JPH0146303B2 - - Google Patents

Info

Publication number
JPH0146303B2
JPH0146303B2 JP59109981A JP10998184A JPH0146303B2 JP H0146303 B2 JPH0146303 B2 JP H0146303B2 JP 59109981 A JP59109981 A JP 59109981A JP 10998184 A JP10998184 A JP 10998184A JP H0146303 B2 JPH0146303 B2 JP H0146303B2
Authority
JP
Japan
Prior art keywords
weight
film
polyamide
parts
acid residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59109981A
Other languages
Japanese (ja)
Other versions
JPS60253524A (en
Inventor
Akito Hamano
Katsuro Kuze
Kunio Takeuchi
Maki Matsuo
Hajime Suzuki
Osamu Makimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59109981A priority Critical patent/JPS60253524A/en
Priority to PCT/JP1985/000116 priority patent/WO1985005315A1/en
Priority to EP85901550A priority patent/EP0182910B1/en
Priority to KR1019850001559A priority patent/KR920002398B1/en
Publication of JPS60253524A publication Critical patent/JPS60253524A/en
Publication of JPH0146303B2 publication Critical patent/JPH0146303B2/ja
Priority to US07/489,030 priority patent/US5000889A/en
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は厚み均一性の優れたポリアミド系フイ
ルムを高能率的に製造する方法に関するものであ
る。 <発明の目的> ポリアミド系フイルムは、それの持つ強靭性、
耐衝撃性、耐ピンホール性、酸素遮断性などの特
性を活用できる食品包装の分野で広く使用されて
いる。近年、レトルト食品の伸びとともにポリア
ミド系フイルムの需要も高まつており、高品質で
かつ安価なフイルムの供給が望まれている。 <従来技術との関係> ポリアミドフイルムの製造方法としては、通常
インフレーシヨン法やTダイ法による溶融押出し
法が行なわれている。Tダイ法により、ポリアミ
ドフイルムを得る際、ダイより押し出された溶融
フイルムは回転冷却ロールにキヤストされる。こ
の時フイルムを冷却回転ロールへ密着させるため
に、エアーナイフで空気を吹きつける方法(以下
エアーナイフ法と呼ぶ)、高圧電極より溶融フイ
ルムに電荷を析出させ静電気的に密着させる方法
(以下静電密着法と呼ぶ)などが行なわれている。
しかし、これらのエアーナイフ法や静電密着法に
よるキヤステイングにおいても、引き取り速度が
速くなると回転により発生した随半流のために回
転冷却ロールとフイルムの間に空気が巻き込まれ
て均一なフイルムが得られなくなる。 そこで本発明者らは厚み均一性の優れたポリア
ミド系フイルムを能率的に製造すべく、鋭意検討
を重ねた結果、脂肪族のポリアミド系樹脂に芳香
族残基を共重合し、かつ金属化合物を含有させる
ことによつて樹脂の静電密着性が改善されること
を見い出し、本発明に到達した。 <発明の構成> 即ち本発明は、芳香族アミノカルボン酸残基、
芳香族ジカルボン酸残基または/および芳香族ジ
アミン残基が2重量%以上20重量%以下かつ脂肪
族アミノカルボン酸残基、脂肪族ジカルボン酸残
基、または/および脂肪族ジアミン残基が80重量
%以上98重量%以下より成るポリアミド系樹脂
で、かつ金属化合物を含有し、260℃における溶
融比抵抗が1.5×105Ωcm以下であるポリアミド系
樹脂をフイルム状に溶融押出しし、該溶融押出し
したフイルムを回転冷却ロールに静電密着的に密
着させ、冷却固化させてポリアミド系フイルムを
製造する方法である。 以下に更に詳しく本発明を説明する。本発明に
おける芳香族アミノカルボン酸残基、芳香族ジカ
ルボン酸残基または/および芳香族ジアミン残基
とは、アミノメチル安息香酸、テレフタル酸、イ
ソフタル酸、2,4−ビス(カルボキシメチル)
トルエン、パラキシリレンジアミン、メタキシリ
レンジアミン、2,4−ビス(アミノメチル)ト
ルエンなどの残基である。 一方、脂肪族アミノカルボン酸残基、脂肪族ジ
カルボン酸残基、または/および脂肪族ジアミン
残基とはイプシロンカプロラクタム、オメガラウ
ロラクタム、アミノカプロン酸、アミノウンデカ
ン酸、アミノドデカン酸、アジピン酸、セバシン
酸、アルフアーオメガドデカン酸、ヘキサメチレ
ンジアミンなどの残基である。重合体中の芳香族
