JPH0148103B2 - - Google Patents

Info

Publication number
JPH0148103B2
JPH0148103B2 JP59115597A JP11559784A JPH0148103B2 JP H0148103 B2 JPH0148103 B2 JP H0148103B2 JP 59115597 A JP59115597 A JP 59115597A JP 11559784 A JP11559784 A JP 11559784A JP H0148103 B2 JPH0148103 B2 JP H0148103B2
Authority
JP
Japan
Prior art keywords
bisphenol
acid
resin
initial condensate
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59115597A
Other languages
Japanese (ja)
Other versions
JPS60261639A (en
Inventor
Shinjiro Ootsuka
Masato Akiba
Hideo Kunitomo
Tadayoshi Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP11559784A priority Critical patent/JPS60261639A/en
Publication of JPS60261639A publication Critical patent/JPS60261639A/en
Publication of JPH0148103B2 publication Critical patent/JPH0148103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規にして有用なる鋳物鋳型用自硬性
結合剤組成物に関し、さらに詳細には、ビスフエ
ノールFで変性された特定の酸硬化型フエノー
ル・アルデヒド系樹脂初期縮合物を必須の成分と
して含んで成る、高強度の自硬性結合剤組成物に
関する。 鋳造物ないしは鋳型品をつくるさいに用いられ
る鋳型は鋳物砂を主材とする骨材物質に所望量の
結合剤を混合させ、次いでそれを硬化せしめるこ
とによつて得られる。 ところで、かかる結合剤の一般的な要求性能と
して、まず高強度のものであることが挙げられる
のは言うまでもない。 高強度を有するものでさえあれば、作業上に多
少のバラツキがあつたとしても、安定して目的に
合致した鋳型が得られるし、結合剤の使用量をも
低減させることができるから経済的でさえある。 こうした鋳型などの高強度化を達成するには、
結合剤に対して砂への漏れ性をよくするべき措置
が講じられ、それが肝要なことであるが、そのた
めには、できるだけ初期の縮合物であつて、かつ
低粘度物であるべきことが必要である。 しかしながら、初期縮合物というものは概して
遊離ホルマリン量が多かつたり、遊離フエノール
の含有率も高かつたりして、高強度のものであり
ながら臭気が甚だしくて、作業環境上、好ましい
ものとは言えず、おのずと二律相反の関係にある
こうした強度と臭気などとのバランスをはかるべ
く、結合剤樹脂を設計せざるを得ないのが一般的
である。 ところが、こうした強度と臭気などとのバラン
スが完全にとれた結合剤は、目下の処、見出され
ていないというのが現状である。 しかるに、本発明者らは当該低臭性能と強度性
能とのバランス化の上に立つて設計され、通常市
販されている酸硬化型自硬性フエノール樹脂結合
剤の強度性能をさらに向上せしめるべく鋭意検討
を進めた結果、ビスフエノールFで変性されたこ
の種のフエノール樹脂結合剤が鋳物鋳型の大幅な
強度向上化を果し得ることを見出して、本発明を
完成させるに到つた。 すなわち、本発明は必須の成分として、アルカ
リ金属および/またはアルカリ土類金属系化合物
触媒の存在下にフエノール類とホルムアルデヒド
類とを1:1.15〜1.65なるモル比で用い、しかも
得られる生成樹脂初期縮合物を基準として5〜12
重量%のビスフエノールFをも用いて変性せしめ
て得られるビスフエノールF変性の酸硬化型フエ
ノール・アルデヒド系樹脂初期縮合物を含んで成
り、かつ不揮発分が55〜85重量%で、25℃におけ
る粘度が150センチポイズ(cps)以下なる鋳物鋳
型用自硬性結合剤組成物を提供するものであり、
ほぼ通常の自硬性結合剤用の樹脂設計に従つたレ
ゾール型フエノール系樹脂初期縮合物を本発明の
対象とし、当該樹脂初期縮合物をビスフエノール
Fという特定の二核体化合物で変性せしめること
によつて、得られる目的結合剤組成物の不揮発分
(NV)および粘度が上掲された如き特定の範囲
内にある酸硬化に適した、強度性能と低臭性能と
のバランスがとれ、しかも強度が一段と高められ
た結合剤組成物を提供するものである。 ここにおいて、まず、フエノール類とアルデヒ
ド類とのモル比は、通常1:1.15〜1:1.65なる
範囲内であり、好ましくは1:1.30〜1.55なる範
囲内である。 フエノール類としてはフエノールが最も好まし
いが、レゾルシン、キシレノールまたはクレゾー
ルの如き他のフエノール類で一部置き換えてもよ
いし、アルデヒド類としてはホルムアルデヒドが
最も好ましいが、アセトアルデヒドまたはグリオ
キザールの如き他のアルデヒド類で一部置き換え
てもよいことは勿論である。 次に、前記した反応用触媒としてはナトリウム
もしくはカリウムなどのアルカリ金属、またはカ
ルシウムもしくはバリウムなどのアルカリ土類金
属のそれぞれの酸化物、水酸化物ないしは弱酸塩
などが挙げられ、これらは1種または2種以上の
混合物として用いられるし、これらアルカリ金属
とアルカリ土類金属との両系にまたがる化合物で
あつてもよいことは勿論である。 そして、これらの反応触媒は反応の終了後に中
和されて失効(失活)されるのが一般的である。 以上のような各原料を用いて本発明組成物の必
須結合剤成分たる、ビスフエノール変性の酸硬化
型フエノール・ホルムアルデヒド系樹脂初期縮合
物を調製するには、次の如き種々の方法が考えら
れる。 すなわち、初期反応開始時にビスフエノール
Fをも同時に加えて常法に従つて各原料を反応せ
しめる方法、常法に従つて反応を進め、反応途
中からビスフエノールFを加え、部分的に反応せ
しめる方法や、常法に従つて反応を進めたの
ち、反応終点においてビスフエノールFを加え、
殆ど反応させないという方法などがある。 これらのうち、上記なる方法による場合は実
質的に反応が進行していないので、単に混合され
ているにすぎない程度のものであるが、変性効果
も大きく、しかも反応制御も簡単である処から、
最も好ましいのは上記なる方法であると言え
る。 かかるビスフエノールFの変性は、得られる結
合剤生成物、つまりビスフエノールF変性の酸硬
化型フエノール・ホルムアルデヒド系樹脂初期縮
合物を基準として5〜12重量%、好ましくは5〜
10重量%なる範囲内が適当である。 かかる変性のために用いられるビスフエノール
Fの使用量が5重量%未満である場合には、変性
の効果が顕著ではなくなるし、逆に12重量%を超
える場合には、単なる夾雑物として使用するため
か、効果は段々と劣つてくることになるので、い
ずれも好ましくない。 このようにして得られるビスフエノール変性の
酸硬化型フエノール・ホルムアルデヒド系樹脂初
期縮合物の不揮発分としては55〜75重量%なる範
囲内が適当であり、また当該縮合物の25℃におけ
る粘度としては150cps以下が適当である。 かくして得られる本発明組成物は、いわば酸硬
化型フエノール・ホルムアルデヒド系樹脂初期縮
合物と未反応のビスフエノールFとの混合物であ
り、これらの両成分の相乗効果によつて前述した
如き本発明の目的が達成されるが、本発明組成物
にはキシレンスルホン酸もしくはベンゼンスルホ
ン酸の如き有機酸または硫酸の如き無機酸のよう
な酸硬化剤などを含めることができる。 本発明組成物は鋳鋼、鋳鉄、ダクタイル鋳鉄や
