JPH0147856B2 - - Google Patents

Info

Publication number
JPH0147856B2
JPH0147856B2 JP57038295A JP3829582A JPH0147856B2 JP H0147856 B2 JPH0147856 B2 JP H0147856B2 JP 57038295 A JP57038295 A JP 57038295A JP 3829582 A JP3829582 A JP 3829582A JP H0147856 B2 JPH0147856 B2 JP H0147856B2
Authority
JP
Japan
Prior art keywords
thin plate
lead
substrate
electrode plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038295A
Other languages
Japanese (ja)
Other versions
JPS58155659A (en
Inventor
Yukihiro Nagata
Juichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57038295A priority Critical patent/JPS58155659A/en
Publication of JPS58155659A publication Critical patent/JPS58155659A/en
Publication of JPH0147856B2 publication Critical patent/JPH0147856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 本発明は鉛または鉛合金薄板から機械加工方式
で形成される鉛蓄電池極板用基板の内打抜き方式
で形成される極板基板の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electrode plate substrate formed by an inner punching method of a lead acid battery electrode plate substrate formed by a machining method from a lead or lead alloy thin plate.

従来鉛蓄電池極板用基板は鋳造方式により製造
されているが、近時メンテナンスフリー化が要望
されると同時に電池の軽量化、高性能化並に長寿
命化が要求されるようになつたため、上記の鋳造
方式に代つて機械加工方式即ち打抜き方式、エク
スパンド方式が注目され、これの開発実用化が進
展しているものである。
Traditionally, lead-acid battery electrode plates have been manufactured using a casting method, but recently there has been a demand for maintenance-free batteries, as well as a need for lighter weight, higher performance, and longer lifespans for batteries. In place of the above-mentioned casting method, machining methods, ie, punching method and expanding method, are attracting attention, and progress is being made in the development and practical application of these methods.

この機械加工方式の特徴は圧延加工により得た
鉛または鉛合金の薄板(以下単に鉛合金薄板とい
う)を使用するために鋳造方式では製造が困難で
あるが、或は不可能であつた1mm以下の厚さの薄
型基板をも製造することができると共に鉛合金に
ついてもメンテナンスフリー化の目的からアンチ
モン含有量の少ない低いアンチモン―鉛系合金、
鉛―カルシウム、鉛―カルシウム―錫、鉛―カル
シウム―アルミニウム系合金が主として用いられ
ている。しかしこの種の鉛合金は一般に機械的強
度が低いため、従来の如き打抜き方式による基板
の活物質を充填して極板を構成し、この極板から
なる蓄電池を使用した場合活物質の体積変化や腐
食などによつて正極板は伸び変形をおこし、その
結果活物質との電気的接触を著しく阻害したり或
は負極板との短絡をおこしその寿命が短いという
欠点があつた。その理由についてはこれを詳細に
解明することが出来えないが、第1図に示す如く
鉛合金薄板から基板を打抜く方法に基因するもの
と考えられる。即ち11は鉛合金の圧延加工によ
つて得られた薄板であり、矢印R,Dは該薄板の
圧延方向である。12は基板の足13で一体化し
ている2板の打抜き基板、14は基板の耳、1
5,16は夫々基板の横格子桟、縦格子桟17は
縦外格子桟、18,19は横上部格子桟および横
下部格子桟である。従つて基板における横格子桟
15及び横上下部格子桟18,19は圧延方向と
平行に設けられ、縦格子桟16及び縦外格子桟1
7は圧延方向と直角に設けられているものであ
り、このように枠骨が90゜をなして交叉している
ために上記の如き欠陥を有するものと考えられ
る。
The feature of this machining method is that it uses lead or lead alloy thin sheets obtained by rolling (hereinafter simply referred to as lead alloy thin sheets), which is difficult or impossible to manufacture using the casting method. In order to be able to manufacture thin substrates with a thickness of
Lead-calcium, lead-calcium-tin, and lead-calcium-aluminum alloys are mainly used. However, this type of lead alloy generally has low mechanical strength, so if the electrode plate is constructed by filling the active material of the board using the conventional punching method, and a storage battery made of this electrode plate is used, the volume of the active material will change. The positive electrode plate undergoes elongation and deformation due to corrosion or corrosion, which significantly impedes electrical contact with the active material or causes a short circuit with the negative electrode plate, resulting in a short life span. Although the reason for this cannot be elucidated in detail, it is thought to be due to the method of punching out the substrate from a lead alloy thin plate as shown in FIG. That is, 11 is a thin plate obtained by rolling a lead alloy, and arrows R and D indicate the rolling direction of the thin plate. 12 is a two-piece punched board that is integrated with the legs 13 of the board; 14 is an edge of the board; 1
5 and 16 are horizontal lattice bars of the substrate, vertical lattice bars 17 are vertical outer lattice bars, and 18 and 19 are horizontal upper lattice bars and horizontal lower lattice bars. Therefore, the horizontal lattice bars 15 and the horizontal upper and lower lattice bars 18 and 19 on the substrate are provided parallel to the rolling direction, and the vertical lattice bars 16 and the vertical outer lattice bars 1 are provided parallel to the rolling direction.
7 is provided perpendicularly to the rolling direction, and it is thought that this defect is caused by the frame ribs intersecting each other at 90 degrees.

本発明はかかる欠点を改善せんとして鋭意研究
を行なつた結果、蓄電池の性能を蓄しく向上せし
めた極板用基板を見出したものである。即ち本発
明は鉛又は鉛合金の薄板11からなり、該薄板は
圧延加工板であり、該薄板は平行四辺形の格子状
に打抜き形成されており、外周部32は、打抜き
部をもたない薄板の地金部からなり、該地金部は
長さ方向に波状に変形されており、格子桟33,
34,35,36の中心線と薄板11の圧延方向
とのなす角度は0゜〜50゜であることを、特徴とす
るものである。
The present invention has been made as a result of extensive research aimed at improving these drawbacks, and has resulted in the discovery of an electrode plate substrate that significantly improves the performance of storage batteries. That is, the present invention consists of a thin plate 11 made of lead or a lead alloy, the thin plate is a rolled plate, the thin plate is punched into a parallelogram lattice shape, and the outer peripheral part 32 has no punched part. Consisting of a thin plate base metal portion, the base metal portion is deformed into a wave shape in the length direction, and the lattice bars 33,
It is characterized in that the angle formed between the center lines of 34, 35, and 36 and the rolling direction of the thin plate 11 is 0° to 50°.

本発明は特に無地部に凹凸を形成するものある
が、その理由は基板への活物質充填量を正しく制
御し且つ極板の厚さを一定に保持するためであ
る。
In the present invention, in particular, unevenness is formed in the uncoated area, and the reason for this is to correctly control the amount of active material filled into the substrate and to maintain the thickness of the electrode plate constant.

又本発明において上記θの値を0゜〜50゜に限定
した理由について説明する。
Also, the reason why the value of θ is limited to 0° to 50° in the present invention will be explained.

即ち第2図は鉛合金薄板の引張強さを測定する
ための試験片の切出し方法を示すものであり、1
1は圧延加工により得た鉛合金薄板、矢印R,D
はその圧延方向を示し、21は引張試験用の試験
片である。
That is, Figure 2 shows the method of cutting out a test piece for measuring the tensile strength of a lead alloy thin plate.
1 is a lead alloy thin plate obtained by rolling, arrows R, D
indicates the rolling direction, and 21 is a test piece for the tensile test.

而して試験片21の中心線mnと圧延方向R,
Dの平行な線p,qとのなす角をθ゜としこのθを
0゜〜90゜まで変化せしめて種々の試験片を作製し
室温にて引張試験時の歪速度を1.67×10-3s-1にて
引張試験を行ない、そのときの降伏強さ(σ0.2
を求めた。その結果は第3図に示す如くであり各
θにおけるσ0.2(θ)をθ=0゜におけるσ0.2(0)

値で割つた比σ0.2θ/σ0.2(0)を各θに対してプ
ロツトしたものである。図面から明らかの如くθ
が0゜からほぼ50゜まではσ0.2(θ)/σ0.2(0)は

んど1に近いがθが50゜を越えるとσ0.2(θ)/σ0.2
(0)は急速に低下することが認められた。つま
りθが圧延方向に対して50゜から直角に近づくに
伴つて降伏強度が低下することを示した。従つて
θを0゜〜50゜に限定したものである。
Therefore, the center line mn of the test piece 21 and the rolling direction R,
Let the angle between D and parallel lines p and q be θ°, and let this θ be
Various test specimens were prepared by varying the angle from 0° to 90°, and a tensile test was conducted at room temperature at a strain rate of 1.67×10 -3 s -1 to determine the yield strength (σ 0.2 )
I asked for The results are shown in Figure 3, where σ 0.2 (θ) at each θ is σ 0.2 (0) at θ=0°.
The ratio σ 0.2 θ/σ 0.2 (0) divided by the value of is plotted for each θ. As is clear from the drawing, θ
σ 0.2 (θ)/σ 0.2 (0) is almost 1 from 0° to approximately 50°, but when θ exceeds 50°, σ 0.2 (θ)/σ 0.2
(0) was observed to decrease rapidly. In other words, the yield strength decreases as θ approaches the right angle from 50° to the rolling direction. Therefore, θ is limited to 0° to 50°.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例 圧延して製造された厚さ0.65mmの鉛合金薄板を
第4図Aに示す如く菱形状の開口部を多数千鳥掛
状に規則的に打抜き活物質充填空間部31を多数
形成し、かつ基板の外周辺部に形成されるべき開
口部(図面における斜線部)はこれを開口せず無
地部32とした素板を打抜き製造した。前記活物
質充填空間部31を囲む4本の格子桟33,3
4,35,36は各々中心線が鉛合金薄板の圧延
方向(矢印R,D)と平行な線分abおよびcdに
対しそれぞれ鋭角(θ)を30゜とし鉛合金薄板の
圧延方向(矢印R,D)とのなす鋭角(θ)を
30゜としたものである。さらにこのように打抜き
形成された表板の外周辺部の連接する三角形状の
無地部32を、第4図Bに示す如く三角錐形状に
それぞれ互に違いに折り曲げて無地部32に波形
状の凹凸を形成して本発明蓄電池用極板基板を得
た。該凹凸部の一側面の山から山までの距離
(r)は約10mm、凹凸を形成した無地部32の厚
さ(t)は1mm、また枠骨の巾は約1mmである。
尚図中37は打抜きによつて同時に形成された極
板耳である。このようにして得られた蓄電池用極
板基板に活物質を充填して極板とするが、活物質
の充填厚を基板外周辺部に形成した凹凸部によつ
て容易に規制し得て充填量を制御できかつ充填厚
を一定にし得ることともに極板周辺部における活
物質の脱落を防止し得る。そして上記実施例の如
く基板外周辺部の無地部に三角錐形状の凹凸部を
形成したものは、基板―側面の隣り合う凸部と凸
部が相対する斜面間距離か外側に向かつて狭くな
り、該基板に充填された活物質の周辺部における
脱落防止はより効果的である。尚上記実施例では
基板の四隅角部の無地部を切削したものを示し
た。
EXAMPLE As shown in FIG. 4A, a rolled lead alloy thin plate having a thickness of 0.65 mm is punched out regularly in a staggered manner to form a large number of active material filling spaces 31. In addition, the openings to be formed at the outer periphery of the substrate (the shaded areas in the drawings) were not opened, and a blank portion 32 was formed by punching out a blank plate. Four lattice bars 33, 3 surrounding the active material filling space 31
4, 35, and 36 each have their center lines at an acute angle (θ) of 30° to the line segments ab and cd, which are parallel to the rolling direction (arrow R, D) of the lead alloy thin plate, and the rolling direction of the lead alloy thin plate (arrow R) , D) is the acute angle (θ) formed by
The angle is 30°. Further, the connected triangular uncoated parts 32 on the outer periphery of the top plate punched and formed in this way are bent in different directions into triangular pyramid shapes as shown in FIG. An electrode plate substrate for a storage battery of the present invention was obtained by forming irregularities. The distance (r) from peak to peak on one side of the uneven portion is approximately 10 mm, the thickness (t) of the plain portion 32 on which the uneven portion is formed is 1 mm, and the width of the frame rib is approximately 1 mm.
In the figure, reference numeral 37 denotes an electrode plate lug formed at the same time by punching. The electrode plate substrate for a storage battery obtained in this way is filled with an active material to form an electrode plate, and the filling thickness of the active material can be easily controlled by the unevenness formed on the outer periphery of the substrate. The amount can be controlled, the filling thickness can be made constant, and the active material can be prevented from falling off around the electrode plate. As in the above embodiment, in which triangular pyramid-shaped uneven parts are formed on the uncoated area of the outer periphery of the substrate, the distance between adjacent protrusions on the substrate-side surface and the slopes where the protrusions face each other becomes narrower toward the outside. , it is more effective to prevent the active material filled in the substrate from falling off at the periphery. In the above embodiment, the uncoated portions at the four corners of the substrate were cut.

斯くして得た本発明基板と従来の打抜き方式に
よる基板により夫々蓄電池を形成し、JISサイク
ルによる寿命を測定した結果は第1表に示す通り
である。
Storage batteries were formed using the thus obtained substrates of the present invention and substrates formed by the conventional punching method, respectively, and the lifespan was measured according to the JIS cycle. The results are shown in Table 1.

第 1 表 本発明品 230サイクル 従来品 50サイクル 以上詳述した如く本発明によれば次の如き効果
を有するものである。
Table 1 Product of the present invention 230 cycles Conventional product 50 cycles As detailed above, the present invention has the following effects.

(1) 格子桟の中心線と鉛合金薄板の圧延方向との
なす鋭角を0゜〜50゜としたので格子桟の機械的
強度が向上し極板の伸び変形が防止される。
(1) Since the acute angle between the center line of the lattice bar and the rolling direction of the lead alloy thin plate is set to 0° to 50°, the mechanical strength of the lattice bar is improved and the elongation deformation of the electrode plate is prevented.

(2) 外周辺部は打抜加工を行なうことなく無地部
としこの無地部に任意の高さの凹凸部を形成す
ることによつて該基板に活物質を充填して極板
をうる場合に、所望厚さの極板を容易にうるこ
とが出来るとともに該周辺部から活物質が脱落
するようなことがない。
(2) The outer periphery is a plain area without punching, and by forming irregularities of an arbitrary height on this blank area, the substrate is filled with an active material to obtain an electrode plate. Therefore, it is possible to easily obtain an electrode plate having a desired thickness, and the active material does not fall off from the periphery.

従つて短絡を防止しうるため蓄電池の寿命を長
期化することが出来る。
Therefore, since short circuits can be prevented, the life of the storage battery can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の打抜き方式による蓄電池極板用
基板の平面図、第2図は強度試験用試験片の切り
出し状態説明図、第3図は鉛合金薄板における圧
延方向に対する活物質充填空間部を形成する格子
桟の角度変化と降伏強さとの関係曲線図、第4図
は本発明蓄電池極板用基板を示すものであり、A
は平面図、Bは側面図である。 11……鉛合金薄板、12……基板、13……
足、14……耳部、15……横格子桟、16……
縦格子桟、17……縦外格子桟、18……横上部
格子桟、19……横下部格子桟、21……試験
片、31,31′,31″……活物質充填空間部、
32,32′……凸部、33……凹部、34,3
5,36,37……格子桟。
Fig. 1 is a plan view of a storage battery electrode plate substrate made by conventional punching method, Fig. 2 is an explanatory diagram of a cut-out state of a test piece for strength testing, and Fig. 3 shows an active material filling space in a lead alloy thin plate in the rolling direction. FIG. 4, which is a curve diagram showing the relationship between the angle change of the lattice crosspieces formed and the yield strength, shows the substrate for the storage battery electrode plate of the present invention.
is a plan view, and B is a side view. 11...Lead alloy thin plate, 12...Substrate, 13...
Legs, 14...ears, 15...horizontal lattice bars, 16...
Vertical lattice bar, 17... Vertical outer lattice bar, 18... Horizontal upper lattice bar, 19... Horizontal lower lattice bar, 21... Test piece, 31, 31', 31''... Active material filling space part,
32, 32'... Convex portion, 33... Concave portion, 34, 3
5, 36, 37... Lattice crosspiece.

Claims (1)

【特許請求の範囲】 1 鉛又は鉛合金の薄板11からなり、 該薄板は、圧延加工板であり、 該薄板は、平行四辺形の格子状に打抜き形成さ
れており、 外周部32は、打抜き部をもたない薄板の地金
部からなり、 該地金部は、長さ方向に波状に変形されてお
り、 格子桟33,34,35,36の中心線と薄板
11の圧延方向とのなす角度は0゜〜50゜である、 ことを特徴とする鉛蓄電池極板用基板。
[Claims] 1. Consists of a thin plate 11 of lead or lead alloy, the thin plate is a rolled plate, the thin plate is punched into a parallelogram lattice shape, and the outer peripheral portion 32 is punched. The base metal part is a thin plate having no parts, and the base metal part is deformed into a wave shape in the length direction, and the center line of the lattice bars 33, 34, 35, 36 and the rolling direction of the thin plate 11 are aligned. A lead-acid battery electrode plate substrate characterized in that the angle formed is between 0° and 50°.
JP57038295A 1982-03-11 1982-03-11 Base plate for lead-storage-battery electrode plate Granted JPS58155659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038295A JPS58155659A (en) 1982-03-11 1982-03-11 Base plate for lead-storage-battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038295A JPS58155659A (en) 1982-03-11 1982-03-11 Base plate for lead-storage-battery electrode plate

Publications (2)

Publication Number Publication Date
JPS58155659A JPS58155659A (en) 1983-09-16
JPH0147856B2 true JPH0147856B2 (en) 1989-10-17

Family

ID=12521313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038295A Granted JPS58155659A (en) 1982-03-11 1982-03-11 Base plate for lead-storage-battery electrode plate

Country Status (1)

Country Link
JP (1) JPS58155659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082058A (en) * 2018-11-27 2020-06-04 公信 山▲崎▼ Soil remediation system
JP2020082057A (en) * 2018-11-27 2020-06-04 公信 山▲崎▼ Soil remediation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481797B2 (en) * 1996-10-03 2003-12-22 片山特殊工業株式会社 Method for manufacturing battery electrode substrate and battery electrode substrate
AT501904B1 (en) * 2005-05-25 2006-12-15 Banner Gmbh GRID

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082058A (en) * 2018-11-27 2020-06-04 公信 山▲崎▼ Soil remediation system
JP2020082057A (en) * 2018-11-27 2020-06-04 公信 山▲崎▼ Soil remediation system

Also Published As

Publication number Publication date
JPS58155659A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
US9577266B2 (en) Negative grid for battery
US4906540A (en) Lead-acid battery having a grid base of a lead-calcium alloy and a layer of lead-antimony-stannum alloy roll-bonded to the grid base
JPH0147856B2 (en)
US5401278A (en) Method of making battery plates for lead acid storage batteries
JPS6116153B2 (en)
JPS60167267A (en) Electrode base plates for lead storage battery
JPS6021883Y2 (en) storage battery board
JPH0152863B2 (en)
JP2560770B2 (en) Expanded grid for lead-acid battery and manufacturing method thereof
JP4385441B2 (en) Lead acid battery
JPH0152862B2 (en)
US2756269A (en) Battery grid
JP4783977B2 (en) Lead acid battery
JP4092816B2 (en) Lattice body for lead acid battery and method for manufacturing the same
JPH0320017B2 (en)
JP3427401B2 (en) Expanded grid for storage battery and method of manufacturing the same
JPS6116152B2 (en)
JPH10321238A (en) Metal-hydride negative electrode in form of coating porous strip
JP2000340235A (en) Lead-acid battery
JPS5831331Y2 (en) Substrate for battery electrode plates
JPH0360156B2 (en)
JPH0161231B2 (en)
JPS6228544B2 (en)
JPS6320052Y2 (en)
JPH0116288Y2 (en)