の残基は2重量%以上20重量%以下が好ましい。
2重量%以下では溶融樹脂の静電密着性の向上効
果が小さく、20重量%以上になるとペレツトが融
着して取扱いが難しくなつたり、逆に樹脂の融点
が高くなつて成形が難しくなる。 これらの芳香族残基を共重合体中に含有するポ
リアミド系樹脂は、他のポリアミド系樹脂と混合
したものも使用可能である。 これらの樹脂には少量の他の樹脂、滑剤、酸化
防止剤、静電防止剤、着色剤等の有機または無機
の物質が加されていても良い。 本発明における金属化合物としては、アルカリ
金属、アルカリ土類金属、アルミニウム族元素、
遷移金属のハロゲン化物、イオウの酸素酸化合
物、リンの酸素酸化合物、水酸化物、有機カルボ
ン酸塩、有機スルホン酸塩などがあり、具体的に
は塩化ナトリウム、塩化リチウム、塩化カリウ
ム、塩化マグネシウム、塩化カルシウム、塩化ア
ルミニウム、塩化亜鉛、塩化銅、塩化コバルト、
臭化ナトリウム、臭化リチウム、臭化マグネシウ
ム、沃化カリウム、沃化ナトリウム、硫酸ナトリ
ウム、硫酸マグネシウム、硫酸亜鉛、リン酸ナト
リウム、リン酸カリウム、亜リン酸ナトリウム、
次亜リン酸ナトリウム、次亜リン酸カルシウム、
水酸化ナトリウム、水酸化リチウム、ステアリン
酸ナトリウム、ステアリン酸カリウム、ステアリ
ン酸マグネシウム、ステアリン酸カルシウム、ス
テアリン酸アルミニウム、ステアリン酸亜鉛、オ
レイン酸カリウム、酢酸ナトリウム、酢酸カリウ
ム、安息香酸ナトリウム、ラウリルスルホン酸ナ
トリウム、ベンゼンスルホン酸ナトリウムなどが
挙げられる。この他、5−ナトリウムスルホイソ
フタル酸の如き、金属塩基を含有したアミド結合
形成可能な化合物を添加してポリアミド鎖に直接
金属塩基を結合させてもよい。本発明はポリアミ
ド中に金属化合物を含有し、かつ260℃における
溶融比抵抗が1.5×105Ωcm以下のものを用いれば
よく、上記金属化合物に限定されるものではな
い。また、アルカリ金属、アルカリ土類金属など
のイオン化ポテンシヤルの小さい金属の場合は、
単体のままで用いることも可能である。これらの
金属化合物をポリアミド樹脂に対して0.0005重量
%〜5重量%含有させることによつて260℃にお
ける溶融比抵抗を1.5×105Ωcm以下にすることが
可能である。金属化合物含有量が0.0005重量%以
下の場合は静電密着性の改善効果も少ない。金属
化合物含有量が5重量%以上の場合は、フイルム
の物性が低下して好ましくない。しかし、本発明
はこれらの金属化合物含有量の範囲自体に束縛さ
れるものではない。 金属化合物を含有させる方法としては、重合前
に原料モノマーに添加する方法、あるいは重合の
進行する途中で添加する方法、抽出工程で添加す
る方法、ペレツトを乾燥する時に添加する方法、
いずれでもかまわない。最終的に溶融押出しされ
たポリアミド樹脂中に金属化合物が含有されてい
れば有効であり、本発明はこれらの添加方法に束
縛されるものではない。 本発明における静電気的に回転冷却ロールに密
着させる方法としては、例えば特公昭37−6142号
公報で開示されているワイヤ電極、ナイフ状電極
または/および深針状電極に高電圧を印加し、溶
融フイルムに電荷を与える方法などが適用し得
る。しかし、本発明はこの方法のみに束縛される
ものではなく、エアーナイフを併用した静電密着
装置への適用、および回転冷却ロールを誘電体で
被覆し、高圧荷電電極と逆の符号の電荷を回転冷
却ロールに析出させる装置への適用なども可能で
ある。本発明方法の場合、通常のポリアミド系樹
脂を用いる場合に比べ、これらの装置における回
転冷却ロールへの溶融樹脂の静電気的密着性が向
上されるのである。 <発明の効果> 本発明方法における未延伸フイルムの引取り速
度は特に限定されるものではない。引取り速度を
速くすると回転冷却ロールと溶融フイルムとの間
に空気が巻き込まれ、均一な未延伸フイルムが得
られなくなる。従来の多くのポリアミド樹脂を静
電密着法によつて回転冷却ロールに引取る場合、
最高引取り速度が通常10〜35m/分であるのに対
して、本発明ではこの引取り速度以上においても
回転冷却ロールと溶融フイルム間への空気の巻込
みが防止され、厚みの均一な未延伸フイルムが得
られる。該未延伸ポリアミドはこのままでも食品
などの包装に好適である。しかし該未延伸ポリア
ミドフイルムを更に少なくとも1方向に1.1倍以
上、好ましくは、直交する2方向へ各々、2.0〜
5.0倍延伸した2軸延伸フイルムにすると、更に
機械的強度や透明性、酸素遮断性が向上され、各
種包装フイルムとして好適である。 <実施例> 以下に本発明を実施例を示すことによつて更に
詳細に説明する。 尚、本発明における樹脂の溶融比抵抗は、260
℃保つた溶融樹脂中にステンレス製電極を挿入
し、100Vの直流電圧を加えて、その時流れる1
秒から5秒後の電流値より、比抵抗ρ=(S/L)
×(V/I)の式から算出した値である。ここで
ρは比抵抗(Ωcm)、Sは電極面積(cm2)、Lは電
極間距離(cm)、Vは電圧(V)、Iは電流(A)を表
わす。本例での測定におけるSは0.12cm2、Lは
1.5cmであつた。また、実施例中の樹脂の相対粘
度は樹脂を96.3濃硫酸に1.0/100mlの濃度で溶解
し、20℃の恒温槽中でオストワルド粘度計を用い
て測定した値である。 実施例 1 イプシロンカプロラクタム100重量部に対して、
メタキシレンジアミン6.9量部、アジピン酸7.4量
