JPH0147607B2 - - Google Patents

Info

Publication number
JPH0147607B2
JPH0147607B2 JP58148452A JP14845283A JPH0147607B2 JP H0147607 B2 JPH0147607 B2 JP H0147607B2 JP 58148452 A JP58148452 A JP 58148452A JP 14845283 A JP14845283 A JP 14845283A JP H0147607 B2 JPH0147607 B2 JP H0147607B2
Authority
JP
Japan
Prior art keywords
intake
surge tank
passage
port
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58148452A
Other languages
Japanese (ja)
Other versions
JPS6040724A (en
Inventor
Koichi Hatamura
Toshimasu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58148452A priority Critical patent/JPS6040724A/en
Publication of JPS6040724A publication Critical patent/JPS6040724A/en
Publication of JPH0147607B2 publication Critical patent/JPH0147607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、V型エンジンの吸気装置、とくに
一次吸気通路と二次吸気通路とが独立して形成さ
れた吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a V-type engine, and particularly to an intake system in which a primary intake passage and a secondary intake passage are formed independently.

(従来技術) エンジンの吸気装置において、各気筒に良好な
吸気を行なうために、吸気通路の脈動とシリンダ
の吸気作用回数とを同調させることによる吸気慣
性効果を有効に利用して充填効率の向上を図るも
のとして、例えば実公昭48−34401号公報に示さ
れるものがある。これは吸気通路にサージタンク
(空気室)を設け、このサージタンクより独立し
た通路を通つて各気筒に吸気を供給し、かつ気筒
間の吸気干渉による吸気慣性効果の阻害を排除す
るために、吸気通路の途に設けたサージタンクを
二つに分割し、各分割室に点火順序の連続しない
気筒を接続するように構成している。
(Prior art) In an engine intake system, in order to provide good intake air to each cylinder, the intake inertia effect is effectively utilized by synchronizing the pulsation of the intake passage and the number of intake operations of the cylinder, and the filling efficiency is improved. For example, there is a method shown in Japanese Utility Model Publication No. 48-34401. This is done by providing a surge tank (air chamber) in the intake passage, supplying intake air to each cylinder through an independent passage from this surge tank, and eliminating interference with the intake inertia effect due to intake air interference between cylinders. The surge tank installed in the middle of the intake passage is divided into two, and cylinders with different firing orders are connected to each divided chamber.

また、エンジンの吸気通路を一次吸気通路と二
次吸気通路とに分岐させ、低負荷域において吸気
量が少ないときには上記一次吸気通路のみから吸
気を供給することにより流速を増大して燃焼性を
向上し、吸気量が多いときには二次吸気からも吸
気を供給して出力の向上を図るようにしたエンジ
ンの吸気装置は知られている。この装置をV型エ
ンジンに採用し、かつ上記サージタンクを設けて
吸気慣性効果の向上を図るには、二つの吸気ポー
トを相異なる特性をもたせて低速時、高速時のい
ずれにおいてもトルクの落込みが生じないように
することが望まれる。この目的は、吸気パイプの
長さを、一方を長く、他方を短くすることにより
達成されるが、この場合には配置上の制約の多い
V型エンジンにおいては、装置が大型化しないよ
うな構成を採用する必要がある。
In addition, the engine's intake passage is divided into a primary intake passage and a secondary intake passage, and when the amount of intake air is small in a low load range, intake air is supplied only from the primary intake passage, thereby increasing the flow velocity and improving combustibility. However, an intake system for an engine is known in which when the amount of intake air is large, intake air is also supplied from secondary intake air to improve output. In order to apply this device to a V-type engine and improve the intake inertia effect by installing the surge tank described above, the two intake ports should have different characteristics to reduce torque drop at both low and high speeds. It is desirable to prevent crowding. This objective is achieved by making one length of the intake pipe longer and the other shorter, but in this case, in a V-type engine with many restrictions on placement, it is necessary to create a configuration that does not increase the size of the device. need to be adopted.