アルミニウムまたは銅などの各種合金用の鋳物鋳
型の調製に用いられる。 次に、本発明を実施例および比較例により具体
的に説明するが、以下において部および%は特に
断りのない限り、すべて重量基準であるものとす
る。 実施例 1 フエノールの470部、ビスフエノールFの116部
および42%ホルマリンの536部を、温度計、冷却
器および撹拌機を備えたフラスコに仕込み、反応
用触媒として48%水酸化カリウム水溶液の23.5部
を加え、1時間かけて80℃に昇温させ、同温度に
おける水希釈能(水トレランス)が500%に達す
るまで反応せしめて直ちに冷却し、次いで70%パ
ラトルエンスルホン酸水溶液でPHが6.5〜7.0とな
るように中和し、しかるのち真空蒸留せしめて、
NVが68.5%で、粘度が110cpsなる、ビスフエノ
ールF変性のフエノール・ホルムアルデヒド樹脂
初期縮合物溶液を得た。 この樹脂初期縮合物のビスフエノールF変性率
は10%であり、当該縮合物の水希釈能は100%で
あり、かつ遊離ホルマリン分は0.3%であつた。 実施例 2 フエノールの470部および42%ホルマリンの536
部を温度計、冷却器および撹拌機付きフラスコに
仕込み、48%水酸化カリウム水溶液の23.5部を加
え、1時間を要して徐々に80℃まで昇温させ、同
温度における水希釈能が300%になるまで反応せ
しめて直ちに冷却し、次いで70%バラトルエンス
ルホン酸水溶液でPHを6.5〜7.0となるよう中和
し、しかるのち真空蒸留せしめた。 次いで得られた酸硬化型ビスフエノール・ホル
ムアルデヒド系樹脂初期縮合物に、メタノールで
70%濃度となるように溶解させたビスフエノール
F溶液を、この樹脂初期縮合物を基準として固形
分換算で10%となる割合で混合せしめて樹脂液と
なした。 ここに得られた樹脂液、つまりビスフエノール
F変性の酸硬化型フエノール・ホルムアルデヒド
系樹脂初期縮合物溶液の性状値はNVが68.0%、
粘度が80cps、遊離ホルマリン分が0.3%であり、
かつ水希釈能は100%であつた。 実施例 3 フエノールの470部および42%ホルマリンの482
部を、温度計、冷却器および撹拌機を付したフラ
スコに仕込み、水酸化バリウムの18.8部を加え、
1時間に亘つて徐々に80℃まで昇温させ、次いで
同温度での水希釈能が300%となるまで反応せし
め、しかるのち冷却し、70%パラトルエンスルホ
ン酸水溶液でPHを6.5〜7.0となるように中和せし
め、次いで真空蒸留せしめて酸硬化型フエノー
ル・ホルムアルデヒド系樹脂初期縮合物溶液を得
た。 しかるのち、この樹脂溶液に対して固形分換算
で10%なる割合の、メタノールで70%濃度となる
ように溶解されたビスフエノールF溶液を混合せ
しめて樹脂液、つまり本発明組成物を得た。 かくして得られた樹脂液の性状値はNVが70.0
%、粘度が75cps、遊離ホルマリン分は0.2%で、
かつ水希釈能が180%であつた。 比較例 1 ビスフエノールFの使用を一切欠如し、80%に
おける水希釈能を290%とし、かつ70%パラトル
エンスルホン酸によりPH7.0に中和させるように
変更した以外は、実施例1と同様にして対照用の
樹脂組成物を得た。 かくして得られた樹脂組成物はNVが70.0%で、
かつ粘度が120cpsなる樹脂溶液であり、またこの
樹脂の遊離ホルマリン分は0.6%で、かつ水希釈
能は200%であつた。 比較例 2 ビスフエノールFを混合せしめる工程を全く欠
如した以外は、実施例3と同様にして、未変性の
酸硬化型フエノール・ホルムアルデヒド系樹脂初
期縮合物を得た。 この対照用樹脂溶液のNVは69.1%、粘度は
110cps、遊離ホルマリン分は0.5%で、かつ水希
釈能は220%であつた。 以上の各実施例および比較例で得られたそれぞ
れの樹脂組成物についての性能評価を、鋳物鋳型
用酸硬化型自硬性結合剤としての適性をみるため
に、次のような方法で比較検討した処を、第1表
にまとめて示す。 すなわち、90cpmなる小型多腕式ミキサーにフ
リーマントル新砂の3000部を入れ、酸硬化剤とし
て80%パラトルエンスルホン酸メタノール溶液の
9.6部(50%対樹脂)を加えて45秒間混練せしめ、
次いでそれぞれの樹脂組成物の24部(0.8%対砂)
を加えて更に45秒間混練せしめ、直ちに直径が50
mmで高さが50mmなるポリ塩化ビニール製の割型に
各別に手込めにて型込めして造型せしめ、かかる
型込めから0.5時間後、1.0時間後、3.0時間後、
5.0時間後および24時間後において、それぞれ測
定直前に脱型させて測定したのが常態における圧
縮強度であり、また上掲の如く各樹脂組成物を各
別に混練したのち10分間放置してから手込めにて
造型せしめ、かかる手込めから24時間後に脱型さ
せて測定したのが可使強度である。
The present invention relates to a new and useful self-hardening binder composition for foundry molds, and more particularly, it contains as an essential component a specific acid-curable phenol-aldehyde resin initial condensate modified with bisphenol F. A high-strength self-hardening binder composition comprising: The molds used in making castings or mouldings are obtained by mixing an aggregate material based on foundry sand with the desired amount of binder and then allowing it to harden. By the way, it goes without saying that the generally required performance of such a binder is that it has high strength. As long as it has high strength, even if there is some variation in the work, a mold that meets the purpose can be obtained stably, and the amount of binder used can be reduced, making it economical. Even. In order to achieve high strength of such molds,
Measures have been taken to improve the binder's leakability into the sand, which is important, but for this purpose it must be a condensation product as early as possible and a low viscosity product. is necessary. However, the initial condensate generally has a large amount of free formalin and a high content of free phenol, and although it has high strength, it has a strong odor, so it is not desirable from the viewpoint of the working environment. Generally speaking, binder resins must be designed to strike a balance between strength and