JPH0146444B2 - - Google Patents
Info
- Publication number
- JPH0146444B2 JPH0146444B2 JP10529880A JP10529880A JPH0146444B2 JP H0146444 B2 JPH0146444 B2 JP H0146444B2 JP 10529880 A JP10529880 A JP 10529880A JP 10529880 A JP10529880 A JP 10529880A JP H0146444 B2 JPH0146444 B2 JP H0146444B2
- Authority
- JP
- Japan
- Prior art keywords
- distillation
- hafnium
- tetrachloride
- impurities
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004821 distillation Methods 0.000 claims description 15
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 claims description 6
- 229910001508 alkali metal halide Inorganic materials 0.000 claims description 5
- 150000008045 alkali metal halides Chemical class 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052735 hafnium Inorganic materials 0.000 description 10
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 229910007926 ZrCl Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical class ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 chloride Chemical class 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
本発明は原子炉用の被覆材に適するジルコニウ
ムスポンジを製造する原料である四塩化ジルコニ
ウムを精製する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying zirconium tetrachloride, which is a raw material for producing zirconium sponge suitable for cladding materials for nuclear reactors.
本発明者は別の出願として四塩化ハフニウムを
含む四塩化ジルコニウムを蒸発缶内にて約25気圧
以上の圧力と約450℃.以上の温度下で液化し、
次いで蒸発するに際し大部の蒸気を微分分縮して
蒸発缶に戻し、少部の蒸気を四塩化ハフニウムの
富化した蒸気として連続的に又は間隙的に取り出
し、蒸発缶に残留する四塩化ジルコニウムを原子
炉用に適するハフニウム含量の四塩化ジルコニウ
ムにする方法を提供した。又この前段階として四
塩化ジルコニウムの蒸留法も研究した。しかしこ
れらの方法においては四塩化ハフニウムを分離す
ることはできるが、塩化アルミニウム、塩化鉄を
分離することは困難である。 As another application, the present inventor has disclosed that zirconium tetrachloride containing hafnium tetrachloride is heated at a pressure of about 25 atmospheres or more and about 450°C in an evaporator. Liquefies at temperatures above
Then, during evaporation, most of the vapor is differentially condensed and returned to the evaporator, and a small portion of the vapor is taken out continuously or intermittently as hafnium tetrachloride-enriched vapor, and the zirconium tetrachloride remaining in the evaporator is removed. The present invention provides a method for converting zirconium tetrachloride into hafnium-rich zirconium tetrachloride suitable for nuclear reactor use. As a preliminary step, we also researched a method for distilling zirconium tetrachloride. However, although these methods can separate hafnium tetrachloride, it is difficult to separate aluminum chloride and iron chloride.
又、原料中の塩化アルミニウムの含有量が増加
すると蒸留又は微分分縮を含む蒸留法では四塩化
ハフニウムの分離効果が低下することが判明し
た。 It has also been found that as the content of aluminum chloride in the raw material increases, the effectiveness of separating hafnium tetrachloride decreases in distillation or distillation methods involving differential decomposition.
現在のジルコニウムからハフニウムを分離する
精製法としては湿式による方法が用いられてい
る。この方法においてはアルミニウムおよび鉄は
容易に除去することができるため、この方法で製
造される酸化ジルコニウム中のアルミニウム及び
鉄等の不純物含量は少なく、これを塩化した塩化
物中のアルミニウム及び鉄等の不純物も少なく特
別の精製を施さなくても容易に原子炉用被覆材と
しての品位を得ることができる。 A wet method is currently used as a purification method for separating hafnium from zirconium. In this method, aluminum and iron can be easily removed, so the content of impurities such as aluminum and iron in the zirconium oxide produced by this method is small, and the impurities such as aluminum and iron in the chloride that is produced by this method are small. It contains few impurities and can easily be used as a covering material for nuclear reactors without any special purification.
しかるに本方法の場合は出発物質として用いら
れる塩化物は、通常の塩化炉を用い鉱石をコーク
スの存在下で塩化して得られるものであつて、ア
ルミニウム、鉄はそれぞれ0.1%以上となり通常
の昇華操作で除去することは甚だ困難である。 However, in the case of this method, the chloride used as a starting material is obtained by chlorinating ore in the presence of coke using a normal chlorination furnace, and aluminum and iron each have a content of 0.1% or more, which can be obtained by normal sublimation. It is extremely difficult to remove it manually.