また、V型エンジンにおいて、その構造、形状
を扁平にするために、特公昭51−42272号公報で
吸気マニホールドをV字室に配置することが提案
されているが、これはシリンダに燃焼空気を供給
し、かつ吸気マニホールドとこれから分岐する吸
気導管系の汚損の回避を目的とするものである。
Furthermore, in order to flatten the structure and shape of a V-type engine, Japanese Patent Publication No. 51-42272 proposes placing the intake manifold in a V-shaped chamber; The purpose is to avoid contamination of the intake manifold and the intake pipe system branching from the intake manifold.

(発明の目的) この発明はこのような技術的背景の下になされ
たものであり、V型エンジンの吸気装置におい
て、上記サージタンクを採用して吸気慣性効果を
発揮させるとともに、高速および低速のいずれに
おいてもトルクの落ち込みが生じることがなく、
しかも装置が比較的コンパクトに構成される吸気
装置を提供するものである。
(Object of the Invention) This invention was made against this technical background, and uses the above-mentioned surge tank in the intake system of a V-type engine to exert an intake inertia effect and to improve the intake system at high and low speeds. In either case, there is no drop in torque,
Furthermore, the present invention provides an intake device that is relatively compact.

(発明の構成) この発明は、複数のシリンダを左右に所定の角
度傾斜して配置するとともに、各シリンダにエン
ジンの全運転領域で開く第1の吸気ポートと、エ
ンジンの特定運転領域で開く第2の吸気ポートと
を備えてなるV型エンジンにおいて、左右のシリ
ンダ列の間の空間に第1のサージタンクを設け、
第1のサージタンクの両側に第2のサージタンク
を設けるとともに各シリンダに設けられた第1、
第2の吸気ポートのうち一方を上記第1のサージ
タンクに接続し、他方の吸気ポートを上記第2の
サージタンクに接続したものである。この構成に
おいて、第1のサージタンクを第1の吸気ポート
に接続するばあいには、第1の吸気通路を短くし
て第2の吸気通路を長く設定し、第1のサージタ
ンクを第2の吸気ポートに接続するばあいには、
第1の吸気ポートを長くして第2の吸気ポートを
短く構成することになる。
(Structure of the Invention) This invention has a plurality of cylinders arranged at a predetermined angle inclination to the left and right, and each cylinder has a first intake port that opens in the entire operating range of the engine, and a first intake port that opens in a specific operating range of the engine. In a V-type engine equipped with two intake ports, a first surge tank is provided in the space between the left and right cylinder rows,
A second surge tank is provided on both sides of the first surge tank, and a first surge tank is provided in each cylinder.
One of the second intake ports is connected to the first surge tank, and the other intake port is connected to the second surge tank. In this configuration, when connecting the first surge tank to the first intake port, the first intake passage is set short and the second intake passage is set long, and the first surge tank is connected to the second intake port. When connecting to the intake port of
The first intake port is made longer and the second intake port is made shorter.

(実施例) 第1図〜第3図において、V型6気筒エンジン
1は各シリンダ2が左右に所定角度傾斜して中心
線10に対して互いに対称に配置されている。エ
ンジン1のシリンダヘツド3には低負荷時および
高負荷時にわたつて吸気を供給する第1の吸気ポ
ート4と、高負荷時に吸気を供給する第2の吸気
ポート5がそれぞれ燃焼室6に開口して設けられ
ている。吸気ポート4,5の開口部には第1の吸
気弁41、第2吸気弁51がそれぞれ配置されて
いる。また、燃焼室6には排気ポート61が開口
し、その開口部には排気弁62が配置されてい
る。31はフユーエルインジエクタであり、これ
は燃料の霧化を促進を図るために第1の吸気ポー
ト4に設けている。
(Example) In FIGS. 1 to 3, in a V-type six-cylinder engine 1, each cylinder 2 is inclined left and right at a predetermined angle and is arranged symmetrically with respect to a center line 10. The cylinder head 3 of the engine 1 has a first intake port 4 that supplies intake air during low loads and high loads, and a second intake port 5 that supplies intake air during high loads, each opening into a combustion chamber 6. It is provided. A first intake valve 41 and a second intake valve 51 are arranged at the openings of the intake ports 4 and 5, respectively. Further, an exhaust port 61 opens in the combustion chamber 6, and an exhaust valve 62 is disposed at the opening. 31 is a fuel injector, which is provided at the first intake port 4 to promote atomization of fuel.

第2の吸気ポート5および排気ポート61は動
弁装置によつて開閉される。すなわち、カム55
の回転によりロツカアーム53,63が揺動さ
れ、ロツカアーム53,63の他端部でそれぞれ
第2の吸気弁51、排気弁62をスプリング5
7,58の力に抗して押し下げることにより第2
の吸気ポート5および排気ポート61の開作動を
行なうようにしている。ロツカアーム53は油圧
ピボツト54を支点にして揺動し、低負荷時には油
圧ピボツト54がカム34により進退してロツカ
アーム53の他端部が第2の吸気弁51を押圧す
る量を増減させ、第2の吸気ポート5を作動、不
作動に切換え、また弁の作動時にクリアランスの
調整を自動的に行う。
The second intake port 5 and exhaust port 61 are opened and closed by a valve train. That is, the cam 55
The rocker arms 53 and 63 are swung by the rotation of the rocker arms 53 and 63, and the second intake valve 51 and the exhaust valve 62 are connected to the spring 5 at the other end of the rocker arms 53 and 63, respectively.
7, by pushing down against the force of 58, the second
The intake port 5 and the exhaust port 61 are opened. The rocker arm 53 swings about a hydraulic pivot 54, and when the load is low, the hydraulic pivot 54 moves back and forth by the cam 34 to increase or decrease the amount by which the other end of the rocker arm 53 presses the second intake valve 51. The intake port 5 of the valve is activated or deactivated, and the clearance is automatically adjusted when the valve is activated.

また、カム55の回転により、ロツカアーム5
9もピボツト56を支点として揺動され、スプリ
ング42の力に抗して第1の吸気弁41を押し下
げることにより第1の吸気ポート4を開閉する。
ピボツト56は油圧力によりロツカアーム59を
押え、第1の吸気弁41のクリアランスの調整を
自動的に行なうようにしている。
Also, due to the rotation of the cam 55, the locking arm 5
9 is also swung about the pivot 56, and opens and closes the first intake port 4 by pushing down the first intake valve 41 against the force of the spring 42.
The pivot 56 presses down the rocker arm 59 with hydraulic pressure so that the clearance of the first intake valve 41 is automatically adjusted.

排気ポート61には排気通路66が接続され、
また第1の吸気ポート4には第1の吸気通路70
が、第2の吸気ポート5には第2の吸気通路81
がそれぞれ接続されている。左右のシリンダ列の
間の空間には第1のサージタンク7が配置され、
これに対して上記第1の吸気通路70が接続さ
れ、第1のサージタンク7の両側には第2のサー
ジタンク8が配置され、これに対して第2の吸気
通路81が接続されている。従つて、第1の吸気
通路70は短く形成され、第2の吸気通路81は
長く形成され、第2の吸気通路81の長さは吸気
脈動と吸気作用回数とが同調して吸気慣性効果が
生じるような長さに設定している。上流側吸気通
路9は第3の吸気通路71と第4の吸気通路82
とに分岐し、第3の吸気通路71は第1のサージ
タンク7に接続され、第4の吸気通路82は第2
のサージタンク8に接続されている。91は分割
線を示し、第2のサージタンク8を含む一対のブ
ロツクと、第1のサージタンク7を含むブロツク
と、第3の吸気通路71を含むブロツクとに吸気
系が分割され、これによつて組立て、分解が容易
に行なえるようにしている。なお、第3図に示さ
れるように、第2のサージタンク8から分岐した
第2の吸気通路81は左右各3個のシリンダに導
かれ、各側のシリンダ列はその点火順序が連続し
ないシリンダ群に分割されている。
An exhaust passage 66 is connected to the exhaust port 61,
Further, the first intake port 4 has a first intake passage 70.
However, the second intake port 5 has a second intake passage 81.
are connected to each other. A first surge tank 7 is arranged in the space between the left and right cylinder rows,
The first intake passage 70 is connected to this, and a second surge tank 8 is arranged on both sides of the first surge tank 7, and a second intake passage 81 is connected to this. . Therefore, the first intake passage 70 is formed short, and the second intake passage 81 is formed long, and the length of the second intake passage 81 is such that the intake pulsation and the number of intake operations are synchronized and the intake inertia effect is achieved. The length is set so that it occurs. The upstream intake passage 9 includes a third intake passage 71 and a fourth intake passage 82.
The third intake passage 71 is connected to the first surge tank 7, and the fourth intake passage 82 is connected to the second surge tank 7.
is connected to the surge tank 8. Reference numeral 91 indicates a dividing line, and the intake system is divided into a pair of blocks including the second surge tank 8, the first surge tank 7, and the third intake passage 71. This allows for easy assembly and disassembly. As shown in FIG. 3, the second intake passage 81 branched from the second surge tank 8 is led to three cylinders each on the left and right, and the cylinder rows on each side are cylinders whose ignition order is not consecutive. divided into groups.

上記構成においては、第1のサージタンク7が
左右のシリンダ列の間の空間に配置されているた
めに、スペースが有効に利用されて装置全体がコ
ンパクトに構成され、しかも吸気通路の一方を短
く、他方を長く形成するのに便利である。
In the above configuration, since the first surge tank 7 is arranged in the space between the left and right cylinder rows, the space is effectively used and the entire device is configured compactly, and one of the intake passages is shortened. , it is convenient to form the other long.

またこの構成において、低負荷時には第2の吸
気ポート5は閉じられ、第1のサージタンク7か
ら第1の吸気通路70、第1の吸気ポート4を通
して燃焼室6に吸気が供給される。そして、この
通路は短く形成されているために吸気抵抗は小さ
く、このため吸気の流速は大きく、燃焼室内でス
ワールが効果的に発生して燃焼が促進される。一
方、高負荷時には第2の吸気ポート5も開かれて
第2のサージタンク8からも第2の吸気通路8
1、第2の吸気ポート5を通して吸気が供給さ
れ、燃焼室6には充分な吸気が供給される。しか
も、第2の吸気通路81が長く形成されているこ
とから吸気慣性効果により吸気の充填効率が高め
られる。このため低負荷時および高負荷時のいず
れにおいても、トルクの落込みがなく、バランス
のよいトルク特性がえられる。
In this configuration, the second intake port 5 is closed when the load is low, and intake air is supplied from the first surge tank 7 to the combustion chamber 6 through the first intake passage 70 and the first intake port 4. Since this passage is formed short, the intake resistance is small, and therefore the flow velocity of the intake air is high, and swirl is effectively generated within the combustion chamber to promote combustion. On the other hand, when the load is high, the second intake port 5 is also opened and the second surge tank 8 is also connected to the second intake passage 8.
1. Intake air is supplied through the second intake port 5, and sufficient intake air is supplied to the combustion chamber 6. Furthermore, since the second intake passage 81 is formed long, the intake air filling efficiency is increased due to the intake inertia effect. Therefore, there is no drop in torque either under low load or high load, and well-balanced torque characteristics can be obtained.

なお、第1のサージタンクと第2のサージタン
クとの配置を逆にして第1の吸気通路を長く、第
2の吸気通路を短く設定してもよく、この場合に
は低負荷時に吸気慣性効果によつて吸気の充填効
率を向上させ、全体としてバランスのよいトルク
特性をうることができる。
Note that the arrangement of the first surge tank and the second surge tank may be reversed so that the first intake passage is set long and the second intake passage is set short. In this case, the intake inertia is reduced at low load. This effect improves intake air filling efficiency and provides well-balanced torque characteristics as a whole.

(発明の効果) 以上説明したように、この発明はV型エンジン
において、サージタンクを設けて吸気慣性効果に
よつて充填効率の向上を図るとともに、左右のシ
リンダ列の間の空間を利用することにより構成を
コンパクトにしたものである。
(Effects of the Invention) As explained above, the present invention provides a surge tank in a V-type engine to improve charging efficiency through the intake inertia effect, and utilizes the space between the left and right cylinder rows. This makes the configuration more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す概略断面図、
第2図はその−線断面図、第3図は第1図の
平面図である。 1…エンジン、2…シリンダ、4…第1の吸気
ポート、5…第2の吸気ポート、6…燃焼室、7
…第1のサージタンク、8…第2のサージタン
ク、70…第1の吸気通路、81…第2の吸気通
路。
FIG. 1 is a schematic sectional view showing an embodiment of the present invention;
FIG. 2 is a cross-sectional view taken along the - line, and FIG. 3 is a plan view of FIG. 1. DESCRIPTION OF SYMBOLS 1... Engine, 2... Cylinder, 4... First intake port, 5... Second intake port, 6... Combustion chamber, 7
...first surge tank, 8...second surge tank, 70...first intake passage, 81...second intake passage.