部を14.3重量部の熱水に溶解したナイロン塩水溶
液を加え、180〜240℃で加圧重縮合した後、更に
240〜270℃で常圧重縮合を行ない相対粘度2.6の
共重合ポリアミド系樹脂ペレツトを得た。 該ペレツトを熱水による残存ラクゼム抽出処理
を行なつた後、該ペレツト100重量部に対してリ
ン酸3ナトリウム・12水塩0.05重量部加え回転式
真空乾燥機中で乾燥および混合したペレツトを用
いて最高引取り速度を求めたところ、59m/分の
ところで回転冷却ロールと溶融フイルム間への空
気の巻き込みを防止できた。 実施例 2 イプシロンカプロラクタム100重量部に対して、
メタキシレンジアミン13.8重量部、アジピン酸
14.8重量部を28.6重量部の熱水に溶解したナイロ
ン塩水溶液を加え、180〜240℃で加圧重縮合した
後、更に240〜270℃で常圧重縮合を行ない。相対
粘度2.6の共重合ポリアミド樹脂ペレツトを得た。 該ペレツトを熱水による残存ラクタム抽出処理
を行なつた後、該ペレツト100重量部に対してリ
ン酸3ナトリウム・12水塩重量部加えて、回転式
真空乾燥機中で乾燥および混合したペレツトを用
いて最高引取り速度を求めたところ62m/分まで
回転冷却ロールと溶融フイルム間への空気の巻き
込みを防止できた。 実施例 3 イプシロンカプロラクタム100重量部、メタキ
シリレンジアミンとイソフタル酸のナイロン塩
11.5重量部、および水1.5重量部を180〜240℃で
加圧重縮合した後、更に240〜270℃で常圧重縮合
を行ない相対粘度2.6の共重合ポリアミデ樹脂ペ
レツトを得た。 該ペレツトを熱水による残存ラクタム抽出処理
を行なつた後、該ペレツト100重量部に対してリ
ン酸3ナトリウム・12水塩を0.05重量部加えて、
回転式真空乾燥機中で乾燥および混合したペレツ
トを用いて最高引取り速度を求めたところ60m/
分まで回転冷却ロールと溶融フイルム間への空気
の巻き込みを防止できた。 比較例 1 イプシロンカプロラクタム100重量部および水
1.5重量部を180〜240℃で加圧重縮合した後、更
に240〜270℃で常圧重縮合を行ない相対粘度2.6
のポリカプロラクタム樹脂ペレツトを得た。該ペ
レツトを熱水による残存ラクタム抽出処理を行な
つた後、回転式真空乾燥機中で乾燥し、該ペレツ
トを用いて最高引取り速度を求めたところ、36
m/分のところで回転冷却ロールと溶融フイルム
間に空気が巻き込まれ、フイルムと厚み斑と不透
明箇所が生じた。 比較例 2 比較例1と同様にして得た残存ラクタム抽出処
理後のポリカプラミド樹脂ペレツト100重量部に
対して、リン酸3ナトリウム・12水塩を0.05重量
部加えて、回転式真空乾燥機中で乾燥および混合
したペレツトを用いて最高引取り速度を求めたと
ころ56m/分のところで回転冷却ロールと溶融フ
イルム間に空気が巻き込まれ、フイルムに厚み斑
と不透明箇所が生じた。 【表】
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a highly efficient method for producing a polyamide film with excellent thickness uniformity. <Purpose of the invention> Polyamide film has strong toughness,
It is widely used in the field of food packaging where it can take advantage of properties such as impact resistance, pinhole resistance, and oxygen barrier properties. In recent years, with the growth of retort food products, the demand for polyamide films has also increased, and there is a desire to supply high-quality and inexpensive films. <Relationship with Prior Art> Polyamide films are usually produced by melt extrusion using an inflation method or a T-die method. When obtaining a polyamide film by the T-die method, the molten film extruded from the die is cast onto a rotating cooling roll. At this time, in order to bring the film into close contact with the cooling rotating roll, there is a method of blowing air with an air knife (hereinafter referred to as the "air knife method"), a method of depositing a charge on the molten film from a high-voltage electrode and making it adhere electrostatically (hereinafter referred to as the "electrostatic" method). (referred to as the close contact method).
