JPH0145256B2 - - Google Patents

Info

Publication number
JPH0145256B2
JPH0145256B2 JP15237779A JP15237779A JPH0145256B2 JP H0145256 B2 JPH0145256 B2 JP H0145256B2 JP 15237779 A JP15237779 A JP 15237779A JP 15237779 A JP15237779 A JP 15237779A JP H0145256 B2 JPH0145256 B2 JP H0145256B2
Authority
JP
Japan
Prior art keywords
signal
station
signals
master station
slave station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15237779A
Other languages
Japanese (ja)
Other versions
JPS5675742A (en
Inventor
Susumu Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15237779A priority Critical patent/JPS5675742A/en
Publication of JPS5675742A publication Critical patent/JPS5675742A/en
Publication of JPH0145256B2 publication Critical patent/JPH0145256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【発明の詳細な説明】 本発明は散在する多数の子局とこれらに共通の
1つの親局とで形成される時分割多方向通信網に
おける初期同期を確立する方式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for establishing initial synchronization in a time division multidirectional communication network formed by a large number of scattered slave stations and one common master station.

第1図は本発明にかかる時分割多方向通信網を
説明する図である。同図において親局から時間軸
t上において多重化されたPCM信号を多方向に
一斉に発射し各子局1、2、…、nにおいては親
局から送信されたPCM信号のうちの自局割当1、
2、…、nのみを取出して受信する。第1図にお
いて、Fsb1,Fsb2はそれぞれ子局1、子局2の
サブフレームを示す。各子局1、2、…、nから
はまた親局へ向けて信号を自局に割当てられた時
間帯においてかつ信号伝播遅延時間について修正
を加えて送信を行ない親局には各子局からの信号
が送信順に到着するようにする。
FIG. 1 is a diagram illustrating a time division multidirectional communication network according to the present invention. In the figure, the master station simultaneously emits multiplexed PCM signals in multiple directions on the time axis t, and each slave station 1, 2, ..., n receives its own PCM signal from among the PCM signals transmitted from the master station. quota 1,
2,...,n only are extracted and received. In FIG. 1, Fsb 1 and Fsb 2 indicate subframes of slave station 1 and slave station 2, respectively. Each slave station 1, 2, ..., n also transmits a signal to the master station in the time slot assigned to it and with corrections made to the signal propagation delay time. The signals arrive in the order in which they were sent.

すなわち親局において各子局からの受信信号が
各々重ならず1、2、…、nを時間軸上において
整然と並ぶようにする。これは各子局が親局送信
信号に含まれるフレームビツトに同期して自局割
当時間帯においてかつ遅延等化器を用いて親局間
の信号伝播遅延時間を修正して送信を行なえば親
局では第1図に示すように各局からの信号1、
2、…、nを送信順に整然と受信することができ
る。
That is, in the master station, the signals 1, 2, . . . , n received from the respective slave stations do not overlap and are arranged in an orderly manner on the time axis. This can be done if each slave station synchronizes with the frame bits included in the master station transmission signal and transmits in its own station's assigned time slot and by correcting the signal propagation delay time between the master stations using a delay equalizer. At the station, as shown in Figure 1, signals 1,
2,...,n can be received in an orderly manner in the order of transmission.

第2図は上記の説明の詳細を示すものである。
第2図においてaは親局送信信号を示し各子局
1、2、…、nがフレーム長Fの長さの連続信号
を受信する。第2図bは子局1の受信信号を示し
この信号は親局と当該子局との間の信号伝播遅延
時間だけ遅れて到着する。第2図cは子局1の送
信信号を示し第2図dで示すように親局で各子局
の信号が整然と受信できるように遅延時間Δαを
決定する。ところでこの子局からの送信時間の決
定は親局から送られてくるフレーム同期信号を基
準として計算しこれを全ての時間の基準としてい
る。
FIG. 2 shows details of the above description.
In FIG. 2, a indicates a master station transmission signal, and each slave station 1, 2, . . . , n receives a continuous signal having a frame length F. FIG. 2b shows the received signal of the slave station 1, and this signal arrives with a delay of the signal propagation delay time between the master station and the slave station. FIG. 2c shows the transmission signal of the slave station 1, and the delay time Δα is determined so that the master station can receive the signals from each slave station in an orderly manner as shown in FIG. 2d. By the way, the determination of the transmission time from the slave station is calculated based on the frame synchronization signal sent from the master station, and this is used as the reference for all times.

