JPH0145786B2 - - Google Patents

Info

Publication number
JPH0145786B2
JPH0145786B2 JP57116857A JP11685782A JPH0145786B2 JP H0145786 B2 JPH0145786 B2 JP H0145786B2 JP 57116857 A JP57116857 A JP 57116857A JP 11685782 A JP11685782 A JP 11685782A JP H0145786 B2 JPH0145786 B2 JP H0145786B2
Authority
JP
Japan
Prior art keywords
transmission
transmission line
relay means
line
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57116857A
Other languages
Japanese (ja)
Other versions
JPS598451A (en
Inventor
Hiroshi Tomizawa
Sadao Mizokawa
Takushi Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57116857A priority Critical patent/JPS598451A/en
Publication of JPS598451A publication Critical patent/JPS598451A/en
Publication of JPH0145786B2 publication Critical patent/JPH0145786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/50Circuit switching systems, i.e. systems in which the path is physically permanent during the communication
    • H04L12/52Circuit switching systems, i.e. systems in which the path is physically permanent during the communication using time division techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Description

【発明の詳細な説明】 本発明は、互いに方向の異なる2本の伝送路に
よりループ状に接続されたループ式データ伝送シ
ステムの伝送制御装置に係り、特に障害時に伝送
網を再構成する機能を備えた伝送制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission control device for a loop-type data transmission system connected in a loop by two transmission paths having different directions, and in particular has a function of reconfiguring a transmission network in the event of a failure. The present invention relates to a transmission control device equipped with a transmission control device.

ループ式データ伝送システムは、複数のステー
シヨンとそれを接続するループ状の伝送路より成
つているが、このループ状伝送路が1本である
と、ステーシヨン1個又は伝送路の障害によつ
て、システム全体の機能が停止してしまう。これ
を防ぐため、第1図に示すように、ステーシヨン
5〜8を、異方向に伝送する二重の伝送路、5a
〜8a,5b〜8bで接続する構成が知られてい
る。本構成においては、通常は一方の伝送路系
(例えば5a〜8a)にて伝送し、本伝送路系に
障害が発生した時には他方の伝送路系5b〜8b
に切り換え、システムダウンを防ぎ(バツクアツ
プ)、またステーシヨンの障害や両系伝送路の障
害に対しても、障害箇所の両隣のステーシヨンで
伝送路を折り返すことにより、全ステーシヨンを
伝送路で接続し、正常な伝送を維持することがで
きる(ループバツク)。
A loop data transmission system consists of a plurality of stations and a loop-shaped transmission line connecting them, but if there is only one loop-shaped transmission line, a failure in one station or the transmission line can cause The entire system stops functioning. In order to prevent this, as shown in FIG.
A configuration in which connections are made between ~8a and 5b~8b is known. In this configuration, normally transmission is performed using one transmission line system (for example, 5a to 8a), and when a failure occurs in this transmission line system, the other transmission line system 5b to 8b is used.
In order to prevent system downtime (backup), and even in the event of a station failure or failure of both transmission lines, the transmission line can be looped back at the stations on both sides of the failure point, connecting all stations with the transmission line. Normal transmission can be maintained (loopback).

このような二重化された伝送路とステーシヨン
の接続制御は、ステーシヨンで行われる。第2図
はその従来例を示すブロツク図で、1ステーシヨ
ンを示している。同図に於て、異常のない時、A
系(B系)の伝送路30,31は、受信回路1
0,12、変復調回路14,15、マルチプレク
サ16,17は、優先制回路18,19、及び送
信回路11,13を通つて同系の伝送路32,3
3へ接続される。ここで優先制御回路18,19
は、その系が信号伝送を行つている時にループ伝
送の優先制御を行うためのフラグを伝送フレーム
中へ挿入する等の動作を行うものである。各々の
伝送系のデータ状態、即ち信号の有無、あるいは
信号時間幅の正常性がデータ状態検出回路20,
21により監視されている。
Connection control between the duplex transmission path and the station is performed at the station. FIG. 2 is a block diagram showing a conventional example, and shows one station. In the same figure, when there is no abnormality, A
The transmission lines 30 and 31 of the system (B system) are connected to the receiving circuit 1.
0, 12, modulation/demodulation circuits 14, 15, and multiplexers 16, 17 are connected to transmission lines 32, 3 of the same system through priority control circuits 18, 19 and transmission circuits 11, 13.
Connected to 3. Here, priority control circuits 18, 19
The system performs operations such as inserting a flag for priority control of loop transmission into the transmission frame when the system is transmitting signals. The data state of each transmission system, that is, the presence or absence of a signal, or the normality of the signal time width is determined by the data state detection circuit 20,
It is monitored by 21.

