JPH0147733B2 - - Google Patents

Info

Publication number
JPH0147733B2
JPH0147733B2 JP55120462A JP12046280A JPH0147733B2 JP H0147733 B2 JPH0147733 B2 JP H0147733B2 JP 55120462 A JP55120462 A JP 55120462A JP 12046280 A JP12046280 A JP 12046280A JP H0147733 B2 JPH0147733 B2 JP H0147733B2
Authority
JP
Japan
Prior art keywords
circuit
particle
signal
time constant
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55120462A
Other languages
Japanese (ja)
Other versions
JPS5744833A (en
Inventor
Masamichi Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP12046280A priority Critical patent/JPS5744833A/en
Publication of JPS5744833A publication Critical patent/JPS5744833A/en
Publication of JPH0147733B2 publication Critical patent/JPH0147733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M11/00Counting of objects distributed at random, e.g. on a surface
    • G06M11/02Counting of objects distributed at random, e.g. on a surface using an electron beam scanning a surface line by line, e.g. of blood cells on a substrate
    • G06M11/04Counting of objects distributed at random, e.g. on a surface using an electron beam scanning a surface line by line, e.g. of blood cells on a substrate with provision for distinguishing between different sizes of objects

Description

【発明の詳細な説明】 本発明は、赤血球、血小板などの粒子をこれら
の粒子の大きさに基づいて分類計数するための装
置に関するもので、とくに大小2種の粒子のうち
の小さい方の粒子を正確にかつ効果的に計数する
ことができる粒子分類計数装置を提供せんとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for classifying and counting particles such as red blood cells and platelets based on the size of these particles. It is an object of the present invention to provide a particle classification and counting device that can accurately and effectively count particles.

従来、生理食塩水などに浮懸された赤血球、血
小板などの粒子を、液と粒子の光学的差異または
電気的差異に基づいて検出して電気パルス信号に
変換し、その信号の大きさが粒子の大きさに比例
することから、適当な閾値回路を設けて血小板と
赤血球、および赤血球の2種に分類し計数を行な
つている。この計数方法としては次の2通りの方
法がある。なおいずれも大粒子を赤血球、小粒子
を血小板とした場合である。
Conventionally, particles such as red blood cells and platelets suspended in physiological saline etc. are detected based on the optical or electrical difference between the liquid and the particles and converted into an electrical pulse signal, and the size of the signal is determined by the particle size. Since it is proportional to the size of the blood, an appropriate threshold circuit is provided to classify and count the blood into two types: platelets, red blood cells, and red blood cells. There are two methods for this counting: In both cases, the large particles are red blood cells and the small particles are platelets.

(1) 赤血球と血小板の計数結果から赤血球数を引
算する方法。
(1) A method of subtracting the red blood cell count from the red blood cell and platelet count results.

(2) 赤血球信号がきたことを検知し、血小板計数
回路に禁止信号を送り赤血球によるパルスを計
数しないようにして直接血小板を計数する方
法。
(2) A method of directly counting platelets by detecting the arrival of a red blood cell signal and sending an inhibition signal to the platelet counting circuit to prevent pulses caused by red blood cells from being counted.

上記の方法のうち、(2)の方法は、赤血球信号の
立上り時間を2つのレベルにわたつて一致させ、
かつ立下りの時間とは無関係にするか、あるいは
ピーク点を検知して禁止信号を発するなどの必要
があり、比較的ゆつくりとした立上りを見せる赤
血球信号がきたりすると誤動作を生じたり、また
微妙な時間一致のための調整を要するなどの欠点
があつた。一方、(1)の方法は、別々に計数した後
に引算をする方法であり、回路構成は比較的簡単
であるが、その反面、単純引算ではたとえば赤血
球が連続して2個検出された場合などに生ずるダ
ブルピーク型の信号波形の場合、血小板領域では
1個のパルス信号であつても赤血球のレベルでは
2個と数えてしまい、引算の結果、血小板数が減
少するといつた誤差が生ずる欠点があつた。さら
に両者において、赤血球信号または血小板信号に
ノイズが重畳し、パルスが立ち上る際または立ち
下る際に、閾値近辺にて鋭いパルスが生じ誤計数
を行なうという欠点があつた。
Among the above methods, method (2) matches the rise time of the red blood cell signal across two levels,
In addition, it is necessary to either make it independent of the falling time or to detect the peak point and issue an inhibition signal. If a red blood cell signal that rises relatively slowly comes, malfunctions may occur, or subtle signals may occur. There were drawbacks such as the need for adjustment for accurate time matching. On the other hand, method (1) involves counting separately and then subtracting, and the circuit configuration is relatively simple. However, on the other hand, with simple subtraction, for example, two red blood cells are detected in succession. In the case of double-peak signal waveforms that occur in cases such as cases, even if there is one pulse signal in the platelet region, it is counted as two pulses at the red blood cell level, and as a result of subtraction, the number of platelets decreases and errors occur. There were some shortcomings. Furthermore, both methods have the disadvantage that noise is superimposed on the red blood cell signal or the platelet signal, resulting in sharp pulses near the threshold when the pulse rises or falls, resulting in erroneous counting.