第4図aは親局から子局に送る送信フレーム図
で、子局1向けのデータ信号の前にフレーム同期
信号FSを付加する。第4図bは子局1向けのサ
ブフレーム構成であつてa1はランダム信号、b1
フレーム同期信号、c1はデータ部である。第4図
cは他の子局向けのサブフレーム信号でこの場合
はa1′,b1′はランダム信号でc′はデータ信号であ
る。第4図dは子局nのサブフレーム構成であつ
て、ao,bo,coの意味は第4図cの場合と同様で
ある。
FIG. 4a is a diagram of a transmission frame sent from the master station to the slave station, in which a frame synchronization signal FS is added before the data signal destined for slave station 1. FIG. 4b shows a subframe configuration for the slave station 1, where a 1 is a random signal, b 1 is a frame synchronization signal, and c 1 is a data section. FIG. 4c shows a subframe signal for another slave station, in which case a 1 ', b 1 ' are random signals, and c' is a data signal. FIG. 4d shows the subframe structure of slave station n, and the meanings of a o , b o , and c o are the same as in FIG. 4 c.

さて実際の回線において、第3図のようにある
子局間の回線においてフエージング等により回線
が断となつた場合、すなわち例えば子局2で親局
からの同期信号が確立できないときは子局から親
局への送信を断にする。この理由は親局での他局
への影響を防ぐためである。つぎに同期信号を検
出し確立するためには搬送波およびクロツク信号
と同期をとりつぎにフレーム同期信号を検出して
初めて同期確立が終了する。
Now, in an actual line, if the line between a certain slave station is disconnected due to fading or the like as shown in Figure 3, for example, when slave station 2 cannot establish a synchronization signal from the master station, the slave station Disables transmission from to the master station. The reason for this is to prevent the master station from influencing other stations. Next, in order to detect and establish a synchronization signal, the synchronization is completed with the carrier wave and the clock signal, and only after the frame synchronization signal is detected.

しかしフエージング等で回線が断となることは
回線のS/Nが非常に低い時であるので同期が確
立するまで数フレームの時間を費いやしてしま
う。そのため回線が一度切れるとS/Nが悪い時
は回線復旧に時間を要することになる。
However, since the line is disconnected due to fading or the like when the S/N of the line is very low, it takes several frames of time to establish synchronization. Therefore, once the line is disconnected, it will take time to restore the line if the S/N is poor.

本発明の目的はかかる欠点を除去するために初
期同期確立を高速度に行えるようにした時分割多
方向通信網における初期同期方式を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an initial synchronization system in a time-division multidirectional communication network that allows initial synchronization to be established at high speed in order to eliminate such drawbacks.

本発明によれば親局から時間軸上において多重
化されたPCM信号を多方向に発射し、各子局1、
2、…、nにおいては親局から送信されたPCM
信号のうち自局割当分1、2、…、nのみを取出
して受信し、各子局は親局送信信号に含まれるフ
レームビツトに同期して自局割当時間帯において
親局との間の信号伝播遅延時間の調整を行ない送
信し、親局には各子局からの信号が送信順に到着
するようにした時分割多方向通信網において、前
記親局から各子局へのサブフレームは通常は搬送
波再生用信号とクロツク再生信号の挿入は行なわ
ず各子局への連続信号中の回線が断となつている
子局向のサブフレームに搬送波再生用信号とクロ
ツク再生用信号を挿入して同期確立を早めること
を特徴とする時分割多方向通信網における初期同
期方式が提案される。
According to the present invention, multiplexed PCM signals are emitted from the master station in multiple directions on the time axis, and each slave station 1,
2,...,n, the PCM sent from the master station
Of the signals, only the portions 1, 2, ..., n allocated to the local station are extracted and received, and each slave station synchronizes with the frame bits included in the signal transmitted by the master station and performs communication between the slave station and the master station during the time period allocated to the slave station. In a time-division multidirectional communication network in which the signal propagation delay time is adjusted and transmitted so that the signals from each slave station arrive at the master station in the order in which they were transmitted, the subframes from the master station to each slave station are usually does not insert the carrier wave regeneration signal and the clock regeneration signal, but inserts the carrier wave regeneration signal and the clock regeneration signal in the subframe for the slave station where the line is disconnected in the continuous signal to each slave station. An initial synchronization method for time-division multidirectional communication networks is proposed, which is characterized by speeding up the establishment of synchronization.