odor, which naturally have a contradictory relationship. However, the current situation is that a binder with a perfect balance between strength and odor has not yet been found. However, the present inventors have conducted intensive studies to further improve the strength performance of commonly commercially available acid-curing self-hardening phenolic resin binders, which are designed based on a balance between low odor performance and strength performance. As a result of further research, it was discovered that this type of phenolic resin binder modified with bisphenol F can significantly improve the strength of casting molds, and the present invention was completed. That is, the present invention uses phenols and formaldehydes as essential components in the presence of an alkali metal and/or alkaline earth metal compound catalyst in a molar ratio of 1:1.15 to 1.65, and furthermore, the initial stage of the resulting resin is 5 to 12 based on condensate
It contains a bisphenol F-modified acid-curing phenol-aldehyde resin initial condensate obtained by modifying it with % by weight of bisphenol F, and has a non-volatile content of 55 to 85% by weight at 25°C. Provides a self-hardening binder composition for foundry molds having a viscosity of 150 centipoise (cps) or less,
The subject of the present invention is a resol type phenolic resin initial condensate that follows almost the usual resin design for self-hardening binders, and the resin initial condensate is modified with a specific dinuclear compound called bisphenol F. Therefore, the nonvolatile content (NV) and viscosity of the target binder composition obtained are within the specific ranges listed above, are suitable for acid curing, have a balance between strength performance and low odor performance, and have a high strength The present invention provides a binder composition with improved properties. Here, first, the molar ratio of phenols and aldehydes is usually within the range of 1:1.15 to 1:1.65, preferably within the range of 1:1.30 to 1.55. As the phenol, phenol is most preferred, but it may be partially replaced with other phenols such as resorcinol, xylenol or cresol, and as the aldehyde, formaldehyde is most preferred, but other aldehydes such as acetaldehyde or glyoxal may be substituted. Of course, some of them may be replaced. Next, examples of the reaction catalyst mentioned above include oxides, hydroxides, or weak acid salts of alkali metals such as sodium or potassium, or alkaline earth metals such as calcium or barium, and these may be used singly or Of course, it may be used as a mixture of two or more types, or it may be a compound spanning both of these alkali metals and alkaline earth metals. These reaction catalysts are generally neutralized and deactivated after the reaction is completed. In order to prepare a bisphenol-modified acid-curable phenol-formaldehyde resin initial condensate, which is an essential binder component of the composition of the present invention, using the above-mentioned raw materials, the following various methods can be considered. . That is, a method in which bisphenol F is simultaneously added at the beginning of the initial reaction and each raw material is reacted according to a conventional method, and a method in which the reaction is proceeded according to a conventional method and bisphenol F is added in the middle of the reaction to cause a partial reaction. After proceeding with the reaction according to a conventional method, bisphenol F is added at the end of the reaction,