出発物質の塩化物中に含まれている不純物の
AlCl3、FeCl3は四塩化ジルコニウムに比べれば
遥かに蒸気圧が高く簡単に蒸溜又は微分分縮を含
む蒸溜によつて容易に除去されるべきものであ
る。この両成分が除去されないこと、特にAlCl3
が除去されないのはFeCl3とAlCl3がZrCl4及び
HfCl4と複化合物を形成するためと考えられる。 Impurities contained in the starting material chloride
AlCl 3 and FeCl 3 have a much higher vapor pressure than zirconium tetrachloride and should be easily removed by distillation or distillation including differential condensation. Both components are not removed, especially AlCl 3
The reason why FeCl 3 and AlCl 3 are not removed is that ZrCl 4 and
This is thought to be due to the formation of a complex compound with HfCl 4 .
又、HfCl4の分離が悪くなるということは
HfCl4とAlCl3の複合化合物の方がZrCl4とAlCl3
の複化合物より強固なものであると考えられる。 Also, the separation of HfCl 4 becomes worse.
The composite compound of HfCl 4 and AlCl 3 is better than ZrCl 4 and AlCl 3
It is considered to be stronger than the composite compound of
本発明の方法においてはこれらの現象に基いて
従来から知られているアルカリ金属のハロゲン化
物、特に塩化物を含む溶液と出発物質とを反応さ
せ、FeCl3、AlCl3を除去する方法を併用するこ
とにより原子炉用被覆材に適する純度のジルコニ
ウムを得ることに成功したものであつてその要旨
とするところは不純物を含有する四塩化ジルコニ
ウムを約450℃.以上の温度と25気圧以下の圧力
で蒸溜又は微分分縮を含む蒸溜にて処理し、四塩
化ハフニウムを除去する操作とアルカリ金属のハ
ロゲン化物を不純物と反応させる操作とを併用す
ることにより不純物を除去することを特徴とする
原子炉用材料に適する精製四塩化ジルコニウムの
製造法に存する。使用されるアルカリ金属のハロ
ゲン化物としてはNaCl、KCl、LiClの塩化物、
NaF、KFの弗化物、NaI、KIの沃化物が有効で
あり、特にNaCl、KClの単独又は混合物が有効
である。 In the method of the present invention, based on these phenomena, a conventionally known method of reacting a solution containing an alkali metal halide, particularly chloride, with a starting material and removing FeCl 3 and AlCl 3 is used in combination. By doing this, they succeeded in obtaining zirconium of a purity suitable for use as cladding materials for nuclear reactors. Impurities can be removed by distillation or distillation including differential condensation at a temperature above and a pressure below 25 atmospheres to remove hafnium tetrachloride and to react an alkali metal halide with impurities. The present invention relates to a method for producing purified zirconium tetrachloride suitable for use as a nuclear reactor material. The alkali metal halides used include NaCl, KCl, LiCl chloride,
Fluorides of NaF and KF, and iodides of NaI and KI are effective, and in particular, NaCl and KCl alone or in combination are effective.
アルカリ金属のハロゲン化物を不純物と反応さ
せる操作を蒸溜又は微分分縮を含む蒸溜に先立つ
て行なう場合は特に有効であることが判明した
が、この操作は蒸溜又は微分分縮を含む蒸溜の操
作の前又は後あるいはその前後のいずれにおいて
行なつても有効である。特に蒸溜にてハフニウム
を分離する場合は該操作の前又は前後にこの操作
を行なう必要がある。 It has been found that the operation of reacting the alkali metal halide with impurities is particularly effective when carried out prior to distillation or distillation involving differential partial condensation; It is effective whether it is done before or after, or before or after. Particularly when separating hafnium by distillation, it is necessary to carry out this operation before or after the above operation.
次に実際の実施例について説明する。 Next, an actual example will be described.
実施例 1
南アフリカ産の2%のハフニウムを含むバデラ
イト(Baddeleyite)を塩化して生成した四塩化
ジルコニウム(Al;0.1〜0.2%、Fe;0.1〜0.2%)
を原料塩化物とした。この四塩化物5000Kgと食塩
50Kgとを蒸発缶に充填し、これを加熱して複塩を
形成せしめた。これを更に加熱して四塩化ジルコ
ニウム4500Kgを蒸気として内径250mm、高さ4m
の蒸留塔の蒸発缶へ供給した。この際の四塩化ジ
ルコニウム中のアルミニウムと鉄との含有量は、
いずれも100〜200ppmであつた。この蒸気を一旦
液化した後に、蒸発量500Kg/時、排出量10Kg/
時、温度460℃.、圧力30気圧の条件において蒸溜
を行ない、排出量が2000Kgになる迄継続して蒸溜
した結果、残留液中のハフニウム濃度は0.008%
となつた。次いで更にこの残留液2500Kgを気化
し、NaClとKClの共融組成の溶液中を通過せし
めたところ蒸気中のアルミニウム含有量は50ppm
以下となつた。Example 1 Zirconium tetrachloride (Al: 0.1-0.2%, Fe: 0.1-0.2%) produced by chlorinating Baddeleyite containing 2% hafnium from South Africa
was used as the raw material chloride. 5000Kg of this tetrachloride and salt
50Kg was filled into an evaporator and heated to form a double salt. This is further heated and 4500 kg of zirconium tetrachloride is turned into steam with an inner diameter of 250 mm and a height of 4 m.
was supplied to the evaporator of the distillation column. The content of aluminum and iron in zirconium tetrachloride at this time is
All were 100 to 200 ppm. Once this steam is liquefied, the evaporation amount is 500 kg/hour and the discharge amount is 10 kg/hour.