今、仮に伝送路30〜32のA系にて伝送を行
つているとすると、マイクロコンピユータ26及
び伝送制御回路24は、マルチプレクサ22、信
号線27を介して変復調回路14側に接続されて
いる。この時、伝送路31〜33のB系では、単
に監視信号が変復調回路15によつて中継されて
いるだけで、B系自身の監視を行つている。この
ような状態にある時、データの状態検出回路20
によつてA系の伝送路に異常が検出されると、こ
れはマルチプレクサ23を介して伝送路切り換え
制御回路25に入力され、各マルチプレクサ1
7,18,22,23が切換え信号SA〜SDによ
り制御される。マルチプレクサ17,18は回線
構成を変更し、マルチプレクサ22はB系の変復
調回路15側を信号線28を介して制御回路24
及びマイクロコンピユータ26に接続する。
Now, assuming that transmission is being performed on the A system of the transmission lines 30 to 32, the microcomputer 26 and the transmission control circuit 24 are connected to the modulation/demodulation circuit 14 via the multiplexer 22 and the signal line 27. At this time, in the B system of the transmission lines 31 to 33, the monitoring signal is merely relayed by the modulation/demodulation circuit 15, and the B system itself is monitored. In such a state, the data state detection circuit 20
When an abnormality is detected in the A-system transmission line, this is input to the transmission line switching control circuit 25 via the multiplexer 23, and each multiplexer 1
7, 18, 22, and 23 are controlled by switching signals S A to S D. The multiplexers 17 and 18 change the line configuration, and the multiplexer 22 connects the B-system modulation/demodulation circuit 15 side to the control circuit 24 via the signal line 28.
and connected to the microcomputer 26.

このように、従来装置では、A系、B系の変復
調回路14,15のいずれかがマイクロコンピユ
ータ26に接続される形をとつており、どちらか
一方の変復調回路又は伝送路が故障を起こしても
他方に切り換えて継続稼動させることが可能であ
るが、マルチプレクサ22の入力信号線27,2
8は信号のビツト単位で並列化されているので、
その全信号線をマルチプレクスするにはマルチプ
レクサ22のハードウエア量がぼう大であり、か
つその制御回路25も複雑になつて、信頼度が低
くなるという欠点があつた。
In this way, in the conventional device, either the A-system or B-system modulation/demodulation circuits 14, 15 are connected to the microcomputer 26, and if one of the modulation/demodulation circuits or the transmission line fails, However, the input signal lines 27 and 2 of the multiplexer 22 can be switched to the other side and continue to operate.
8 is parallelized in signal bit units, so
Multiplexing all of the signal lines requires a large amount of hardware for the multiplexer 22, and the control circuit 25 also becomes complex, resulting in low reliability.

本発明の目的は、上記従来装置の問題点を解決
し、少ないハードウエア量でかつデータの優乱な
しに二重化伝送路の切り換えを行える伝送制御装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a transmission control device that solves the problems of the conventional device described above and can switch duplex transmission lines with a small amount of hardware and without data disturbance.

本発明は、伝送制御部及びマイクロコンピユー
タを一方の変復調回路に固定的に接続し、回線構
成の切換えはシリアルな伝送経路である送受信回
路の部分で行うような構成としたことを特徴とす
るものである。
The present invention is characterized in that the transmission control unit and the microcomputer are fixedly connected to one modem circuit, and the line configuration is switched in the transmitting/receiving circuit, which is a serial transmission path. It is.

以下、本発明の詳細を実施例によつて説明す
る。第3図は本発明の一実施例を示すもので、各
送受信回路10〜13にはマルチプレクサ46〜
49が接続されており、これらの切換えが網構成
制御回路55よりの切換え信号SA1,SA2,
SB1,SB2により行われて、伝送路の再構成が
行われる。マルチプレクサ46〜49はいずれも
信号のシリアル伝送路に設けられているから、従
来例の第2図のようなパラレル信号線27,28
の切換えを行うマルチプレクサ22よりはるかに
簡単な構成で実現できる。又、これを制御する伝
送制御回路54も簡単化される。一方、A系の伝
送路の変復調回路14には、伝送制御回路54を
介してマイクロコンピユータ26が固定して接続
されており、このパラレルな信号線27の部分に
はマルチプレクサは設けられていない。また、ル
ープ伝送に不可欠な優先制御回路52は変復調回
路14の出力側にのみ設けられている。両伝送路
の変復調回路14,15の出力側にはデータ信号
の有無を検出するデータ状態検出回路20,21
が従来と同様に設けられ、マルチプレクサ53を
介して伝送路の切り換えを制御する網構成制御回
路55に接続される。伝送制御回路54と網構成
制御回路55は、ともにデータの内容を解読した
り、上記制御回路54からの割入等により、ソフ
トウエアにて伝送路の切り換え指令を網構成制御
回路55に対し出すマイクロコンピユータ26と
接続されている。
Hereinafter, the details of the present invention will be explained with reference to Examples. FIG. 3 shows an embodiment of the present invention, in which each transmitter/receiver circuit 10-13 has multiplexers 46-46.
49 are connected, and these switching is performed by switching signals SA1, SA2, SA2,
SB1 and SB2 perform reconfiguration of the transmission path. Since the multiplexers 46 to 49 are all provided on the serial signal transmission path, parallel signal lines 27 and 28 as shown in the conventional example in FIG.
This can be realized with a much simpler configuration than the multiplexer 22 that performs switching. Furthermore, the transmission control circuit 54 that controls this is also simplified. On the other hand, a microcomputer 26 is fixedly connected to the modulation/demodulation circuit 14 of the A-system transmission line via a transmission control circuit 54, and no multiplexer is provided on this parallel signal line 27. Further, the priority control circuit 52, which is essential for loop transmission, is provided only on the output side of the modulation/demodulation circuit 14. Data state detection circuits 20 and 21 for detecting the presence or absence of data signals are provided on the output sides of the modulation and demodulation circuits 14 and 15 of both transmission lines.
is provided in the same manner as in the prior art, and is connected via a multiplexer 53 to a network configuration control circuit 55 that controls transmission line switching. The transmission control circuit 54 and the network configuration control circuit 55 both decode the contents of the data or issue a command to switch the transmission path to the network configuration control circuit 55 using software based on an interrupt from the control circuit 54, etc. It is connected to a microcomputer 26.

次に第4図〜第7図を用いて、二重化ループ伝
送路の構成例を説明する。第3図に於て、マルチ
プレクサ46,47,48,49の出力信号とし
て、各々信号線60,62,63を選んだ状態の
構成図を簡略に示すと第4図のようになる。即
ち、A系伝送路系30,32の変復調回路14が
固定的にマイクロコンピユータ26に接続され、
B系の伝送路31,33には単に変復調回路15
のみがつながつているだけである。このマイクロ
コンピユータ26に接続されているA系の伝送路
にてステーシヨン間のデータの送受信が行われ、
B系の伝送路では監視信号のみが流されている。
Next, a configuration example of the duplex loop transmission line will be explained using FIGS. 4 to 7. FIG. 4 is a simplified diagram of the configuration in which the signal lines 60, 62, and 63 are selected as the output signals of the multiplexers 46, 47, 48, and 49 in FIG. 3, respectively. That is, the modulation/demodulation circuits 14 of the A-system transmission line systems 30 and 32 are fixedly connected to the microcomputer 26,
The transmission lines 31 and 33 of the B system are simply equipped with a modulation/demodulation circuit 15.
Only things are connected. Data is sent and received between stations on the A-system transmission line connected to this microcomputer 26.
Only the monitoring signal is sent through the B-system transmission line.

この第4図の接続状態は、無障害時のものであ
る。以後では物理的に伝送路に対応した名称とし
てA系を主系伝送路、B系を従系伝送路と呼び、
更に現在、ステーシヨン間のデータ送受信を実施
している側の伝送路を現用系伝送路、そうでない
側の伝送路を待機系伝送路と呼ぶことにすると、
第4図の場合には主系伝送路と現用系伝送路が一
致し、従来伝送路と待機系伝送路が一致する。
The connection state shown in FIG. 4 is when there is no failure. From now on, system A will be referred to as the main transmission path, system B will be referred to as the slave transmission path, as names that physically correspond to the transmission paths.
Furthermore, if we call the transmission line that currently performs data transmission and reception between stations the active transmission line, and the transmission line that does not, the standby transmission line.
In the case of FIG. 4, the main transmission line and the active transmission line coincide, and the conventional transmission line and the standby transmission line coincide.

次に、第3図に於いて、マルチプレクサ46,
47,48,49の出力信号として、各々信号線
61,63,60,62を選んだ状態の構成が第
5図に示されている。即ち、上記の第4図とは異
なり、従系伝送路31,33がマイクロコンピユ
ータ26に接続されて現用系伝送路となり、主系
伝送路30,32が待機系伝送路となる。この待
機系伝送路は障害個所やその種別の検出のための
役割を持つ。この第5図の構成はバツクアツプ動
作の場合に相当する。又、第3図に於いて、マル
チプレクサ46,47,48,49の出力信号と
して、各々信号線60,62,61,62を選ん
だ状態の構成が第6図に示されている。これは主
系及び従来伝送路の双方に障害が生じた時の折り
返しループを構成するための折り返しステーシヨ
ンとなる場合である。ステーシヨン間のデータ
は、伝送路30から変復調回路14を介して、伝
送路31へと折返される。以上の第6,7図の場
合はループバツク動作である。
Next, in FIG. 3, the multiplexer 46,
FIG. 5 shows a configuration in which signal lines 61, 63, 60, and 62 are selected as the output signals of 47, 48, and 49, respectively. That is, unlike FIG. 4 above, the slave transmission lines 31 and 33 are connected to the microcomputer 26 and become active transmission lines, and the main transmission lines 30 and 32 become standby transmission lines. This standby transmission line has the role of detecting the location and type of failure. The configuration shown in FIG. 5 corresponds to a backup operation. Further, in FIG. 3, a configuration in which signal lines 60, 62, 61, and 62 are selected as the output signals of multiplexers 46, 47, 48, and 49, respectively, is shown in FIG. This is a case in which the station serves as a turn-back station for constructing a turn-back loop when a failure occurs in both the main system and the conventional transmission line. Data between stations is looped back from the transmission line 30 to the transmission line 31 via the modulation/demodulation circuit 14. The cases shown in FIGS. 6 and 7 above are loopback operations.

次に、上記のような回線構成を行うための動作
を、第5図のバツクアツプの場合につき詳述す
る。通常は各ステーシヨンとも第4図に示すよう
な構成をとつている。即ち、主系伝送路側にて伝
送を行つている。又、従来伝送路側には監視信号
を流して回線状態をチエツクできるようになつて
いる。主系伝送路に障害が発生すると、第3図の
状態検出回路20により現用系信号断が検出され
る。ループ伝送システムの中の1つのコントロー
ルステーシヨンのみが上記現用系信号断によりマ
イクロコンピユータ26に対し割込みを起こす。
と同時に他の一般のステーシヨンは単にデータを
中継するモードに移行する。コントロールステー
シヨンは、上記割込みによりソフトウエアにて網
構成制御回路55へ伝送路切り換え指令を出す。
この指令によりコントロールステーシヨン構成は
第5図のようになる。この時点で他のステーシヨ
ンは従系伝送路切り換え指令データを流す。これ
を受けた各ステーシヨンは、本指令データフレー
ムの終わりのタイミングにて伝送路切り換えを実
施する。この制御は第3図の状態検出回路20,
21、網構成制御回路55によりなされる。この
ようにして次にステーシヨンの切り換えが行わ
れ、全ステーシヨンが第5図のような構成にな
る。即ちこの時点で現用系伝送路が従系伝送路
に、待機系伝送路が主系伝送路になり、データの
送受信は従系伝送路により行われることになる。
主系伝送路が修復されて今度は従来系伝送路に障
害が発生した場合には、上記構成の逆となり、第
5図から第4図へ構成が移行する。切り換えのタ
イミングは同じである。
Next, the operation for implementing the line configuration as described above will be explained in detail for the backup case shown in FIG. Normally, each station has a configuration as shown in FIG. That is, transmission is performed on the main transmission path side. Furthermore, it has conventionally been possible to check the line status by sending a monitoring signal to the transmission line side. When a failure occurs in the main transmission line, the state detection circuit 20 shown in FIG. 3 detects that the working signal is disconnected. Only one control station in the loop transmission system causes an interrupt to the microcomputer 26 due to the disconnection of the active signal.
At the same time, other ordinary stations shift to a mode of simply relaying data. The control station issues a transmission path switching command to the network configuration control circuit 55 using software in response to the above-mentioned interrupt.
With this command, the control station configuration becomes as shown in FIG. At this point, other stations send slave transmission line switching command data. Each station that receives this executes transmission path switching at the timing of the end of this command data frame. This control is performed by the state detection circuit 20 in FIG.
21, is performed by the network configuration control circuit 55. In this manner, the stations are next switched, and all the stations are configured as shown in FIG. That is, at this point, the active transmission line becomes the slave transmission line, the standby transmission line becomes the main transmission line, and data is transmitted and received through the slave transmission line.
When the main transmission line is repaired and a failure occurs in the conventional transmission line, the above configuration is reversed and the configuration shifts from FIG. 5 to FIG. 4. The switching timing is the same.