There are methods that cause almost no reaction. Among these methods, when the above method is used, the reaction does not substantially proceed and the mixture is merely mixed, but the denaturation effect is large and the reaction control is easy. ,
It can be said that the above method is the most preferable. Such modification of bisphenol F is carried out in an amount of 5 to 12% by weight, preferably 5 to 12% by weight, based on the resulting binder product, that is, the initial condensate of acid-curing phenol formaldehyde resin modified with bisphenol F.
A range of 10% by weight is appropriate. If the amount of bisphenol F used for such modification is less than 5% by weight, the modification effect will not be significant, and if it exceeds 12% by weight, it will be used as a mere contaminant. Perhaps because of this, the effects become progressively worse, so neither is preferable. The non-volatile content of the bisphenol-modified acid-curing phenol-formaldehyde resin initial condensate obtained in this way is preferably within the range of 55 to 75% by weight, and the viscosity of the condensate at 25°C is 150cps or less is appropriate. The composition of the present invention thus obtained is, so to speak, a mixture of an acid-curable phenol-formaldehyde resin initial condensate and unreacted bisphenol F, and due to the synergistic effect of these two components, the composition of the present invention as described above can be obtained. While this objective is achieved, the compositions of the present invention may also include acid curing agents such as organic acids such as xylene sulfonic acid or benzene sulfonic acid or inorganic acids such as sulfuric acid. The compositions of the invention are used in the preparation of foundry molds for cast steel, cast iron, ductile iron and various alloys such as aluminum or copper. Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. In the following, all parts and percentages are based on weight unless otherwise specified. Example 1 470 parts of phenol, 116 parts of bisphenol F, and 536 parts of 42% formalin were charged into a flask equipped with a thermometer, a condenser, and a stirrer, and 23.5 parts of a 48% aqueous potassium hydroxide solution was added as a reaction catalyst. The temperature was raised to 80°C over 1 hour, and the reaction was allowed to occur until the water dilution ability (water tolerance) at the same temperature reached 500%, and the mixture was immediately cooled. Neutralize to ~7.0, then vacuum distillate,
A bisphenol F-modified phenol-formaldehyde resin initial condensate solution having an NV of 68.5% and a viscosity of 110 cps was obtained. The bisphenol F modification rate of this resin initial condensate was 10%, the water dilutability of the condensate was 100%, and the free formalin content was 0.3%. Example 2 470 parts of phenol and 536 parts of 42% formalin
23.5 parts of 48% potassium hydroxide aqueous solution was added to the flask equipped with a thermometer, condenser and stirrer, and the temperature was gradually raised to 80°C over 1 hour until the water dilution ability at the same temperature was 300°C. % and immediately cooled, then neutralized with a 70% aqueous solution of balatoluenesulfonic acid to a pH of 6.5 to 7.0, and then vacuum distilled. Next, the obtained acid-curing bisphenol formaldehyde resin initial condensate was mixed with methanol.
A bisphenol F solution dissolved to a concentration of 70% was mixed at a ratio of 10% in terms of solid content based on this resin initial condensate to form a resin liquid. The properties of the resin liquid obtained here, that is, the acid-curing phenol-formaldehyde resin initial condensate solution modified with bisphenol F, have an NV of 68.0%.
Viscosity is 80cps, free formalin content is 0.3%,
Moreover, the water dilution ability was 100%. Example 3 470 parts of phenol and 482 parts of 42% formalin
of barium hydroxide into a flask equipped with a thermometer, condenser and stirrer, add 18.8 parts of barium hydroxide,
The temperature was gradually raised to 80°C over 1 hour, and then the reaction was allowed to occur until the water dilution ability at the same temperature reached 300%, after which it was cooled and the pH was adjusted to 6.5 to 7.0 with a 70% aqueous para-toluenesulfonic acid solution. The mixture was neutralized and then vacuum distilled to obtain an acid-curing phenol-formaldehyde resin initial condensate solution. Thereafter, a bisphenol F solution dissolved in methanol to a concentration of 70% was mixed with the resin solution at a ratio of 10% in terms of solid content to obtain a resin liquid, that is, the composition of the present invention. . The property value of the resin liquid thus obtained was NV of 70.0.
%, viscosity is 75cps, free formalin content is 0.2%,
Moreover, the water dilution ability was 180%. Comparative Example 1 Same as Example 1 except that the use of bisphenol F was completely omitted, the water dilution ability at 80% was changed to 290%, and the pH was neutralized to 7.0 with 70% para-toluenesulfonic acid. A control resin composition was obtained in the same manner. The resin composition thus obtained had an NV of 70.0%,
The resin solution had a viscosity of 120 cps, the free formalin content of this resin was 0.6%, and the water dilution ability was 200%. Comparative Example 2 An unmodified acid-curable phenol-formaldehyde resin initial condensate was obtained in the same manner as in Example 3, except that the step of mixing bisphenol F was completely omitted. This control resin solution has an NV of 69.1% and a viscosity of
110 cps, free formalin content was 0.5%, and water dilutability was 220%. Performance evaluations of the respective resin compositions obtained in the above Examples and Comparative Examples were compared and examined using the following method in order to determine their suitability as acid-curing self-hardening binders for foundry molds. The locations are summarized in Table 1. That is, 3000 parts of Freemantle new sand was placed in a small multi-arm mixer of 90 cpm, and 80% para-toluenesulfonic acid methanol solution was added as an acid hardener.
Add 9.6 parts (50% to resin) and mix for 45 seconds.
Then 24 parts of each resin composition (0.8% to sand)
and knead for an additional 45 seconds, immediately reducing the diameter to 50 mm.
The molds were molded individually by hand into molds made of polyvinyl chloride with a height of 50 mm, and 0.5 hours, 1.0 hours, and 3.0 hours after the mold filling,
The compressive strength in the normal state was measured after 5.0 hours and 24 hours by removing the mold immediately before the measurement.Also, as shown above, each resin composition was kneaded separately and then left for 10 minutes before being measured by hand. The usable strength is determined by molding the product by hand molding, removing it from the mold 24 hours after the manual molding process, and measuring the usable strength.