Time, temperature 460℃. The hafnium concentration in the residual liquid was 0.008%.
It became. Next, 2500 kg of this residual liquid was further vaporized and passed through a solution with a eutectic composition of NaCl and KCl, and the aluminum content in the vapor was 50 ppm.
It became the following.
比較例
上記実施例で用いたのと同じ原料四塩化ジルコ
ニウムを出発物質として用いた。これを5000Kg蒸
発缶に充填し上記と同じ操作条件で蒸溜を継続
し、排出総量3000Kgを得た。この際、残留液中の
ハフニウム濃度は0.02%迄しか低下していなかつ
た。Comparative Example The same raw material zirconium tetrachloride used in the above examples was used as the starting material. This was filled into a 5000 kg evaporator and distillation was continued under the same operating conditions as above, yielding a total discharge amount of 3000 kg. At this time, the hafnium concentration in the residual liquid decreased only to 0.02%.
実施例 2
実施例1の原料塩化物5000Kgを微分分縮器の蒸
発缶に蒸気として導入した後液化し、実施例1と
同一の条件で微分分縮器の上部より1000Kgの蒸気
を排出した。この残留液から蒸気を発生せしめ、
NaClとKClの共融組成の溶液中を通過せしめた
もののハフニウムとアルミニウムの濃度はそれぞ
れ50ppmと100ppmであり、原子炉被覆材用のジ
ルコニウム原料に適する品位のものであつた。Example 2 5000 kg of the raw material chloride of Example 1 was introduced as vapor into the evaporator of the differential condenser and then liquefied, and 1000 kg of vapor was discharged from the upper part of the differential condenser under the same conditions as in Example 1. Steam is generated from this residual liquid,
The concentrations of hafnium and aluminum that were passed through a solution with a eutectic composition of NaCl and KCl were 50 ppm and 100 ppm, respectively, and were of a grade suitable for zirconium raw materials for nuclear reactor cladding materials.
これに対しこの実施例においてNaClとKClの
溶液中を通過させない場合はハフニウム含有量は
上記と同じであつたがアルミニウム含有量は0.1
%にとどまつた。 On the other hand, in this example, when the hafnium content was not passed through the solution of NaCl and KCl, the hafnium content was the same as above, but the aluminum content was 0.1
It remained at %.
実施例 3
実施例2を実施するに先立つて別の蒸発缶に
5500Kgの原料と50KgのNaClを充填し、これより
四塩化ジルコニウム5000Kgを蒸気で蒸溜装置に導
入し液化した。この時アルミニウム含有量は
200ppmであつた。Example 3 Before carrying out Example 2, a separate evaporator was used.
It was filled with 5,500 kg of raw materials and 50 kg of NaCl, from which 5,000 kg of zirconium tetrachloride was introduced into the distillation apparatus as steam and liquefied. At this time, the aluminum content is
It was 200ppm.
次に実施例2の条件で微分分縮を含む蒸溜を行
ない、排出する蒸気量500Kgとした結果、残留液
中のハフニウムおよびアルミニウムの含有量はそ
れぞれ50ppm以下および200ppmであつて、この
残留液を実施例2と同様に蒸発し蒸気をNaCl、
KClの混合溶液中を通過させたところ蒸気中のア
ルミニウム含有量は50ppm以下となり、原子炉被
覆材用のジルコニウムに適する品位となつた。 Next, distillation including differential condensation was carried out under the conditions of Example 2, and the amount of steam to be discharged was 500 kg. As a result, the contents of hafnium and aluminum in the residual liquid were 50 ppm or less and 200 ppm, respectively. Evaporate the vapor in the same manner as in Example 2 and convert it into NaCl,
When the steam was passed through a mixed solution of KCl, the aluminum content in the steam was less than 50 ppm, a quality suitable for zirconium for nuclear reactor cladding materials.
Claims (1)
450℃.以上の温度と25気圧以上の圧力で蒸溜又
は微分分縮を含む蒸溜にて処理し、四塩化ハフニ
ウムを除去する操作とアルカリ金属のハロゲン化
物を不純物と反応させる操作とを併用することに
より不純物を除去することを特徴とする原子炉用
材料に適する精製四塩化ジルコニウムの製造法。1 About zirconium tetrachloride containing impurities
450℃. Impurities can be removed by distillation or distillation including differential condensation at a temperature above and a pressure above 25 atm, and by using a combination of operations to remove hafnium tetrachloride and to react an alkali metal halide with impurities. A method for producing purified zirconium tetrachloride suitable as a material for a nuclear reactor.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10529880A JPS5742538A (en) | 1980-07-30 | 1980-07-30 | Preparation of purified zirconium tetrachloride |
CA000381713A CA1171664A (en) | 1980-07-30 | 1981-07-14 | Process for separation of zirconium- and hafnium tetrachlorides from a mixture comprising such chlorides and apparatus therefor |
ZA814853A ZA814853B (en) | 1980-07-30 | 1981-07-15 | Process for separation of zirconium-and hafnium tetrachlorides from a mixture comprising such chlorides and apparatus therefor |
IL6332581A IL63325A (en) | 1980-07-30 | 1981-07-15 | Process and apparatus for separation of zirconium-and hafnium tetrachlorides from a mixture comprising such chlorides |
EP81401226A EP0045270A1 (en) | 1980-07-30 | 1981-07-29 | Process for separation of zirconium- and hafnium tetrachlorides from a mixture comprising such chlorides and apparatus therefor |
BR8104889A BR8104889A (en) | 1980-07-30 | 1981-07-29 | PROCESS FOR SEPARATION OF ZIRCONIUM AND HAFNIUM TETRACLORIDE FROM A MIXTURE THAT UNDERSTANDS THESE CHLORIDES AND APPARATUS FOR SUCH |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10529880A JPS5742538A (en) | 1980-07-30 | 1980-07-30 | Preparation of purified zirconium tetrachloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5742538A JPS5742538A (en) | 1982-03-10 |
JPH0146444B2 true JPH0146444B2 (en) | 1989-10-09 |
Family
ID=14403779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10529880A Granted JPS5742538A (en) | 1980-07-30 | 1980-07-30 | Preparation of purified zirconium tetrachloride |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5742538A (en) |
ZA (1) | ZA814853B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2876369B1 (en) * | 2004-10-11 | 2006-12-22 | Cie Europ Du Zirconium Cezus S | PROCESS FOR SEPARATING ZIRCONIUM AND HAFNIUM |
-
1980
- 1980-07-30 JP JP10529880A patent/JPS5742538A/en active Granted
-
1981
- 1981-07-15 ZA ZA814853A patent/ZA814853B/en unknown
Also Published As
Publication number | Publication date |
---|---|
JPS5742538A (en) | 1982-03-10 |
ZA814853B (en) | 1982-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5944376B2 (en) | Separation method of zirconium and hafnium | |
US2928722A (en) | Process for the fractional distillation of inorganic halides | |
US5626725A (en) | Process for separation of 1,1-difluoroethane from its mixture with hydrogen fluoride | |
US2387228A (en) | Method of purifying anhydrous aluminum chloride | |
US2533021A (en) | Separating metal halide vapors | |
US3938969A (en) | Purification of aluminum chloride | |
US4913778A (en) | Molten salt scrubbing of zirconium or hafnium tetrachloride | |
CA1084668A (en) | Separation of hydrogen fluoride from hydrogen chloride gas | |
JPS59184732A (en) | Zrcl4 and hfcl4 extraction distillation type continuous separation and aluminum chloride separator | |
US4096234A (en) | Production of anhydrous aluminum chloride from clay using catalyst and recycling of silicon chloride | |
US4035169A (en) | Process for the purification of aluminum chloride | |
US5066472A (en) | Method for processing the residues of a chlorosilane distillation | |
US3098722A (en) | Purification of metal halides | |
JP3955092B2 (en) | Method for treating dissociated zircon | |
JP3856820B2 (en) | Method for purifying pentafluoroethane | |
US4070439A (en) | Process for the recovery of antimony pentachloride from a spent antimony catalyst mixture | |
US2470306A (en) | Process for the production and refining of metals | |
JPS6053093B2 (en) | How to recover titanium from slag | |
JPH0146444B2 (en) | ||
US3130010A (en) | Process for production of high purity cesium metal and cesium compounds | |
AU563522B2 (en) | Purification of aluminum chloride | |
US2539679A (en) | Purification of thionyl chloride | |
US2808312A (en) | Process for treating volatile metal fluorides | |
US2463396A (en) | Distillation of titanium tetrachloride | |
US2600881A (en) | Purification of titanium tetrachloride |