本発明は上記の欠点を解消するためになされた
もので、液体に浮懸する赤血球、血小板のような
2種の大小の混合した粒子を粒子と浮懸液との電
気的差異または光学的差異に基づいて検出し粒子
の大きさに比例した信号を発生する粒子検出装置
と、この粒子検出装置に接続され検出波形を微分
し微分信号に基づいて信号の立上りおよび立下り
を検出し立上りの前縁および立下りの後縁からゲ
ート信号を発する大粒子用時定数切換信号発生回
路と、この大粒子用時定数切換信号発生回路およ
び粒子検出装置に接続され前記ゲート信号により
検出信号を通過させる回路の時定数を変化させ基
線を安定化させる大粒子用可変時定数回路と、前
記粒子検出装置に増幅器を介して接続された小粒
子・大粒子用時定数切換信号発生回路と、この小
粒子・大粒子用時定数切換信号発生回路および増
幅器に接続された小粒子・大粒子用可変時定数回
路と、大粒子用可変時定数回路に接続され基線を
安定化された大粒子に関する検出信号を通過させ
る大粒子閾値回路と、小粒子・大粒子用可変時定
数回路に接続され基線を安定化された小粒子およ
び大粒子に関する検出信号を通過させる小粒子・
大粒子閾値回路と、小粒子・大粒子用時定数切換
信号発生回路に接続されたタイミングパルス発生
回路と、大粒子閾値回路、小粒子・大粒子閾値回
路およびタイミングパルス発生回路に接続された
弁別回路と、この弁別回路に接続された大粒子計
数回路および小粒子計数回路とで粒子分類計数装
置を構成することにより、大小2種の粒子、とく
に小さい方の粒子を高精度で測定することができ
る粒子分類計数装置の提供を目的とするものであ
る。
The present invention has been made in order to solve the above-mentioned drawbacks, and it is possible to use a mixture of two types of large and small particles, such as red blood cells and platelets, suspended in a liquid by electrical or optical differences between the particles and the suspended liquid. A particle detection device that detects based on the particle size and generates a signal proportional to the size of the particle, and a particle detection device that is connected to this particle detection device and differentiates the detected waveform and detects the rise and fall of the signal based on the differentiated signal. A large particle time constant switching signal generation circuit that generates a gate signal from an edge and a trailing edge of a falling edge, and a circuit that is connected to the large particle time constant switching signal generation circuit and the particle detection device and allows a detection signal to pass through using the gate signal. a large particle variable time constant circuit that stabilizes the baseline by changing the time constant of the small particle/large particle time constant switching signal generation circuit connected to the particle detection device via an amplifier; The large particle time constant switching signal generation circuit and variable time constant circuit for large particles are connected to the amplifier, and the detection signal for large particles is connected to the variable time constant circuit for large particles and the baseline is stabilized. A large particle threshold circuit is connected to a small particle/large particle variable time constant circuit to pass the detection signals for small particles and large particles whose baseline is stabilized.
A large particle threshold circuit, a timing pulse generation circuit connected to the small particle/large particle time constant switching signal generation circuit, and a discrimination circuit connected to the large particle threshold circuit, the small particle/large particle threshold circuit, and the timing pulse generation circuit. By configuring a particle classification and counting device with a large particle counting circuit and a small particle counting circuit connected to this discrimination circuit, it is possible to measure two types of particles, large and small, especially the smaller one, with high precision. The purpose is to provide a particle classification and counting device that can

以下、本発明の構成を図面に基づいて説明す
る。第1図は本発明の装置の構成の一実施態様を
示す説明図、第2図は各部の信号波形図である。
1は血小板、赤血球などの粒子と粒子を浮懸する
液との電気的または光学的な差に基づいて粒子を
検出しパルス信号を発生する粒子検出装置で、通
常は粒子の浮懸液を狭あいに形成された通路(微
細孔)に通過させ、粒子と液との電気インピーダ
ンスの差異に基づいて粒子を検出し、粒子の大き
さに比例した信号を発生させる装置が用いられ
る。2は検出波形を微分し微分信号に基づいて信
号の立上りおよび立下りを検出し、立上りの前縁
および立下りの後縁からゲート信号を発する大粒
子用時定数切換信号発生回路、3はこのゲート信
号により検出信号を通過させる回路の時定数を変
化させ基線を安定化させる大粒子用可変時定数回
路、4は大粒子閾値回路、5は増幅器、6は小粒
子・大粒子用時定数切換信号発生回路、7は小粒
子・大粒子用可変時定数回路、8は小粒子・大粒
子閾値回路、9はタイミングパルス発生回路、1
0は弁別回路、11は大粒子計数回路、12は小
粒子計数回路である。
Hereinafter, the configuration of the present invention will be explained based on the drawings. FIG. 1 is an explanatory diagram showing one embodiment of the configuration of the apparatus of the present invention, and FIG. 2 is a signal waveform diagram of each part.
1 is a particle detection device that detects particles and generates a pulse signal based on the electrical or optical difference between particles such as platelets and red blood cells and the liquid in which the particles are suspended. A device is used that detects the particles based on the difference in electrical impedance between the particles and the liquid by passing the particles through channels (micropores) formed in the gap, and generates a signal proportional to the size of the particles. 2 is a large particle time constant switching signal generation circuit which differentiates the detected waveform, detects the rising and falling edges of the signal based on the differentiated signal, and generates a gate signal from the leading edge of the rising edge and the trailing edge of the falling edge; 3, this circuit; A variable time constant circuit for large particles that stabilizes the baseline by changing the time constant of the circuit that allows the detection signal to pass through using a gate signal, 4 is a large particle threshold circuit, 5 is an amplifier, and 6 is a time constant switch for small and large particles. Signal generation circuit, 7 is a variable time constant circuit for small particles/large particles, 8 is a small particle/large particle threshold circuit, 9 is a timing pulse generation circuit, 1
0 is a discrimination circuit, 11 is a large particle counting circuit, and 12 is a small particle counting circuit.