Claims (1)

【特許請求の範囲】[Claims] 1 複数のシリンダを左右に所定の角度傾斜して
配置するとともに、各シリンダにエンジンの全運
転領域で開く第1の吸気ポートと、エンジンの特
定運転領域で開く第2の吸気ポートとを備えてな
るV型エンジンにおいて、左右のシリンダ列の間
の空間に第1のサージタンクを設け、第1のサー
ジタンクの両側に第2のサージタンクを設けると
ともに各シリンダに設けられた第1、第2の吸気
ポートのうち一方を上記第1のサージタンクに接
続し、他方の吸気ポートを上記第2のサージタン
クに接続したことを特徴とするV型エンジンの吸
気装置。
1 A plurality of cylinders are arranged horizontally and inclined at a predetermined angle, and each cylinder is provided with a first intake port that opens in all operating ranges of the engine and a second intake port that opens in a specific operating range of the engine. In the V-type engine, a first surge tank is provided in the space between the left and right cylinder rows, a second surge tank is provided on both sides of the first surge tank, and the first and second surge tanks are provided in the space between the left and right cylinder rows. An intake system for a V-type engine, wherein one of the intake ports is connected to the first surge tank, and the other intake port is connected to the second surge tank.
JP58148452A 1983-08-12 1983-08-12 Suction system for v-engine Granted JPS6040724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148452A JPS6040724A (en) 1983-08-12 1983-08-12 Suction system for v-engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148452A JPS6040724A (en) 1983-08-12 1983-08-12 Suction system for v-engine

Publications (2)

Publication Number Publication Date
JPS6040724A JPS6040724A (en) 1985-03-04
JPH0147607B2 true JPH0147607B2 (en) 1989-10-16

Family

ID=15453088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148452A Granted JPS6040724A (en) 1983-08-12 1983-08-12 Suction system for v-engine

Country Status (1)

Country Link
JP (1) JPS6040724A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254359U (en) * 1988-10-12 1990-04-19
JPH039020A (en) * 1989-06-06 1991-01-16 Mazda Motor Corp Intake device for twelve cylinder engine
JPH03286129A (en) * 1990-03-30 1991-12-17 Mazda Motor Corp Air intake device for multiple cylinder engine

Also Published As

Publication number Publication date
JPS6040724A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
US8160803B2 (en) Parallel sequential turbocharger architecture using engine cylinder variable valve lift system
JPH0545772B2 (en)
JPH02146221A (en) Suction device for multi-cylinder v-engine
JPH0758049B2 (en) Intake device for V-type multi-cylinder internal combustion engine
US4627400A (en) Porting system for internal combustion engine
US5085178A (en) Intake piping structure for multi-cylinder engine
US3832983A (en) Cylinder head for an internal combustion engine
JPH0147607B2 (en)
JPH0523823Y2 (en)
JPS60178329U (en) Exhaust system structure of multi-cylinder internal combustion engine
JPS597224U (en) Internal combustion engine intake system
JPH048304Y2 (en)
JPS6313392Y2 (en)
JPH0354270U (en)
JPS60156926A (en) Suction device for engine
JPS6123649Y2 (en)
JPH109050A (en) Direct fuel cylinder injection type spark ignition engine
JPH0738661Y2 (en) Engine intake system
JPS5918148Y2 (en) Intake system for multi-cylinder internal combustion engine
JPH0648111Y2 (en) Engine intake system
JPS5941295Y2 (en) Intake system for multi-cylinder internal combustion engine
JPH0450424Y2 (en)
JPS5919818Y2 (en) Intake system for multi-cylinder internal combustion engine
JPH0523781Y2 (en)
JPS6246808Y2 (en)