以下本発明にかかる方式の実施例により詳細に
説明する。
The method according to the present invention will be explained in detail below using embodiments.

通常この種の多方向通信方式では検波方式とし
ては回線品質を考慮して同期検波方式とすること
が多い。この場合子局から親局への信号構成は第
5図のごとくになる。同図において、acは搬送波
再生用信号、aBはクロツク再生用信号、bは局識
別および補助信号またはPN信号、cはデータま
たはPN信号である。しかし一般には親局から子
局へは第5図のように搬送波および、クロツク再
生用信号は挿入する必要がない。そのためデータ
のみ親局から送り子局からは上記の信号とデータ
を送ると上り下りの伝送容量が異なり回線および
無線装置の設計上不都合を生じるため通常は親局
からのデータに付加信号を加えフレーム長は上り
下りとも同じにしている。
Usually, in this type of multi-directional communication system, a synchronous detection method is often used as the detection method in consideration of line quality. In this case, the signal configuration from the slave station to the master station is as shown in FIG. In the figure, a c is a carrier wave regeneration signal, a B is a clock regeneration signal, b is a station identification and auxiliary signal or a PN signal, and c is a data or PN signal. However, in general, it is not necessary to insert a carrier wave and a clock reproduction signal from the master station to the slave station as shown in FIG. Therefore, only data is sent from the master station.If the child station sends the above signals and data, the uplink and downlink transmission capacity differs, causing problems in the design of lines and radio equipment.Usually, an additional signal is added to the data from the master station to frame the data. The length is the same for both the top and bottom.

親局からの信号中に搬送波およびクロツク再生
信号を挿入すると、搬送波再生用信号はデータが
変化しないためデータの区切りが分からずクロツ
ク信号の位相がずれ同期はずれを生じ、クロツク
再生信号は位相が頻繁に変わるため、搬送波再生
には向かない信号である。よつて、既に搬送波再
生もクロツク再生も確立している場合に、これら
の再生用信号が受信されると、かえつて都合が悪
くなる。
When a carrier wave and a clock recovery signal are inserted into the signal from the master station, the data of the carrier wave recovery signal does not change, so the data divisions are not known, and the phase of the clock signal shifts, resulting in loss of synchronization, and the phase of the clock recovery signal frequently changes. This signal is not suitable for carrier wave regeneration. Therefore, if carrier wave regeneration and clock regeneration have already been established, and these regeneration signals are received, it will be even more inconvenient.

本発明はこれらを考慮して第8図のごとく親局
から子局への信号構成を初期同期時ならびに再同
期時に変化させ、通常は搬送波再生用信号および
クロツク再生用信号を挿入せず、ある子局が回線
断となつたときに(初期同期も含めて)その子局
への信号に搬送波ならびにクロツク再生信号を挿
入することにより同期時間の短縮を計るものであ
る。第8図においてa1〜ao,b1〜boおよびc1〜co
はつぎのごとく構成される。
Taking these into consideration, the present invention changes the signal configuration from the master station to the slave station at the time of initial synchronization and resynchronization as shown in FIG. When a slave station's line is disconnected (including initial synchronization), the synchronization time is shortened by inserting a carrier wave and a clock reproduction signal into the signal to the slave station. In FIG. 8, a 1 ~a o , b 1 ~ bo and c 1 ~c o
is composed as follows.

子局から親局へ a1〜ao:搬送波およびクロツク再生用信号 b1〜bo:局識別信号および補助信号 c1〜co:データ 親局から子局へ a1〜ao:搬送波およびクロツク再生用信号(非
同期時) PN信号(同期時) b1:フレーム同期信号 b2〜bo:PN信号(同期、非同期にかかわらず) c1〜co:データ(同期、非同期にかかわらず) つまり回線断がない場合には第4図dのごとく
各データの前にao,boをPN信号として挿入する。
つぎにある子局間の回線が断となつた場合に第4
図dのaoすなわち同期部に搬送波およびクロツク
再生信号を挿入して搬送波およびクロツク再生時
間を短縮することができる。
From slave station to master station a 1 to a o : Carrier wave and clock regeneration signal b 1 to b o : Station identification signal and auxiliary signal c 1 to c o : Data From master station to slave station a 1 to a o : Carrier wave and clock regeneration signal (when asynchronous) PN signal (when synchronous) b 1 : Frame synchronous signal b 2 ~ b o : PN signal (regardless of synchronous or asynchronous) c 1 ~ c o : Data (regardless of synchronous or asynchronous) In other words, if there is no line disconnection, a o and b o are inserted as PN signals in front of each data as shown in Fig. 4d.
Next, if the line between the slave stations is disconnected, the fourth
The carrier wave and clock recovery times can be shortened by inserting the carrier wave and clock recovery signals into the ao or synchronization section of FIG. d .

なお、親局からの信号の中には第4図のごとく
フレーム同期信号が入つておりその長さも第7図
のごとく特定の長さが要求される。第7図におい
て横軸はフレーム同期信号長を示し、縦軸は生起
確率を示し、且つ曲線Aは擬似同期確率を、Bは
信号検知不能確率を示す。すなわちあまり長いフ
レーム同期信号を用いると擬似同期確率を防ぐこ
とができるがフレーム同期信号を検知できなくな
つてしまう。したがつてフレーム同期信号の長さ
は変化させない。
Note that the signal from the master station includes a frame synchronization signal as shown in FIG. 4, and its length is required to be a specific length as shown in FIG. In FIG. 7, the horizontal axis shows the frame synchronization signal length, the vertical axis shows the probability of occurrence, curve A shows the pseudo synchronization probability, and curve B shows the probability that the signal cannot be detected. That is, if a frame synchronization signal that is too long is used, false synchronization probability can be prevented, but the frame synchronization signal cannot be detected. Therefore, the length of the frame synchronization signal is not changed.

以上詳細に説明したように、本発明にかかる方
式によれば回線が断となつたときに付加ビツトの
内容を変化させることにより容易に初期同期を高
速かつ安定にすることができる。
As described above in detail, according to the method according to the present invention, initial synchronization can be easily made fast and stable by changing the contents of the additional bits when the line is disconnected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる方式の適用される時分
割多方向通信網の説明図、第2図は第1図の通信
網に用いられる送受信信号の説明図、第3図は本
発明にかかる方式を説明するための通信網を示
し、第4図および第5図は本発明にかかる方式に
おいて用いられる送信フレームを示す図、第6図
および第7図はそれぞれクロツク信号の位相ずれ
およびフレーム同期信号長の制限を示す図表、第
8図は本発明にかかる方式における送受信フレー
ム構成を示す図である。 図においてFはフレーム、FSはフレーム同期
信号、aCは搬送波再生用信号、aBはクロツク再生
信号、bは局識別および補助信号またはPN信
号、cはデータPN信号、a1〜aoは搬送波および
クロツク再生信号またはPN信号、b1はフレーム
同期信号または局識別信号および補助信号、b2
boはPN信号またはデータまたは再生信号または
局識別信号および補助信号を示す。
FIG. 1 is an explanatory diagram of a time-division multidirectional communication network to which the system according to the present invention is applied, FIG. 2 is an explanatory diagram of transmission and reception signals used in the communication network of FIG. 1, and FIG. 4 and 5 are diagrams showing transmission frames used in the method according to the present invention, and FIGS. 6 and 7 are diagrams showing clock signal phase shift and frame synchronization, respectively. FIG. 8 is a chart showing limitations on signal length, and is a diagram showing a transmission/reception frame structure in the system according to the present invention. In the figure, F is a frame, FS is a frame synchronization signal, a C is a carrier wave recovery signal, a B is a clock recovery signal, b is a station identification and auxiliary signal or PN signal, c is a data PN signal, and a 1 to a o are Carrier wave and clock recovery signal or PN signal, b 1 is frame synchronization signal or station identification signal and auxiliary signal, b 2 ~
b o indicates a PN signal, data, reproduction signal, station identification signal and auxiliary signal.

Claims (1)

【特許請求の範囲】[Claims] 1 親局から時間軸上において多重化された
PCM信号を多方向に発射し、各子局1、2、…、
nにおいては親局から送信されたPCM信号のう
ち自局割当分1、2、…、nのみを取出して受信
し、各子局は親局送信信号に含まれるフレームビ
ツトに同期して自局割当時間帯において親局との
間の信号伝播遅延時間の調整を行ない送信し、親
局には各子局からの信号が送信順に到着するよう
にした時分割多方向通信網において、前記親局か
ら各子局へのサブフレームは通常は搬送波再生用
信号とクロツク再生信号の挿入は行なわず各子局
への連続信号中の回線が断となつている子局向の
サブフレームに搬送波再生用信号とクロツク再生
用信号を挿入して同期確立を早めることを特徴と
する時分割多方向通信網における初期同期方式。
1 Multiplexed on the time axis from the master station
Emit PCM signals in multiple directions, and each slave station 1, 2,...
At n, only the own-station assigned portions 1, 2, ..., n are extracted and received from the PCM signals transmitted from the master station, and each slave station transmits its own station in synchronization with the frame bits included in the master station transmission signal. In a time-division multidirectional communication network in which signals are transmitted by adjusting the signal propagation delay time between the master station and the master station during the allocated time period, and the signals from each slave station arrive at the master station in the order in which they were transmitted, the master station Normally, carrier wave regeneration signals and clock recovery signals are not inserted in the subframes from 1 to each slave station, but carrier wave recovery signals are inserted into the subframes for slave stations where the line in the continuous signal to each slave station is disconnected. An initial synchronization method in a time division multidirectional communication network that is characterized by speeding up the establishment of synchronization by inserting a signal and a clock regeneration signal.
JP15237779A 1979-11-27 1979-11-27 Initial synchronizing system in time sharing multidirectional communication network Granted JPS5675742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15237779A JPS5675742A (en) 1979-11-27 1979-11-27 Initial synchronizing system in time sharing multidirectional communication network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15237779A JPS5675742A (en) 1979-11-27 1979-11-27 Initial synchronizing system in time sharing multidirectional communication network

Publications (2)

Publication Number Publication Date
JPS5675742A JPS5675742A (en) 1981-06-23
JPH0145256B2 true JPH0145256B2 (en) 1989-10-03

Family

ID=15539188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15237779A Granted JPS5675742A (en) 1979-11-27 1979-11-27 Initial synchronizing system in time sharing multidirectional communication network

Country Status (1)

Country Link
JP (1) JPS5675742A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507410A (en) * 1972-11-24 1975-01-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507410A (en) * 1972-11-24 1975-01-25

Also Published As

Publication number Publication date
JPS5675742A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
US4577316A (en) Synchronization system for a regenerative subtransponder satellite communication system
AU736793B2 (en) A method of determining timing advance information in a cellular radio system
US4642806A (en) Communications network having a single node and a plurality of outstations
US4773065A (en) Data framing system for time division multiplexing transmission
US4606023A (en) Guard time elimination in a time-division multiplexed, active star-coupled, half-duplex mode, synchronous communications network
US6031829A (en) Base transceiver station for cellular mobile radio system and system for synchronizing such base transceiver stations
EP0260696B1 (en) Subsidiary station capable of automatically adjusting an internal delay in response to a number signal received in a downward signal by the subsidiary station
EP0149136B1 (en) Programmable timing and synchronization circuit for a tdma communications controller
JPH08251096A (en) Slot allocation system
JPS6139638A (en) Radio wave system
EP1357688B1 (en) Handling traffic in a synchronous communication network
JPH0145256B2 (en)
JP2775791B2 (en) Random access control method for wireless channel
JPH04115733A (en) Synchronizing communication system
JPH0382227A (en) Radio channel switching control method
JPH0799815B2 (en) Wireless communication network synchronization method
JP2000165370A (en) Reception synchronization protection system and reception synchronization protection method
JPH0118614B2 (en)
JPS59191950A (en) Time division multi-direction communication system
JPS63246051A (en) Random access communication system
JPH0653923A (en) Sdh radio communication system and transmitter-receiver
JPH0297140A (en) Data reproducing system for radio repeating system
JPH02285822A (en) Time division multiple access system satellite communication system
JPS58221545A (en) Frame synchronizing method
JPS6145649A (en) Multi-drop communication system in line multiplex type loop network