However, even in casting using the air knife method or electrostatic adhesion method, when the take-up speed increases, air is caught between the rotating cooling roll and the film due to the flow generated by the rotation, making it difficult to form a uniform film. You won't be able to get it. In order to efficiently produce a polyamide film with excellent thickness uniformity, the inventors of the present invention conducted extensive research and found that they copolymerized an aromatic residue with an aliphatic polyamide resin and added a metal compound to the aliphatic polyamide resin. The inventors have discovered that the electrostatic adhesion of the resin is improved by containing it, and have arrived at the present invention. <Structure of the invention> That is, the present invention provides aromatic aminocarboxylic acid residues,
2% to 20% by weight of aromatic dicarboxylic acid residues and/or aromatic diamine residues, and 80% by weight of aliphatic aminocarboxylic acid residues, aliphatic dicarboxylic acid residues, and/or aliphatic diamine residues % or more and 98% by weight or less, which also contains a metal compound and has a specific melt resistance of 1.5 x 10 5 Ωcm or less at 260°C, is melt-extruded into a film, and the melt-extruded This method produces a polyamide film by electrostatically adhering the film to a rotating cooling roll and cooling and solidifying it. The present invention will be explained in more detail below. In the present invention, aromatic aminocarboxylic acid residues, aromatic dicarboxylic acid residues, and/or aromatic diamine residues include aminomethylbenzoic acid, terephthalic acid, isophthalic acid, 2,4-bis(carboxymethyl)
These are residues such as toluene, paraxylylene diamine, metaxylylene diamine, and 2,4-bis(aminomethyl)toluene. On the other hand, aliphatic aminocarboxylic acid residues, aliphatic dicarboxylic acid residues, and/or aliphatic diamine residues include epsilon caprolactam, omega laurolactam, aminocaproic acid, aminoundecanoic acid, aminododecanoic acid, adipic acid, and sebacic acid. , alpha omega dodecanoic acid, hexamethylene diamine, etc. The aromatic residue in the polymer is preferably 2% by weight or more and 20% by weight or less.