【表】 これらの結果からも明らかなように、本発明の
組成物は従来の無変性フエノール・ホルムアルデ
ヒド系樹脂に比して、自硬性鋳型用結合剤に適用
した場合に、初期強度(立ち上り強度)が良好
で、つまり初期における強度が顕著で、しかも最
終強度(24時間後の強度)が非常に高く、加えて
作業性にすぐれた結合剤であることが知れる。
[Table] As is clear from these results, the composition of the present invention has a higher initial strength (rising strength) than conventional unmodified phenol formaldehyde resins when applied to a self-hardening mold binder. ), that is, the initial strength is remarkable, and the final strength (strength after 24 hours) is very high.In addition, it is known that it is a binder with excellent workability.

Claims (1)

【特許請求の範囲】[Claims] 1 反応用触媒としてアルカリ金属および/また
はアルカリ土類金属系化合物を用い、フエノール
類とアルデヒド類とを1:1.15〜1.65なるモル比
で用い、しかも得られる生成樹脂初期縮合物を基
準として5〜12重量%のビスフエノールFをも用
いて変性せしめて得られるビスフエノールF変性
の酸硬化型フエノール・アルデヒド系樹脂初期縮
合物を必須の成分として含んで成り、かつ不揮発
分が55〜85重量%で、25℃における粘度が150セ
ンチポイズ以下なる鋳物鋳型用自硬性結合剤組成
物。
1. Using an alkali metal and/or alkaline earth metal compound as a reaction catalyst, using phenols and aldehydes in a molar ratio of 1:1.15 to 1.65, and based on the resulting resin initial condensate, Contains as an essential component an acid-curing phenol-aldehyde resin initial condensate modified with bisphenol F obtained by modifying with 12% by weight of bisphenol F, and has a non-volatile content of 55 to 85% by weight. A self-hardening binder composition for foundry molds having a viscosity of 150 centipoise or less at 25°C.
JP11559784A 1984-06-07 1984-06-07 Self-curing binder composition for casting mold Granted JPS60261639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11559784A JPS60261639A (en) 1984-06-07 1984-06-07 Self-curing binder composition for casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11559784A JPS60261639A (en) 1984-06-07 1984-06-07 Self-curing binder composition for casting mold