以上の動作の説明をタイムチヤートで示したの
が第8図である。第8図に於て、各ステーシヨン
が信号断を検出した時点ではコントロールステー
シヨン(CST)のみが切換えられ、他ステーシ
ヨンは、前述したようにコントロールステーシヨ
ンからの切換えコマンド(従系伝送路を通して送
られる)を検出して第5図の状態に切換えられ
る。これは、信号断の時点で一斉に切換えると、
各ステーシヨン間の切換えタイミングの同期がと
れなくなつてしまうからである。
FIG. 8 shows a time chart explaining the above operation. In Figure 8, when each station detects a signal disconnection, only the control station (CST) is switched, and the other stations receive a switching command (sent through the slave transmission line) from the control station as described above. is detected and switched to the state shown in FIG. This means that if you switch all at once when the signal is cut off,
This is because it becomes impossible to synchronize the switching timing between the stations.

第6図、第7図のループバツクの場合も同様
で、切換えはやはりコントロールステーシヨンか
らの切換えコマンドにより行われる。
The same is true for the loopbacks shown in FIGS. 6 and 7, and the switching is also performed by a switching command from the control station.

以上の実施例から明らかなように、本発明によ
れば、複雑なマルチプレクサとその制御回路を不
要とし、ハードウエアの小形化、高信頼化が実現
できるという効果がある。
As is clear from the above embodiments, the present invention has the advantage of eliminating the need for a complicated multiplexer and its control circuit, making it possible to realize smaller hardware and higher reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二重化ループ伝送路を有する伝送シス
テムの説明図、第2図は従来の伝送制御装置の例
を示すブロツク図、第3図は本発明の一実施例を
示すブロツク図、第4図〜第7図は第3図の実施
例の各種切換えを行つた時の回線構成の説明図、
第8図は第3図の実施例に於る切換えタイミング
の説明図である。 5〜8……ステーシヨン、5a〜8a,5b〜
8b……伝送路、14,15……変復調回路、2
0,21……状態検出回路、26……マイクロコ
ンピユータ、30〜33……伝送路、46〜49
……マルチプレクサ、54……伝送制御部、55
……網構成制御回路、52……優先制御回路。
FIG. 1 is an explanatory diagram of a transmission system having a duplexed loop transmission line, FIG. 2 is a block diagram showing an example of a conventional transmission control device, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. 4 〜FIG. 7 is an explanatory diagram of the line configuration when various switching is performed in the embodiment of FIG. 3,
FIG. 8 is an explanatory diagram of switching timing in the embodiment of FIG. 3. 5-8...Station, 5a-8a, 5b-
8b...Transmission line, 14, 15...Modulation/demodulation circuit, 2
0, 21...State detection circuit, 26...Microcomputer, 30-33...Transmission line, 46-49
...Multiplexer, 54...Transmission control section, 55
...Network configuration control circuit, 52...Priority control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 互にその伝送方向が逆なループ状の第1及び
第2の伝送路を介して相互接続され、各々が、第
1及び第2中継手段と、相互に送受信される信号
を処理しかつ常時上記第1中継手段と接続された
処理手段と、上記第1及び第2中継手段への入力
を上記第1及び第2伝送路からの入力から各々選
択しかつ上記第1及び第2伝送路への各出力を上
記第1及び第2中継手段の出力から各々選択する
ための選択手段と、上記第1及び第2中継手段の
出力を監視することにより上記第1及び第2伝送
路の障害を検出して上記選択手段を制御するため
の制御手段とを有するとともに、該制御手段は、
上記第1及び第2伝送路の一方の故障を検出した
時には他方の伝送路と上記処理手段が接続された
第1中継手段とを介して信号伝送を行い且つ一方
の伝送路を第2中継手段に接続して待機系を形成
させ、上記第1及び第2伝送路の双方に故障を検
出した時には該故障個所が除去されるように上記
第1中継手段を介して上記第1伝送路と第2伝送
路を折返し接続して信号伝送を行い且つ折返し伝
送路以外の伝送路を第2中継手段に接続して待機
系を形成させる回線切換え機能を備えたことを特
徴とする伝送制御装置。
1 interconnected through loop-shaped first and second transmission paths whose transmission directions are opposite to each other, each of which processes signals mutually transmitted and received with the first and second relay means, and which constantly A processing means connected to the first relay means, and inputs to the first and second relay means are respectively selected from inputs from the first and second transmission paths, and input to the first and second transmission paths. selecting means for selecting each output from the outputs of the first and second relay means, and monitoring the outputs of the first and second relay means to prevent failures in the first and second transmission paths. and a control means for detecting and controlling the selection means, and the control means includes:
When a failure in one of the first and second transmission lines is detected, the signal is transmitted via the other transmission line and the first relay means connected to the processing means, and one transmission line is connected to the second relay means. A standby system is formed by connecting the first transmission line to the first transmission line and the second transmission line via the first relay means so that when a failure is detected in both the first and second transmission lines, the failure location is removed. 1. A transmission control device comprising a line switching function for performing signal transmission by connecting two transmission lines in a looped manner and connecting a transmission line other than the looped transmission line to a second relay means to form a standby system.
JP57116857A 1982-07-07 1982-07-07 Transmission controller Granted JPS598451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116857A JPS598451A (en) 1982-07-07 1982-07-07 Transmission controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116857A JPS598451A (en) 1982-07-07 1982-07-07 Transmission controller

Publications (2)

Publication Number Publication Date
JPS598451A JPS598451A (en) 1984-01-17
JPH0145786B2 true JPH0145786B2 (en) 1989-10-04

Family

ID=14697342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116857A Granted JPS598451A (en) 1982-07-07 1982-07-07 Transmission controller

Country Status (1)

Country Link
JP (1) JPS598451A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259B2 (en) * 1986-10-21 1996-01-10 日立金属株式会社 Forming device for profile with dovetail
JPH0720123B2 (en) * 1987-10-26 1995-03-06 日本電気株式会社 Loop network failure automatic avoidance method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177017A (en) * 1974-12-27 1976-07-03 Fujitsu Ltd DEETADENSOROKIRIKAE HOSHIKI
JPS56112156A (en) * 1980-02-12 1981-09-04 Yaskawa Electric Mfg Co Ltd Loop communication system

Also Published As

Publication number Publication date
JPS598451A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
US4745597A (en) Reconfigurable local area network
US5387902A (en) Data networks
JPH041542B2 (en)
US4538026A (en) Loop back system for loop transmission line
JPH0145786B2 (en)
JPS6135740B2 (en)
JPH041543B2 (en)
JPS5941620B2 (en) Loopback method of dual loop transmission system
JPS6398244A (en) Transmission equipment for loop shaped network system
JP2682427B2 (en) Failure detection method on loop transmission line
JPS59190755A (en) Channel duplexing system
JPS60169255A (en) Duplicated loop communication system
JPH0286340A (en) Optical fiber transmission system
JPH0234215B2 (en)
JP2737294B2 (en) Duplex receiver
JPS61292438A (en) Loopback control system
JPH0229261B2 (en)
JPH02303243A (en) Local area network system
JPS5819057A (en) Constitution controller for loop data transmission system
JPS61154332A (en) Data transmitter
JPS61112451A (en) Station duplex system of data highway
JPH02174335A (en) Transmission line switching system
JPS63228849A (en) Decentralized transmitting device
JPS63234751A (en) Constitution control method for loop type data transmission system
JPH05327743A (en) Transmission line control method for data communication system