If it is less than 2% by weight, the effect of improving the electrostatic adhesion of the molten resin will be small, and if it is more than 20% by weight, the pellets will fuse and become difficult to handle, or conversely, the melting point of the resin will become high, making molding difficult. The polyamide resin containing these aromatic residues in the copolymer can also be used in combination with other polyamide resins. These resins may contain small amounts of other resins, lubricants, antioxidants, antistatic agents, colorants, and other organic or inorganic substances. The metal compounds in the present invention include alkali metals, alkaline earth metals, aluminum group elements,
There are transition metal halides, sulfur oxygen acid compounds, phosphorus oxygen acid compounds, hydroxides, organic carboxylates, organic sulfonates, etc. Specifically, sodium chloride, lithium chloride, potassium chloride, magnesium chloride. , calcium chloride, aluminum chloride, zinc chloride, copper chloride, cobalt chloride,
Sodium bromide, lithium bromide, magnesium bromide, potassium iodide, sodium iodide, sodium sulfate, magnesium sulfate, zinc sulfate, sodium phosphate, potassium phosphate, sodium phosphite,
Sodium hypophosphite, calcium hypophosphite,
Sodium hydroxide, lithium hydroxide, sodium stearate, potassium stearate, magnesium stearate, calcium stearate, aluminum stearate, zinc stearate, potassium oleate, sodium acetate, potassium acetate, sodium benzoate, sodium lauryl sulfonate, Examples include sodium benzenesulfonate. In addition, a metal base-containing compound capable of forming an amide bond, such as 5-sodium sulfoisophthalic acid, may be added to bond the metal base directly to the polyamide chain. The present invention is not limited to the above-mentioned metal compounds, as long as the polyamide contains a metal compound and has a specific melting resistance of 1.5×10 5 Ωcm or less at 260° C. In addition, in the case of metals with small ionization potential such as alkali metals and alkaline earth metals,
It is also possible to use it alone. By containing these metal compounds in an amount of 0.0005% to 5% by weight based on the polyamide resin, it is possible to reduce the specific melting resistance at 260° C. to 1.5×10 5 Ωcm or less. When the metal compound content is 0.0005% by weight or less, the effect of improving electrostatic adhesion is small. If the metal compound content is 5% by weight or more, the physical properties of the film will deteriorate, which is not preferable. However, the present invention is not limited to these metal compound content ranges. Methods for adding a metal compound include adding it to the raw material monomer before polymerization, adding it during the progress of polymerization, adding it during the extraction process, adding it when drying the pellets,
Either is fine. It is effective if the metal compound is finally contained in the melt-extruded polyamide resin, and the present invention is not limited to these methods of addition. In the present invention, as a method for electrostatically bringing the roller into close contact with the rotating cooling roll, a high voltage is applied to a wire electrode, a knife-shaped electrode, and/or a deep needle-shaped electrode as disclosed in, for example, Japanese Patent Publication No. 37-6142. A method of imparting charge to the film can be applied. However, the present invention is not limited only to this method, but can also be applied to an electrostatic adhesion device that uses an air knife in combination, and by coating a rotating cooling roll with a dielectric material and applying an electric charge of the opposite sign to that of a high-voltage charged electrode. It is also possible to apply it to a device that deposits on a rotating cooling roll. In the case of the method of the present invention, the electrostatic adhesion of the molten resin to the rotating cooling roll in these devices is improved compared to the case of using ordinary polyamide resin. <Effects of the Invention> The take-up speed of the unstretched film in the method of the present invention is not particularly limited. If the take-up speed is increased, air will be caught between the rotating cooling roll and the molten film, making it impossible to obtain a uniform unstretched film. When many conventional polyamide resins are transferred to a rotating cooling roll using the electrostatic adhesion method,
While the maximum take-up speed is normally 10 to 35 m/min, the present invention prevents air from being trapped between the rotating cooling roll and the molten film even at this take-up speed or higher, and produces a film with a uniform thickness. A stretched film is obtained. The unstretched polyamide as it is is suitable for packaging foods and the like. However, the unstretched polyamide film is further expanded by 1.1 times or more in at least one direction, preferably by 2.0 times or more in each of two orthogonal directions.