Publications (2)

Publication Number Publication Date
JPS60261639A JPS60261639A (en) 1985-12-24
JPH0148103B2 true JPH0148103B2 (en) 1989-10-18

Family

ID=14666555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11559784A Granted JPS60261639A (en) 1984-06-07 1984-06-07 Self-curing binder composition for casting mold

Country Status (1)

Country Link
JP (1) JPS60261639A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2392817A1 (en) * 1999-12-22 2001-06-28 John George Juras Jr. Stable bisphenolic compositions
US6716729B2 (en) 1999-12-22 2004-04-06 Borden Chemical, Inc. Stable bisphenolic compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122424A (en) * 1973-03-26 1974-11-22
JPS52138593A (en) * 1976-05-14 1977-11-18 Toyo Kogyo Co Method of making phenol resin for shell mold
JPS53110922A (en) * 1977-03-09 1978-09-28 Hitachi Chemical Co Ltd Resin coated sand for casting
JPS5791840A (en) * 1980-11-29 1982-06-08 Dainippon Ink & Chem Inc Self-hardening bonding material composite for casting
JPS5874240A (en) * 1981-10-27 1983-05-04 Aisin Chem Co Ltd Organic binder for mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122424A (en) * 1973-03-26 1974-11-22
JPS52138593A (en) * 1976-05-14 1977-11-18 Toyo Kogyo Co Method of making phenol resin for shell mold
JPS53110922A (en) * 1977-03-09 1978-09-28 Hitachi Chemical Co Ltd Resin coated sand for casting
JPS5791840A (en) * 1980-11-29 1982-06-08 Dainippon Ink & Chem Inc Self-hardening bonding material composite for casting
JPS5874240A (en) * 1981-10-27 1983-05-04 Aisin Chem Co Ltd Organic binder for mold

Also Published As

Publication number Publication date
JPS60261639A (en) 1985-12-24

Similar Documents

Publication Publication Date Title
KR101183806B1 (en) Furan resin composition for producing mold
JPH0798893B2 (en) Phenolic resin composition
US4942217A (en) Novel heat-hardenable binders phenol-formaldehyde+HMT+acid
US4713294A (en) Foundry shell core and mold composition
JPH0148103B2 (en)
US4113916A (en) Shell sand with improved thermal shock resistance
JP6736313B2 (en) Mold molding kit and method for manufacturing sand composition for mold molding
JP5250300B2 (en) Mold manufacturing method
JPS5978745A (en) Resin coated sand for casting
JPS62127140A (en) Resin coated sand for shell mold
US6172133B1 (en) Caking additive composition for forming self-hardening mold
JP4221632B2 (en) Binder for shell mold
JP4439774B2 (en) Novolac type phenolic resin and resin coated sand for shell mold
JPS6195735A (en) Bonding agent of phenol resin for shell mold
WO1999014003A1 (en) Acid-curable, refractory particulate material composition for forming mold
JP4119514B2 (en) Resin coated sand for mold
JPS6393443A (en) Resin coated sand for shell mold
JP4440017B2 (en) Acid curable refractory granular material composition
JP4221633B2 (en) Resin binder for shell mold
JPS61108445A (en) Production of resin coated sand grain for shell mold
JP3197973B2 (en) Composition for foundry sand
JP4452965B2 (en) Resin composition for shell mold
US2121917A (en) Process for making phenol, cresol, or the like resins
JPS6015648B2 (en) Manufacturing method of resin for shell mold
JPH05123818A (en) Production of casting mold

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term