第2図において、左側は赤血球などの大粒子の
信号系を示し、右側は血小板などの小粒子の信号
系を示している。粒子検出装置1の出力信号aは
増幅器5によつてa′のように増幅されて、大粒子
による信号は飽和してしまう。a,a′の2つの信
号を単純に比較した場合、aでは大粒子による信
号は明らかに2個であるが、a′の場合は1個とし
か判別できない。したがつてa′の(大粒子+小粒
子)からaの大粒子を差し引くと、小粒子の数を
余分に差し引いてしまうという誤差が生ずる。一
方、aの信号のうち大粒子の信号を1個とすれ
ば、小粒子は正しく数えるが、大粒子に誤差が生
ずる。したがつて本発明においては、大粒子と小
粒子を同時に検出しそれぞれの粒子を各々正確に
求める装置を提供する。
In FIG. 2, the left side shows a signal system for large particles such as red blood cells, and the right side shows a signal system for small particles such as platelets. The output signal a of the particle detection device 1 is amplified by the amplifier 5 as shown by a', and the signal due to large particles is saturated. When the two signals a and a' are simply compared, it is clear that there are two signals due to large particles in a, but only one can be determined in the case of a'. Therefore, when the large particles of a are subtracted from (large particles + small particles) of a', an error occurs in that the number of small particles is redundantly subtracted. On the other hand, if one large particle signal is included in the signal a, small particles will be counted correctly, but an error will occur for large particles. Therefore, the present invention provides an apparatus that simultaneously detects large particles and small particles and accurately determines each particle.

本発明の装置の動作原理の説明の前に、検出信
号の安定化を行なうための可変時定数回路につい
て説明する。第3図は可変時定数回路の一例を示
す説明図、第4図は入力波形、出力波形の一例で
ある。粒子の検出信号には、粒子以外のノイズ信
号、気泡による比較的ゆつくりした信号などによ
つて基線が変動するなどの現象が生ずる。この基
線の変動は粒子信号に重畳し、信号の見掛の大き
さが大きくなり、あたかも大きな粒子を検出した
かのような現象が生ずる。これを防止するため
に、粒子信号が入力されているとき以外は回路の
時定数を小さくし、粒子信号が入力されていると
きに通常の回路時定数に戻す方法が用いられる。
完全に回路を遮断しないのは、遮断状態から通常
の状態に復帰したときに、インパルス状のノイズ
を生じたりするのを防止するためである。第3図
において、13はCR(コンデンサと抵抗)による
時定数切換回路で、コンデンサC1と抵抗R1また
はR2とによつて定まる時定数によつて信号の通
過帯域を可変できるものであり、切換信号は微分
回路14の出力信号を2つのコンパレータ15,
16を用い、微分信号の正の部分および負の部
分、すなわち粒子信号の立上り部分および立下り
部分を検出し、RSフリツプフロツプ17により
ゲート信号を生じさせ、その間だけ時定数切換回
路13を切り換え、通常の時定数に戻す方法が用
いられる。時定数切換回路13のコンデンサC1
と抵抗R1および抵抗R2とにより切り換えられる
時定数は、数ミリセカンドのオーダと1マイクロ
セカンド以下のオーダであり、粒子信号のパルス
幅が数マイクロ〜数十マイクロのオーダであるか
ら、数ミリセカンドの時定数においては原信号の
波形が損われずに通過できるが、一方、1マイク
ロセカンド以下の時定数においては、気泡などに
よる余分な信号は十分に除去できる。なお微分回
路14の時定数は1マイクロセカンドのオーダで
ある。第4図において、Aは可変時定数回路を通
過させる以前の信号であり、Bは可変時定数回路
を通過した後の信号である。基線が安定すると同
時に、不要な信号が除去されていることがわか
る。
Before explaining the operating principle of the device of the present invention, a variable time constant circuit for stabilizing the detection signal will be explained. FIG. 3 is an explanatory diagram showing an example of a variable time constant circuit, and FIG. 4 is an example of input waveforms and output waveforms. In the particle detection signal, phenomena such as fluctuations in the baseline occur due to noise signals other than particles, relatively slow signals due to bubbles, and the like. This fluctuation in the baseline is superimposed on the particle signal, increasing the apparent size of the signal and causing a phenomenon as if a large particle had been detected. In order to prevent this, a method is used in which the time constant of the circuit is made small except when the particle signal is being input, and then returned to the normal circuit time constant when the particle signal is being input.
The reason why the circuit is not completely cut off is to prevent impulse-like noise from occurring when the cut-off state returns to the normal state. In Fig. 3, numeral 13 is a time constant switching circuit using CR (capacitor and resistor), which can vary the signal passband by the time constant determined by capacitor C1 and resistor R1 or R2 . , the switching signal is the output signal of the differentiating circuit 14 and the two comparators 15,
16 is used to detect the positive and negative parts of the differential signal, that is, the rising and falling parts of the particle signal, the RS flip-flop 17 generates a gate signal, and the time constant switching circuit 13 is switched only during that period. A method is used to return the time constant to . Capacitor C 1 of time constant switching circuit 13
The time constants switched by R 1 and R 2 are on the order of several milliseconds and on the order of 1 microsecond or less, and since the pulse width of the particle signal is on the order of several microseconds to several tens of microseconds, At a time constant of milliseconds, the waveform of the original signal can pass through without being damaged; on the other hand, at a time constant of 1 microsecond or less, excess signals due to bubbles and the like can be sufficiently removed. Note that the time constant of the differentiating circuit 14 is on the order of 1 microsecond. In FIG. 4, A is a signal before passing through the variable time constant circuit, and B is a signal after passing through the variable time constant circuit. It can be seen that the baseline is stabilized and at the same time unnecessary signals are removed.

さて第2図の信号波形図において、aおよび
a′の微分信号はbおよびb′となる。aおよびa′の
信号の立上りの検出信号はc1,c′2となり、立下
りの検出信号はc2,c′2となる。これは前述した
ように、2つのコンパレータ15,16などによ
り微分信号に所定の閾値を設け、これを越えたと
きにコンパレータをオンすることによつて得られ
る。さらにRSフリツプフロツプ17によつて、
時定数切換信号d,d′が得られる。以上のように
して得られた時定数切換信号発生回路2,6の出
力信号は、可変時定数回路3,7に送られe,
e′のように粒子信号のみの出力信号を生ずる。
Now, in the signal waveform diagram of Fig. 2, a and
The differential signals of a' become b and b'. The detection signals of the rising edges of the signals a and a' are c 1 and c' 2 , and the detection signals of the falling edges of the signals a and a' are c 2 and c' 2 . As described above, this can be obtained by setting a predetermined threshold value for the differential signal using the two comparators 15, 16, etc., and turning on the comparator when the predetermined threshold value is exceeded. Furthermore, by the RS flip-flop 17,
Time constant switching signals d and d' are obtained. The output signals of the time constant switching signal generation circuits 2 and 6 obtained as described above are sent to the variable time constant circuits 3 and 7.
It produces an output signal consisting only of particle signals, such as e'.

さらに本発明の装置においては、一例として第
5図に示すように、信号の微分によつて生ずるノ
イズを除去するために、微分回路14の後属とし
て信号圧縮回路18が設けられている。第5図の
例は電力増幅回路などに用いられるプツシユプル
回路であるが、バイアスを調整することによつて
信号の立上りにおいて第6図に示すように、所定
の電圧以上で始めて出力が生ずるようにしてい
る。すなわち、微分信号の基線に重畳している小
さいノイズ信号によつて、コンパレータ15,1
6が誤つてトリガされないように中央部の電圧を
圧縮させノイズを除去している。たとえば第7図
に示すように、入力にサインカーブの信号(第7
図上側)を入れると、出力は圧縮された波形の信
号(第7図下側)となる。つぎに実際の信号波形
の例を第8図に示す。第8図の上側が微分回路1
4の出力波形で、信号圧縮回路18を通すことに
よつて第8図の下側のように、ノイズの除去され
たきれいな信号が得られる。上記動作は、プツシ
ユプル回路のクロスオーバ歪をなくすための回路
を用い、強制的に歪を発生させて行なう。
Further, in the apparatus of the present invention, as shown in FIG. 5 as an example, a signal compression circuit 18 is provided subsequent to the differentiation circuit 14 in order to remove noise caused by differentiation of the signal. The example shown in Figure 5 is a push-pull circuit used in power amplifier circuits, etc., but by adjusting the bias, it is possible to make an output only at a predetermined voltage or higher at the rise of the signal, as shown in Figure 6. ing. That is, due to the small noise signal superimposed on the base line of the differential signal, the comparators 15 and 1
The voltage at the center is compressed to eliminate noise so that 6 is not accidentally triggered. For example, as shown in Figure 7, the input signal is a sine curve signal (7
(upper side of the figure), the output becomes a compressed waveform signal (lower side of Figure 7). Next, an example of an actual signal waveform is shown in FIG. The upper part of Figure 8 is the differential circuit 1.
By passing the output waveform of No. 4 through the signal compression circuit 18, a clean signal from which noise has been removed can be obtained as shown in the lower part of FIG. The above operation is performed by forcibly generating distortion using a circuit for eliminating crossover distortion of the push-pull circuit.

可変時定数回路3,7によつて得られた基線の
安定した信号e,e′を、所定の閾値電圧Vl,Vs
を有する閾値回路4,8に通過させることによ
り、それぞれ閾値電圧を越える信号のみが通過
し、f,f′という信号が得られる。e,e′の信号
に重畳しているノイズ信号はまだ除去されていな
いために、f,f′にはひげ状のノイズが生ずる。
fとf′との比較において、大粒子とひげ状のノイ
ズとは区別が容易であるが、一方、小粒子の場合
には必ずしもノイズとの区別が明確であるとは限
らない。しかし大粒子とノイズとの区別は容易で
あり、弁別回路10に内蔵された簡単なフイルタ
回路を通過させるだけで、信号gのようにひげ状
のノイズが除去された信号が得られる。これは大
粒子計数回路11で計数される。一方、小粒子に
よる信号は、第2図の信号波形図に示されるよう
な幅の広いパルスばかりであるとは限らずひげ状
のノイズとの区別が困難である場合もあり、以下
のようにして処理される。この処理のためには、
時定数切換信号発生回路6の信号の一部が用いら
れる。まずタイミングパルス発生回路9におい
て、小粒子系の時定数切換信号発生回路6の信号
c′1,c′2は反転されてh1,h2となる。h2の信号は
遅延されてh′2の信号となる。h1のパルスの立下
りとh′2のパルスの立上り信号により、iという
タイミング信号が作られて弁別回路10に送られ
る。すなわち、このタイミング信号iは前述の時
定数切換信号d′と比較して、幅の狭いパルスとな
る。一方、小粒子・大粒子閾値回路8の出力信号
f′を反転させるとkという信号が得られ、タイミ
ング信号iとアンドを取ることにより、mという
大粒子と小粒子との混合信号が得られる。さらに
前述の大粒子のみを表わす信号gは、閾値レベル
を高く取つているために、大粒子の双峰性の山を
2つに分離し、2個の粒子として数えており、こ
のため混合信号mから単純に引算を行なつたので
は、余分に引いてしまうという誤差が生ずる。し
たがつて以下のような処理が行なわれる。
The stable baseline signals e and e' obtained by the variable time constant circuits 3 and 7 are applied to predetermined threshold voltages Vl and Vs.
By passing the signal through the threshold voltage circuits 4 and 8 having the respective threshold voltages, only signals exceeding the respective threshold voltages are passed, and signals f and f' are obtained. Since the noise signal superimposed on the signals e and e' has not yet been removed, whisker-like noise occurs in f and f'.
In comparing f and f', it is easy to distinguish between large particles and whisker-like noise, but on the other hand, in the case of small particles, it is not always clear to distinguish them from noise. However, it is easy to distinguish between large particles and noise, and by simply passing the particles through a simple filter circuit built into the discrimination circuit 10, a signal like signal g from which whisker-like noise has been removed can be obtained. This is counted by a large particle counting circuit 11. On the other hand, signals caused by small particles are not always wide pulses as shown in the signal waveform diagram in Figure 2, and may be difficult to distinguish from whisker-like noise. will be processed. For this process,
A part of the signal from the time constant switching signal generation circuit 6 is used. First, in the timing pulse generation circuit 9, the signal from the small particle system time constant switching signal generation circuit 6 is
c' 1 and c' 2 are inverted and become h 1 and h 2 . The h 2 signal is delayed and becomes the h′ 2 signal. A timing signal called i is generated from the falling edge of the h 1 pulse and the rising edge of the h' 2 pulse, and is sent to the discrimination circuit 10 . That is, this timing signal i becomes a narrower pulse than the above-mentioned time constant switching signal d'. On the other hand, the output signal of the small particle/large particle threshold circuit 8
By inverting f', a signal k is obtained, and by ANDing it with the timing signal i, a mixed signal m of large particles and small particles is obtained. Furthermore, since the above-mentioned signal g representing only large particles has a high threshold level, the bimodal mountain of large particles is separated into two and counted as two particles, and therefore the mixed signal If we simply subtract from m, an error will occur due to extra subtraction. Therefore, the following processing is performed.

信号f′の反転信号kは、大粒子と小粒子との混
合信号であり、これを微分するとlという信号が
得られる。信号gと信号lの両信号を用い、信号
gの立下りでトリガさせ、信号lでリセツトさせ
るようなRSフリツプフロツプを作動させると、
信号nが得られる。この信号nとタイミング信号
iとのアンドを取れば、pという大粒子相当信号
が得られる。したがつて、信号pと信号mとはリ
アルタイムでの引算が可能であり、小粒子のみの
信号を得ることができる。この信号は小粒子計数
回路12で計数される。
The inverted signal k of the signal f' is a mixed signal of large particles and small particles, and when this is differentiated, a signal l is obtained. If we operate an RS flip-flop using both signal g and signal l, which is triggered by the falling edge of signal g and reset by signal l,
A signal n is obtained. By ANDing this signal n and the timing signal i, a signal p corresponding to a large particle is obtained. Therefore, the signal p and the signal m can be subtracted in real time, and a signal of only small particles can be obtained. This signal is counted by a small particle counting circuit 12.

以上説明したように、本発明の装置は幾分手順
が複雑であるが、回路の各部分を確実に作動させ
ることによつて精度の高い分類計数を行なうこと
ができる。とくに血液検査などの分野で用いられ
る血球計数装置などにおいては、血球がかなり均
一に分散しているような溶液を用いても血球粒子
を1個1個数える際には、粒子が検出される間隔
は常に一定とは言えず、通常ポアツソン分布のよ
うにごく接近して検出されたり、あるいは間隔を
広げて検出されるなど、非常に処理が難しい状態
で検出される。とくに粒子が接近して検出された
場合、平均粒子間隔が100μ秒の場合でも数マイ
クロに接近してくる場合がある。また大粒子が連
続して検出される場合には、いわゆる双峰性の検
出パルスが生ずる。したがつて上記の方法を取る
ことによつて、より確実な分類計数が可能とな
る。
As explained above, although the procedure of the apparatus of the present invention is somewhat complicated, it is possible to perform highly accurate classification counting by reliably operating each part of the circuit. Particularly in blood cell counters used in fields such as blood testing, even if a solution in which blood cells are dispersed fairly uniformly is used, when counting each blood cell particle one by one, the interval at which particles are detected is limited. are not always constant, and are usually detected very close together like a Poisson distribution, or detected at wide intervals, making it extremely difficult to process. In particular, when particles are detected close together, they may approach several microns even if the average particle interval is 100 μs. Furthermore, when large particles are detected continuously, so-called bimodal detection pulses occur. Therefore, by adopting the above method, more reliable classification and counting becomes possible.

本発明の装置においては、きわめて接近したパ
ルスが生じてもより確実に作動させるために、以
下のような回路を内蔵させている。すなわち、時
定数切換信号を発生させる回路6において、検出
信号aまたはa′の微分信号b,b′から得られる立
上りの検出信号c1,c′1、立下りの検出信号c2
c′2によつて第3図に示すRSフリツプフロツプ1
7に信号を与えて切換信号d,d′を得るが、第9
図に示すa″のように小粒子による接近信号などの
場合、そのパルス間隔がきわめて短いために、微
分信号b″から得られる立上り検出信号c″1と立下
り検出信号c″2もごく接近して生じ、RSフリツプ
フロツプ17が正確に作動しないという問題が起
こつてくる。すなわち、始めの小粒子による立下
り検出パルスc″2の後縁20と、次のパルスの立
上り検出パルスc″1の前縁21との間にはほとん
ど時間がないために、RSフリツプフロツプの1
つの動作の次の動作が作動しないという現象が生
ずる。このような誤動作は血小板や赤血球の数を
数えるといつたきわめて特殊な分野で通常のパル
ス回路を用いる際に大きな問題となり、いわゆる
ポアツソン分布の裾の部分が測定値に重大な誤差
を与え測定値の信頼性を低下させている。
The device of the present invention incorporates the following circuit in order to operate more reliably even when very close pulses occur. That is, in the circuit 6 that generates the time constant switching signal, rising detection signals c 1 , c′ 1 and falling detection signals c 2 , c′ 1 obtained from the differential signals b and b′ of the detection signal a or a are generated.
RS flip-flop 1 shown in FIG. 3 by c′ 2
7 to obtain switching signals d and d', but the 9th
In the case of an approach signal caused by a small particle, such as a'' shown in the figure, the pulse interval is extremely short, so the rising detection signal c'' 1 and the falling detection signal c'' 2 obtained from the differential signal b'' are also very close to each other. As a result, a problem arises in that the RS flip-flop 17 does not operate correctly. That is, since there is almost no time between the trailing edge 20 of the falling detection pulse c'' 2 caused by the first small particle and the leading edge 21 of the rising detection pulse c'' 1 of the next pulse, the RS flip-flop
A phenomenon occurs in which the next action after one action does not work. Such malfunctions are a big problem when using normal pulse circuits in very special fields such as counting the number of platelets and red blood cells. The reliability of the system is reduced.

上記の問題点を解決するために、本発明の装置
においては立上り検出信号c″1を第9図に示す信
号c3のように故意に発振させることによつて動作
を確実なものとしている。具体的には第10図に
示すように、シユミツトトリガ回路などを用いた
発振回路19にパルスが入力されると、その間だ
け発振が持続するように構成している。すなわ
ち、始めの粒子による信号の立下りの検出パルス
の後縁20に続いて、次の粒子の信号の立上りの
検出パルスの前縁21がきてRSフリツプフロツ
プがリセツトされて続いてセツト状態に移ること
ができなかつたとしても、セツト信号である粒子
パルスの立上りの検出信号c″1を発振させてc3
状態にしているために、次々とセツト信号がきて
確実にRSフリツプフロツプがセツトされる。し
かる後、粒子信号の立下りの検出信号の後縁22
で再びリセツト状態に復帰する。以上のようにし
て得られた切換信号d″は、粒子信号がきわめて接
近して生じても確実に作動するように生ずるため
に、2個の粒子を誤つて1個として数えてしまう
ことがなく、片方の回路のみを発振させ、もう一
方の回路をそのままにし、再者でより正確な動作
を生じさせる。上記の方法において、両方の回路
を発振させることはあまり好ましいことではな
い。発振パルスの最後のパルスが別の回路の発振
パルスの立上りと重ならないということは絶対に
あり得ないことではなく、回路中のストレーキヤ
パシテイなどにより入力電圧を完全に遮断して
も、幾分の残留電圧が発振回路の入力端にあつ
て、発振の持続を促すことも十分に考えられる。
In order to solve the above problems, in the apparatus of the present invention, the rising edge detection signal c''1 is intentionally oscillated like the signal c3 shown in FIG. 9 to ensure reliable operation. Specifically, as shown in Fig. 10, when a pulse is input to an oscillation circuit 19 using a Schmitt trigger circuit or the like, the oscillation continues for only that period.In other words, the signal generated by the initial particle is The trailing edge 20 of the falling detection pulse is followed by the leading edge 21 of the rising detection pulse of the next particle's signal, and the RS flip-flop is reset even if it cannot subsequently go to the set state. Since the detection signal c''1 of the rising edge of the particle pulse, which is a signal, is oscillated to bring it into the state c3 , the set signals come one after another and the RS flip-flop is reliably set. After that, the trailing edge 22 of the detection signal of the fall of the particle signal
to return to the reset state again. The switching signal d'' obtained in the above manner is generated in such a way that it operates reliably even if the particle signals occur very close to each other, so that two particles will not be mistakenly counted as one. , only one circuit is allowed to oscillate and the other circuit is left untouched, resulting in a more accurate operation in the second circuit.In the above method, it is not very desirable to have both circuits oscillate. It is not impossible that the last pulse does not overlap with the rising edge of another circuit's oscillation pulse, and even if the input voltage is completely cut off due to stray capacitance in the circuit, some residual voltage may still exist. It is quite conceivable that the oscillation circuit is located at the input end of the oscillation circuit and promotes the continuation of oscillation.

以上説明したように、本発明の粒子分類計数装
置は、その回路構成が単純なゲート回路によら
ず、信号を微分し微分信号に基づいてRSフリツ
プフロツプによるゲート信号を発生させ、ゲート
信号に基づいて可変時定数回路で時定数を変化さ
せ基線を安定させ、前記ゲート信号を作る過程に
おける信号を利用し大粒子と小粒子の弁別のタイ
ミング信号としてリアルタイムでの引算を可能と
し、また微分のノイズを除去するためにクロスオ
ーバ歪を故意に利用して波形を圧縮させ、さらに
前記ゲート信号を発生させるRSフリツプフロツ
プを確実に動作させるために、回路のセツト信号
を故意に発振させるようにしてなることを特徴と
しているので、リアルタイムで大粒子および小粒
子のパルスが出力されて計数後の演算処理が不要
であり、また同じタイミングパルスによつて波形
処理または演算処理を行なつているために、多く
の遅延回路などを用いた複雑な時間合わせが不要
であり、さらに波形処理中に発振回路などを用い
て動作を確実にしているために測定値の精度がき
わめて高いなどの効果を有している。
As explained above, the particle classification and counting device of the present invention does not have a simple gate circuit in its circuit configuration, but differentiates a signal, generates a gate signal using an RS flip-flop based on the differentiated signal, and generates a gate signal based on the gate signal. The baseline is stabilized by changing the time constant with a variable time constant circuit, and the signal used in the process of creating the gate signal can be used as a timing signal for discrimination between large particles and small particles, making it possible to perform subtraction in real time, and also to eliminate differential noise. In order to remove this, crossover distortion is intentionally used to compress the waveform, and in order to ensure that the RS flip-flop that generates the gate signal operates reliably, the set signal of the circuit is intentionally oscillated. Because pulses of large particles and small particles are output in real time, there is no need for calculation processing after counting, and since waveform processing or calculation processing is performed using the same timing pulse, there are many It does not require complicated time adjustment using delay circuits, etc., and also uses an oscillation circuit during waveform processing to ensure operation, resulting in extremely high accuracy of measured values. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の一実施態様を示す系統
的説明図、第2図は各部の信号波形図、第3図は
可変時定数回路の一例を示す説明図、第4図は入
力波形および出力波形の一例を示す波形図、第5
図は微分回路まわりの他の例を示す説明図、第6
図は第5図に示す回路により得られる出力波形の
一例を示す図、第7図は第5図に示す回路に入力
する波形の一例と、第5図に示す回路から出力す
る波形の一例を示す図、第8図は第5図に示す微
分回路の実際の出力波形と、第5図に示す信号圧
縮回路を通すことによつて実際に得られる波形の
一例を示す図、第9図は第10図に示す発振回路
の動作の説明のための波形図、第10図は発振回
路の一例を示す説明図である。 1……粒子検出装置、2……大粒子用時定数切
換信号発生回路、3……大粒子用可変時定数回
路、4……大粒子閾値回路、5……増幅器、6…
…小粒子・大粒子用時定数切換信号発生回路、7
……小粒子・大粒子用可変時定数回路、8……小
粒子・大粒子閾値回路、9……タイミングパルス
発生回路、10……弁別回路、11……大粒子計
数回路、12……小粒子計数回路、13……時定
数切換回路、14……微分回路、15,16……
コンパレータ、17……RSフリツプフロツプ、
18……信号圧縮回路、19……発振回路、20
……パルス後縁、21……パルス前縁、22……
パルス後縁。
Fig. 1 is a systematic explanatory diagram showing one embodiment of the device of the present invention, Fig. 2 is a signal waveform diagram of each part, Fig. 3 is an explanatory diagram showing an example of a variable time constant circuit, and Fig. 4 is an input waveform. and a waveform diagram showing an example of the output waveform, fifth
The figure is an explanatory diagram showing another example around the differential circuit, No. 6
The figure shows an example of the output waveform obtained by the circuit shown in Fig. 5, and Fig. 7 shows an example of the waveform input to the circuit shown in Fig. 5, and an example of the waveform output from the circuit shown in Fig. 5. Figure 8 shows an example of the actual output waveform of the differentiating circuit shown in Figure 5 and the waveform actually obtained by passing the signal through the signal compression circuit shown in Figure 5. FIG. 10 is a waveform diagram for explaining the operation of the oscillation circuit shown in FIG. 10. FIG. 10 is an explanatory diagram showing an example of the oscillation circuit. DESCRIPTION OF SYMBOLS 1...Particle detection device, 2...Large particle time constant switching signal generation circuit, 3...Large particle variable time constant circuit, 4...Large particle threshold circuit, 5...Amplifier, 6...
...Time constant switching signal generation circuit for small particles and large particles, 7
...Variable time constant circuit for small particles/large particles, 8...Small particle/large particle threshold circuit, 9...Timing pulse generation circuit, 10...Discrimination circuit, 11...Large particle counting circuit, 12...Small Particle counting circuit, 13... Time constant switching circuit, 14... Differentiation circuit, 15, 16...
Comparator, 17...RS flip-flop,
18... Signal compression circuit, 19... Oscillation circuit, 20
...Pulse trailing edge, 21...Pulse leading edge, 22...
Trailing edge of the pulse.

Claims (1)

【特許請求の範囲】 1 液体に浮懸する赤血球、血小板のような2種
の大小の混合した粒子を粒子と浮懸液との電気的
差異または光学的差異に基づいて検出し粒子の大
きさに比例した信号を発生する粒子検出装置と、
この粒子検出装置に接続され検出波形を微分し微
分信号に基づいて信号の立上りおよび立下りを検
出し立上りの前縁および立下りの後縁からゲート
信号を発する大粒子用時定数切換信号発生回路
と、この大粒子用時定数切換信号発生回路および
粒子検出装置に接続され前記ゲート信号により検
出信号を通過させる回路の時定数を変化させ基線
を安定化させる大粒子用可変時定数回路と、前記
粒子検出装置に増幅器を介して接続された小粒
子・大粒子用時定数切換信号発生回路と、この小
粒子・大粒子用時定数切換信号発生回路および増
幅器に接続された小粒子・大粒子用可変時定数回
路と、大粒子用可変時定数回路に接続され基線を
安定化された大粒子に関する検出信号を通過させ
る大粒子閾値回路と、小粒子・大粒子用可変時定
数回路に接続され基線を安定化された小粒子およ
び大粒子に関する検出信号を通過させる小粒子・
大粒子閾値回路と、小粒子・大粒子用時定数切換
信号発生回路に接続されたタイミングパルス発生
回路と、大粒子閾値回路、小粒子・大粒子閾値回
路およびタイミングパルス発生回路に接続された
弁別回路と、この弁別回路に接続された大粒子計
数回路および小粒子計数回路とからなることを特
徴とする粒子分類計数装置。 2 時定数切換信号発生回路が、微分信号を圧縮
させてノイズを減少させる信号圧縮回路を有して
いることを特徴とする特許請求の範囲第1項記載
の粒子分類計数装置。 3 時定数切換信号発生回路が、RSフリツプフ
ロツプのセツト信号を発振させ動作を確実にする
ための発振回路を有していることを特徴とする特
許請求の範囲第1項記載の粒子分類計数装置。
[Scope of Claims] 1. A method for detecting a mixture of two types of large and small particles, such as red blood cells and platelets, suspended in a liquid based on electrical or optical differences between the particles and the suspended liquid, and determining the size of the particles. a particle detection device that generates a signal proportional to;
A time constant switching signal generation circuit for large particles that is connected to this particle detection device and differentiates the detected waveform, detects the rising and falling edges of the signal based on the differentiated signal, and issues gate signals from the leading edge of the rising edge and the trailing edge of the falling edge. and a large particle variable time constant circuit that is connected to the large particle time constant switching signal generation circuit and the particle detection device and that stabilizes the baseline by changing the time constant of the circuit that allows the detection signal to pass using the gate signal. A time constant switching signal generation circuit for small particles and large particles connected to the particle detection device via an amplifier, and a time constant switching signal generation circuit for small particles and large particles connected to the time constant switching signal generation circuit for small particles and large particles and the amplifier. A variable time constant circuit, a large particle threshold circuit that is connected to the variable time constant circuit for large particles and passes a detection signal related to the stabilized large particles, and a large particle threshold circuit that is connected to the variable time constant circuit for small and large particles and that stabilizes the baseline The detection signal for small particles and large particles is stabilized.
A large particle threshold circuit, a timing pulse generation circuit connected to the small particle/large particle time constant switching signal generation circuit, and a discrimination circuit connected to the large particle threshold circuit, the small particle/large particle threshold circuit, and the timing pulse generation circuit. A particle classification and counting device comprising: a circuit; and a large particle counting circuit and a small particle counting circuit connected to the discrimination circuit. 2. The particle classification and counting device according to claim 1, wherein the time constant switching signal generation circuit includes a signal compression circuit that compresses the differential signal to reduce noise. 3. The particle classification and counting device according to claim 1, wherein the time constant switching signal generation circuit includes an oscillation circuit for oscillating a set signal of the RS flip-flop to ensure operation.
JP12046280A 1980-08-29 1980-08-29 Device for classifying and counting particle Granted JPS5744833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12046280A JPS5744833A (en) 1980-08-29 1980-08-29 Device for classifying and counting particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12046280A JPS5744833A (en) 1980-08-29 1980-08-29 Device for classifying and counting particle

Publications (2)

Publication Number Publication Date
JPS5744833A JPS5744833A (en) 1982-03-13
JPH0147733B2 true JPH0147733B2 (en) 1989-10-16

Family

ID=14786760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12046280A Granted JPS5744833A (en) 1980-08-29 1980-08-29 Device for classifying and counting particle

Country Status (1)

Country Link
JP (1) JPS5744833A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104515725B (en) * 2013-09-30 2017-08-22 深圳迈瑞生物医疗电子股份有限公司 A kind of method and system and its cytoanalyze for recognizing abnormal particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930077A (en) * 1972-07-17 1974-03-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930077A (en) * 1972-07-17 1974-03-18

Also Published As

Publication number Publication date
JPS5744833A (en) 1982-03-13

Similar Documents

Publication Publication Date Title
US4412175A (en) Debris alarm
CA1171299A (en) Coincidence-error correcting apparatus and method
US4068169A (en) Method and apparatus for determining hematocrit
US4797624A (en) Method and apparatus for editing particle produced electrical pulses
CA1279698C (en) Debris detector
US3668531A (en) Pulse analyzing apparatus
JPH0147733B2 (en)
EP1664737B1 (en) A pulse height analyser
JPS5950342A (en) Method and device for correcting coincident error when counting particle of two kind
JPH0236176B2 (en)
CA1128148A (en) Fast redundant pulse density analyzer
JPS6129461B2 (en)
JPH0479432B2 (en)
JP2513457B2 (en) Voltage fluctuation detection circuit
JPS60158354A (en) Spatial filter applied speed sensor
JPS5850450A (en) Particle counter
EP0085625A3 (en) Filtering and frequency detection circuits for delta modulated signals
JPH0239732B2 (en)
JPS5883234A (en) Particle analyzing device
JPH023132B2 (en)
JPH0123727B2 (en)
JPS5824838A (en) Blood analyzer
JPH0225288B2 (en)
JPH03121438A (en) Shaking signal processor for camera
JPS5822939A (en) Analyzing apparatus of blood