A biaxially stretched film stretched 5.0 times has further improved mechanical strength, transparency, and oxygen barrier properties, and is suitable for various packaging films. <Examples> The present invention will be explained in more detail below by showing examples. In addition, the melt specific resistance of the resin in the present invention is 260
A stainless steel electrode was inserted into the molten resin kept at ℃, and a DC voltage of 100V was applied, causing
From the current value after 5 seconds, specific resistance ρ = (S/L)
This is a value calculated from the formula ×(V/I). Here, ρ is specific resistance (Ωcm), S is electrode area (cm 2 ), L is distance between electrodes (cm), V is voltage (V), and I is current (A). In the measurement in this example, S is 0.12cm 2 and L is
It was 1.5cm. In addition, the relative viscosity of the resin in the Examples is a value measured by dissolving the resin in 96.3 concentrated sulfuric acid at a concentration of 1.0/100ml and using an Ostwald viscometer in a constant temperature bath at 20°C. Example 1 For 100 parts by weight of epsilon caprolactam,
A nylon salt aqueous solution prepared by dissolving 6.9 parts of meta-xylene diamine and 7.4 parts of adipic acid in 14.3 parts by weight of hot water was added, and after polycondensation under pressure at 180 to 240°C, further
Atmospheric polycondensation was carried out at 240 to 270°C to obtain copolyamide resin pellets with a relative viscosity of 2.6. After the pellets were subjected to a treatment to extract residual laxem with hot water, 0.05 parts by weight of trisodium phosphate dodecahydrate was added to 100 parts by weight of the pellets, dried in a rotary vacuum dryer, and the mixed pellets were used. The maximum take-up speed was determined to be 59 m/min, which was sufficient to prevent air from getting caught between the rotating cooling roll and the molten film. Example 2 For 100 parts by weight of epsilon caprolactam,
Meta-xylene diamine 13.8 parts by weight, adipic acid
An aqueous solution of nylon salt in which 14.8 parts by weight was dissolved in 28.6 parts by weight of hot water was added, followed by pressure polycondensation at 180 to 240°C, followed by normal pressure polycondensation at 240 to 270°C. Copolymerized polyamide resin pellets with a relative viscosity of 2.6 were obtained. After extracting the remaining lactam from the pellets with hot water, parts by weight of trisodium phosphate dodecahydrate were added to 100 parts by weight of the pellets, and the pellets were dried and mixed in a rotary vacuum dryer. When the maximum take-up speed was determined using this method, it was possible to prevent air from getting caught between the rotating cooling roll and the molten film up to 62 m/min. Example 3 100 parts by weight of epsilon caprolactam, metaxylylene diamine and nylon salt of isophthalic acid
11.5 parts by weight and 1.5 parts by weight of water were subjected to pressure polycondensation at 180 to 240°C, followed by normal pressure polycondensation at 240 to 270°C to obtain copolymerized polyamide resin pellets with a relative viscosity of 2.6. After extracting the residual lactam from the pellets with hot water, 0.05 parts by weight of trisodium phosphate dodecahydrate was added to 100 parts by weight of the pellets.
The maximum take-up speed was determined using pellets dried and mixed in a rotary vacuum dryer and was 60 m/min.
It was possible to prevent air from getting caught between the rotating cooling roll and the molten film for up to a minute. Comparative example 1 100 parts by weight of epsilon caprolactam and water
After polycondensing 1.5 parts by weight at 180 to 240℃ under pressure, further polycondensation at normal pressure at 240 to 270℃ resulted in a relative viscosity of 2.6.
Polycaprolactam resin pellets were obtained. After extracting the residual lactam using hot water, the pellets were dried in a rotary vacuum dryer, and the maximum take-up speed was determined using the pellets.
