例に用いたCuO−ZnO触媒は次のようにして調製
した。即ち、硝酸銅と硝酸亜鉛の混合溶液をアン
モニア水でPH調整し、水酸化銅及び水酸化亜鉛と
共沈させ、濾過、乾燥後大気中約400℃で熱分解
して得た酸化物の粉末を混合成型した。 第1図の結果から明らかなように、部分還元し
たCuO−ZnO二元組成系触媒を用いる本発明方法
は、140〜150℃程度の低温で容易にO2を主体と
するCO含有ガスからCOを除去できることが分か
る。尚、いずれの場合も反応管出口ガス中のCO
濃度をガスクロマトグラフイー分析計で実測した
ところ検出限界(10ppm)以下で、COはほぼ完
全に除去されたことが確認された。 比較例 1 実施例1と次の点を代えた以外は同じ試験を行
なつた。その点は、二元組成系触媒に還元性ガス
を全く通さず、部分還元しなかつた点である。 その結果、触媒層の温度(試験温度100度、150
度)にかかわらず、一酸化炭素の除去が確認でき
なかつた(一酸化炭素除去率1%未満)。 実施例 2 実施例1と同様の反応管に、実施例1と同様に
して調製したCuO−ZnO二元組成系触媒を充填し
還元性ガスを導通して部分還元したのち、触媒層
温度を150℃に保持し、実施例1と同様のO2を主
成分とする供試ガスを次の第1表に示す、空間速
度及び圧力条件下で接触させCO除去率を測定し
た。結果を同表に示す。
[Industrial Application Field] The present invention relates to a method for removing carbon monoxide from a carbon monoxide-containing gas containing oxygen as a main component. [Prior art] Oxygen is a gas that has a wide range of uses, including as an oxidizing agent for organic synthesis in the coexistence of inert gases, for forming living areas when transporting live fish, and for security during underground excavation work. Depending on the raw materials and manufacturing process, a small amount of carbon monoxide may be included. Therefore, when oxygen is used in the presence of carbon monoxide as an oxidizing agent for organic synthesis, for example, the oxidation reaction does not proceed smoothly because the carbon monoxide acts as a reducing agent. Further, carbon monoxide is a poisonous gas, and oxygen containing a small amount of carbon monoxide is extremely inappropriate for forming living areas during the transportation of live fish or for security purposes during underground excavation work. A known method for removing carbon monoxide from a gas containing oxygen as a main component and a small amount of carbon monoxide is to bring the gas into contact with a copper catalyst and adsorb and remove carbon monoxide as carbon dioxide. However, this type of known catalyst not only has low activity, but also has a short catalyst life and low sulfur resistance, so it requires preheating of the gas, increasing the size of the carbon monoxide removal tower, and frequently replacing the catalyst. Furthermore, if the gas contains sulfur compounds, they must be removed in advance. Therefore, the above-mentioned known catalysts have the disadvantage that the cost required for removing carbon monoxide is high. [Object of the Invention] The present inventors have conducted intensive studies on a method for removing carbon monoxide from a carbon monoxide-containing gas whose main component is oxygen, which solves the above-mentioned problems.
By bringing the gas into contact with a catalyst consisting of a combination of copper and bad lead, almost 100% of the carbon monoxide contained in it can be removed, and the catalyst itself has excellent sulfur resistance and durability. can be,
The present invention was achieved based on the knowledge that the product does not lose its activity even after long-term use. [Structure of the Invention] That is, the present invention consists of a combination of copper oxide and zinc oxide obtained by partially reducing a gas containing carbon monoxide (hereinafter referred to as CO) whose main component is oxygen (hereinafter referred to as O 2 ). The gist of the present invention is a method for removing carbon monoxide from a carbon monoxide-containing gas containing oxygen as a main component, which is characterized by bringing the gas into contact with a binary composition catalyst. To explain the present invention in more detail, in the method of the present invention, the substrate is partially reduced copper oxide (CuO) as a catalyst.
and zinc oxide (ZnO), the composition ratio of which is CuO: 10 to 40% by weight, preferably 20 to 40% by weight, ZnO: 90 to 60% by weight, preferably 80 to 60% by weight. 4 to 10% by weight of a binder such as graphite is added to this, and the mixture is molded into a cylindrical shape with a diameter and height of about 3 m/m, respectively. The above catalysts are prepared by various known methods. For example, an alkali is added to a mixed solution of inorganic acid salts such as copper and zinc nitrates to adjust the pH, coprecipitate copper and zinc hydroxides, and then thermally decompose the precipitated hydroxides to form oxides. After that, it is molded and N 2
A small amount of H2 gas or
Contact treatment with reducing gas in the presence of CO gas,
Partial reduction method: A mixed solution of copper and zinc nitrates is immersed in a carrier such as alumina, thermally decomposed to form an oxide, then molded, and a small amount is added to an inert gas such as N 2 gas. H2 gas or CO
A method of partial reduction by contact treatment with a reducing gas in the presence of a gas; an inorganic binder such as graphite is added to a mixture of organic acid salts such as copper and zinc acetate, and the mixture is kneaded and molded. It is thermally decomposed to produce oxides, and H 2
It is prepared by contact treatment with a reducing gas containing a small amount of gas or CO gas. The partial reduction treatment for adjusting the above catalyst is as follows:
It is essential for developing catalytic activity. The reason is assumed to be as follows. By partially reducing the binary composition catalyst, monovalent copper ions are generated from the copper oxide (CuO), and the copper ions replace the zinc in the zinc oxide present during reduction. It becomes a solid solution in the zinc oxide and exists stably. Its monovalent copper ions exhibit activity in removing carbon monoxide. The expression of its activity lasts for a long period of time due to the stable presence of monovalent copper ions. In addition, in the method of the present invention, this partial reduction treatment can be performed by filling a catalyst-packed column with a binary composition catalyst made of a combination of CuO and ZnO after heat treatment, and directly passing a reducing gas through the column. . The method of the present invention is to react CO in a gas containing O 2 as a main component and a small amount of CO to CO 2 by reacting with O 2 . The CO 2 thus generated may be separated and removed by applying an absorption method or an adsorption method in the next step after the CO removal step. In the method of the present invention
The reaction between O 2 and CO is an exothermic reaction, which has the advantage that a constant temperature is maintained by its own heat of combustion, and that it does not require or requires a small external heat source. For example, a low temperature range of 140 to 150°C is sufficient for the holding temperature in a catalyst packed column.
The CO removal reaction is completed. Furthermore, the gas to be treated is
The small amount of CO present can be almost completely removed by passing the gas containing O 2 as a main component to the catalyst-packed column at a space velocity in the range of 500 to 600,000 hr -1 . The catalyst used in the method of the present invention has an extremely high efficiency in removing a small amount of CO contained in a gas mainly composed of O 2 and has a long catalyst life, compared to conventionally known copper catalysts. Further, even if a small amount of sulfur, which acts as a catalyst poison, is present in the gas in addition to CO, there is an advantage that the toxicity is low. [Effects of the Invention] As described above, the method of the present invention involves contacting a gas containing O 2 as a main component and a small amount of CO with a binary composition catalyst consisting of a combination of partially reduced copper oxide and zinc oxide. This method almost completely removes the small amount of CO that exists in small amounts, and the CO removal rate, catalyst life, reaction conditions, etc. are all far superior to conventionally known methods, and its industrial use value is It is extremely large. Next, the present invention will be explained with reference to examples.The present invention is not limited to the following examples unless it exceeds the gist thereof. [Example] Example 1 80wt% CuO-20wt% prepared by coprecipitation method
N 2 :
A reducing gas (100 c.c./min) consisting of 99.0 vol% and CO: 1.0 vol% was passed through the catalyst at a temperature of 170°C.
After partial reduction at a pressure of 1Kg/cm 2 G, the composition becomes
A raw material gas containing O 2 as the main component, consisting of O 2 : 93.3 vol% and CO: 6.7 vol%, was heated to a pressure of 1 Kg/cm 2 G and a space velocity.
It was passed through the catalyst bed at a rate of 6000 hr -1 under the temperature conditions shown in Figure 1. The holding temperature of the catalyst layer at this time and
Figure 1 shows the relationship with the CO removal rate. Incidentally, the CuO-ZnO catalyst used in this example was prepared as follows. That is, the oxide powder is obtained by adjusting the pH of a mixed solution of copper nitrate and zinc nitrate with aqueous ammonia, co-precipitating it with copper hydroxide and zinc hydroxide, filtering, drying, and then thermally decomposing it in the air at about 400°C. were mixed and molded. As is clear from the results shown in Figure 1, the method of the present invention using a partially reduced CuO-ZnO binary composition catalyst can easily convert CO from a CO-containing gas mainly consisting of O 2 at a low temperature of about 140 to 150°C. It turns out that it is possible to remove. In both cases, CO in the reaction tube outlet gas
When the concentration was actually measured using a gas chromatography analyzer, it was found to be below the detection limit (10 ppm), confirming that CO was almost completely removed. Comparative Example 1 The same test as in Example 1 was conducted except for the following changes. The point is that no reducing gas was passed through the binary composition catalyst and no partial reduction occurred. As a result, the temperature of the catalyst layer (test temperature 100 degrees, 150 degrees
Carbon monoxide removal could not be confirmed (carbon monoxide removal rate less than 1%) regardless of the temperature. Example 2 A reaction tube similar to that in Example 1 was filled with a CuO-ZnO binary composition catalyst prepared in the same manner as in Example 1, a reducing gas was passed therethrough for partial reduction, and the temperature of the catalyst layer was raised to 150°C. The specimen was maintained at 0.degree. C. and brought into contact with the same test gas containing O 2 as the main component as in Example 1 under the space velocity and pressure conditions shown in Table 1 below to measure the CO removal rate. The results are shown in the same table.

【表】 実施例 3 実施例1と同様の反応管に、実施例1と同様に
して調製したCuO−ZnO二元組成系触媒を充填
し、還元性ガスを導通して部分還元したのち、触
媒層温度を150℃に保持し、O2:93.3vol%、
CO:6.7vol%、H2S:1ppmからなる供試ガス
を、常圧及び、空間速度10000hr-1で通過させ、
CO除去率を測定して、活性の低下の有無をみた。
この結果を第2図に示す。尚比較例として、部分
還元したCuO単独触媒を用いた場合の結果につい
ても併記する。 第2図の結果から明らかなように、部分還元し
たCuO−ZnO二元組成系触媒を用いる本発明方法
では、3000時間使用後もCO除去率の低下はみら
れず、耐硫黄性にすぐれており活性が充分維持さ
れていることが分る。これに対し、比較例のCuO
単独触媒は比較的早い時期に活性が劣り、CO除
去率が低下する。 実施例 4 実施例1と同様の反応管に、CuOとZnOを種々
の割合に変えて調製したCuO−ZnO二元組成系触
媒をそれぞれ充填し還元性ガスを導通して部分還
元したのち触媒層温度を150℃に保持し、実施例
1と同じ供試ガスを常圧及び空間速度50000hr-1
で通過させ、CO除去率と触媒組成との関係をみ
た。その結果を第3図に示す。この結果から明ら
かなとおり、本発明方法ではCuO:20〜40重量
%、ZnO:80〜60重量%の触媒組成の場合、CO
除去効率が最も顕著であることが分る。
[Table] Example 3 A reaction tube similar to that in Example 1 was filled with a CuO-ZnO binary composition catalyst prepared in the same manner as in Example 1, and a reducing gas was passed therethrough for partial reduction. The layer temperature was maintained at 150℃, O2 : 93.3vol%,
A sample gas consisting of CO: 6.7 vol% and H 2 S: 1 ppm is passed through at normal pressure and a space velocity of 10000 hr -1 ,
The CO removal rate was measured to see if there was a decrease in activity.
The results are shown in FIG. As a comparative example, the results obtained when a partially reduced CuO catalyst alone was used are also shown. As is clear from the results in Figure 2, the method of the present invention using a partially reduced CuO-ZnO binary composition catalyst shows no decrease in CO removal rate even after 3000 hours of use, and has excellent sulfur resistance. It can be seen that the activity is sufficiently maintained. In contrast, CuO in the comparative example
A single catalyst loses its activity relatively early and the CO removal rate decreases. Example 4 The same reaction tubes as in Example 1 were filled with CuO-ZnO binary composition catalysts prepared by changing CuO and ZnO in various ratios, and after partial reduction by passing a reducing gas, a catalyst layer was formed. The temperature was maintained at 150°C, and the same test gas as in Example 1 was heated at normal pressure and space velocity at 50000 hr -1.
The relationship between CO removal rate and catalyst composition was examined. The results are shown in FIG. As is clear from this result, in the method of the present invention, when the catalyst composition is CuO: 20 to 40% by weight and ZnO: 80 to 60% by weight, CO
It can be seen that the removal efficiency is the most significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による、CO除去率と触媒
層温度との関係を示す図、第2図はCO除去率と
触媒使用時間との関係を示す図、第3図はCO除
去率と触媒組成との関係を示す図である。
Figure 1 is a diagram showing the relationship between CO removal rate and catalyst bed temperature according to the method of the present invention, Figure 2 is a diagram showing the relationship between CO removal rate and catalyst usage time, and Figure 3 is a diagram showing the relationship between CO removal rate and catalyst bed temperature. FIG. 3 is a diagram showing the relationship with composition.

Claims (1)

【特許請求の範囲】 1 酸素を主成分とする一酸化炭素含有ガスを、
部分還元処理した酸化銅および酸化亜鉛の組み合
わせよりなる二元組成系触媒と接触させることを
特徴とする酸素を主成分とする一酸化炭素含有ガ
スから一酸化炭素を除去する方法。 2 二元組成系触媒の組成が、部分還元処理した
酸化銅20〜40重量%、部分還元処理した酸化亜鉛
80〜60重量%よりなる特許請求の範囲第1項記載
の酸素を主成分とする一酸化炭素含有ガスから一
酸化炭素を除去する方法。 3 二元組成系触媒との接触温度が少くとも140
℃である特許請求の範囲第1項又は第2項記載の
酸素を主成分とする一酸化炭素含有ガスから一酸
化炭素を除去する方法。
[Claims] 1. Carbon monoxide-containing gas containing oxygen as a main component,
A method for removing carbon monoxide from a carbon monoxide-containing gas containing oxygen as a main component, which comprises bringing the gas into contact with a binary composition catalyst consisting of a combination of partially reduced copper oxide and zinc oxide. 2 The composition of the binary composition catalyst is 20 to 40% by weight of partially reduced copper oxide and partially reduced zinc oxide.
A method for removing carbon monoxide from a carbon monoxide-containing gas containing oxygen as a main component according to claim 1, comprising 80 to 60% by weight. 3 The contact temperature with the binary catalyst is at least 140°C.
A method for removing carbon monoxide from a carbon monoxide-containing gas containing oxygen as a main component according to claim 1 or 2, wherein the temperature is .degree.
JP59016871A 1984-01-31 1984-01-31 Removal of carbon monoxide from carbon monoxide- containing gas consisting essentially of oxygen Granted JPS60161310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016871A JPS60161310A (en) 1984-01-31 1984-01-31 Removal of carbon monoxide from carbon monoxide- containing gas consisting essentially of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016871A JPS60161310A (en) 1984-01-31 1984-01-31 Removal of carbon monoxide from carbon monoxide- containing gas consisting essentially of oxygen

Publications (2)

Publication Number Publication Date
JPS60161310A JPS60161310A (en) 1985-08-23
JPH0148201B2 true JPH0148201B2 (en) 1989-10-18

Family

ID=11928259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016871A Granted JPS60161310A (en) 1984-01-31 1984-01-31 Removal of carbon monoxide from carbon monoxide- containing gas consisting essentially of oxygen

Country Status (1)

Country Link
JP (1) JPS60161310A (en)

Also Published As

Publication number Publication date
JPS60161310A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
US4210628A (en) Removal of nitrogen oxides
US5384301A (en) Catalyst for elemental sulfur recovery process
US4187282A (en) Process for treating a waste gas containing sulfur oxides
EP0121339A2 (en) Method for removal of poisonous gases
US4556547A (en) Process for treatment of gases
US5700440A (en) Selective oxidation of hydrogen sulfide in the presence of iron-based catalysts
US4138469A (en) Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas
JPS59142847A (en) Catalyst for oxidizing hydrogen sulfide
US5653953A (en) Process for recovering elemental sulfur by selective oxidation of hydrogen sulfide
US4550098A (en) Methods for the removal of gaseous impurities from mixed gas streams
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
US5597546A (en) Selective oxidation of hydrogen sulfide in the presence of bismuth-based catalysts
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
AU638166B2 (en) The catalytic decomposition of dinitrogen monoxide which is pure or present in gas mixtures
US4940686A (en) Catalyst for oxidation of carbon monoxide
SK127195A3 (en) Method of ammonia decomposition in the waste gas
EP1897614A2 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
US4911904A (en) Catalytic oxidation of carbon monoxide
US5795554A (en) Method for preparing the oxysulfides of rare earth elements
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
JP3452570B2 (en) Catalyst for removing sulfur compounds from industrial gas, process for producing the same and use thereof
JP2711463B2 (en) Exhaust gas purification method
JPH0239297B2 (en)
JPS6120342B2 (en)
CZ294657B6 (en) Coated catalyst containing metal oxides and catalytic decomposition process of ammonia and hydrogen cyanide in coke-oven gas