At m/min, air was caught between the rotating cooling roll and the molten film, causing uneven thickness and opaque areas in the film. Comparative Example 2 To 100 parts by weight of polycapramide resin pellets obtained in the same manner as in Comparative Example 1 after the residual lactam extraction treatment, 0.05 parts by weight of trisodium phosphate decahydrate was added, and the mixture was dried in a rotary vacuum dryer. When the maximum take-up speed was determined using the dried and mixed pellets, air was caught between the rotating cooling roll and the molten film at a speed of 56 m/min, resulting in uneven thickness and opaque areas in the film. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族アミノカルボン酸残基、芳香族ジカル
ボン酸残基または/および芳香族ジアミン残基が
2重量%以上20重量%以下かつ脂肪族アミノカル
ボン酸残基、脂肪族ジカルボン酸残基または/お
よび脂肪族ジアミン残基が80重量%以上98重量%
以下より成るポリアミド系樹脂で、かつ金属化合
物を含有し、260℃における溶融比抵抗が1.5×
105Ωcm以下であるポリアミド系樹脂をフイルム
状に溶融押出しし、該溶融押出ししたフイルムを
回転冷却ロールに静電気的に密着させ、冷却固化
することを特徴とするポリアミド系フイルムの製
造法。
1 Aromatic aminocarboxylic acid residues, aromatic dicarboxylic acid residues, and/or aromatic diamine residues of 2% to 20% by weight, and aliphatic aminocarboxylic acid residues, aliphatic dicarboxylic acid residues, and/or Aliphatic diamine residues are 80% by weight or more and 98% by weight
A polyamide resin consisting of the following, containing a metal compound, and having a specific melting resistance of 1.5× at 260℃
A method for producing a polyamide film, which comprises melt-extruding a polyamide resin having a resistance of 10 5 Ωcm or less into a film, electrostatically adhering the melt-extruded film to a rotating cooling roll, and solidifying it by cooling.
JP59109981A 1984-05-22 1984-05-30 Manufacture of polyamide series film Granted JPS60253524A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59109981A JPS60253524A (en) 1984-05-30 1984-05-30 Manufacture of polyamide series film
PCT/JP1985/000116 WO1985005315A1 (en) 1984-05-22 1985-03-08 Process for producing polyamide film
EP85901550A EP0182910B1 (en) 1984-05-22 1985-03-08 Process for producing polyamide film
KR1019850001559A KR920002398B1 (en) 1984-05-22 1985-03-12 Forming method for poly imide film
US07/489,030 US5000889A (en) 1984-05-22 1990-03-06 Process for preparing polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109981A JPS60253524A (en) 1984-05-30 1984-05-30 Manufacture of polyamide series film

Publications (2)

Publication Number Publication Date
JPS60253524A JPS60253524A (en) 1985-12-14
JPH0146303B2 true JPH0146303B2 (en) 1989-10-06

Family

ID=14524053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109981A Granted JPS60253524A (en) 1984-05-22 1984-05-30 Manufacture of polyamide series film

Country Status (1)

Country Link
JP (1) JPS60253524A (en)

Also Published As

Publication number Publication date
JPS60253524A (en) 1985-12-14

Similar Documents

Publication Publication Date Title
US4745143A (en) Salt resistant polyamide composition
JPH09118750A (en) Copolyetheramide and steam-permeable film made therefrom
WO2010075484A1 (en) Chrome-free method of conditioning and etching of a thermoplastic substrate for metal plating
KR960701954A (en) Solutions of poly (p-phenyleneterephthalamide) and polyvinylpyrrolidone and products made therefrom (Solution of PPD-T and PVP and Articles Made Therefrom)
JPH0411373B2 (en)
JP2718749B2 (en) Heat resistant polyamide film
KR920002398B1 (en) Forming method for poly imide film
JPH0146303B2 (en)
JP2001114912A (en) Stretched aromatic polyester film and preparation method thereof
CA1329299C (en) Thermoplastically processible aromatic polyetheramide, process for its production and its use for the production of moldings
JPS634772B2 (en)
JPH0570575B2 (en)
JP3386861B2 (en) Thermoplastic molding materials
JPS6324812B2 (en)
JPH0573575B2 (en)
JPH0570574B2 (en)
JPH0149104B2 (en)
JPH0643552B2 (en) Polyamide composition
JPH0573574B2 (en)
KR970006756B1 (en) Polyamide resin composition for the preparation of fill
JP4218156B2 (en) Method for cleaning surface of thermoplastic resin sheet and method for producing thermoplastic resin sheet
US3560440A (en) High molecular weight linear aromatic copolyamides
JPH0570573B2 (en)
JPH06256545A (en) Production of polyamide resin film
JP4332945B2 (en) Polyamide resin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees