JPH0144960B2 - - Google Patents

Info

Publication number
JPH0144960B2
JPH0144960B2 JP18194781A JP18194781A JPH0144960B2 JP H0144960 B2 JPH0144960 B2 JP H0144960B2 JP 18194781 A JP18194781 A JP 18194781A JP 18194781 A JP18194781 A JP 18194781A JP H0144960 B2 JPH0144960 B2 JP H0144960B2
Authority
JP
Japan
Prior art keywords
heat exchanger
gas
heat
lpg
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18194781A
Other languages
Japanese (ja)
Other versions
JPS5884296A (en
Inventor
Mitsuru Yoshida
Tamotsu Kitamura
Kyotaka Kobayashi
Yasuo Izumi
Atsushi Suzukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP18194781A priority Critical patent/JPS5884296A/en
Publication of JPS5884296A publication Critical patent/JPS5884296A/en
Publication of JPH0144960B2 publication Critical patent/JPH0144960B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液化天然ガス(以下LNGという)
と液化石油ガス(以下LPGという)の混合気化
方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to liquefied natural gas (hereinafter referred to as LNG).
and liquefied petroleum gas (hereinafter referred to as LPG).

従来技術とその問題点 天然ガスと増熱用石油ガスとの混合物からなる
燃料ガスの製造方法としては、いくつかの方法が
知られている。例えば、沸点の高いLPGをスチ
ーム等の高温度熱源により気化させ、これを気化
天然ガスに混合する方法であるが、この方法では
高温度熱源を使用するので、比例費が高価とな
る。特に沸点が0℃に近いブタンを主成分とする
LPGを使用する場合には、その傾向は更に大と
なる。
Prior Art and Problems There are several known methods for producing fuel gas made from a mixture of natural gas and heat-increasing petroleum gas. For example, there is a method of vaporizing LPG with a high boiling point using a high-temperature heat source such as steam and mixing it with vaporized natural gas, but since this method uses a high-temperature heat source, the proportional cost is high. In particular, the main component is butane, whose boiling point is close to 0°C.
This tendency becomes even greater when LPG is used.

また、気化天然ガスの加温器入口近傍にLPG
を送給し、両ガスの混合を行う方法も知られてい
るが、この場合には、多量のLPGを混合すると
気化し得ないLPGが加温器底部に液状で留まる
ので、石油ガス混入量には限度があり、燃料ガス
の発熱量が制限される。
In addition, LPG is installed near the inlet of the vaporized natural gas heater.
There is also a known method of mixing both gases, but in this case, when a large amount of LPG is mixed, the LPG that cannot be vaporized remains in liquid form at the bottom of the heater, so the amount of oil and gas mixed in is reduced. There is a limit to the amount of heat generated from the fuel gas.

問題点を解決するための手段 本発明者は、上記の如き従来技術の現況に鑑み
て、水を熱源とし冷媒を中間熱媒体とするLNG
気化用熱交換器(以下第一熱交換器という)及び
水を熱源とする気化天然ガス加温用多管式熱交換
器(以下第二熱交換器という)を備えたLNG気
化及び加温装置を使用して種々実験及び研究を重
ねて来た。その結果、第一熱交換器内で形成され
る天然ガスの気液混相流中のLPGの凝固点以上
の温度を有する部分にLPGを混合するか、或い
は第二熱交換器内に供給されている第一熱交換器
からの気化天然ガスにLPGを分散供給する場合
には、スチーム等の高温度熱源を使用することな
く、大量の石油ガスを含む高発熱量の燃料ガスが
容易に得られることを見出した。
Means for Solving the Problems In view of the current state of the prior art as described above, the present inventor has proposed an LNG engine that uses water as a heat source and a refrigerant as an intermediate heat medium.
LNG vaporization and heating equipment equipped with a heat exchanger for vaporization (hereinafter referred to as the first heat exchanger) and a shell-and-tube heat exchanger for heating vaporized natural gas using water as a heat source (hereinafter referred to as the second heat exchanger) We have conducted various experiments and research using the . As a result, LPG is mixed into the part of the natural gas gas-liquid multiphase flow formed in the first heat exchanger that has a temperature above the freezing point of LPG, or is supplied into the second heat exchanger. When LPG is distributed and supplied to the vaporized natural gas from the first heat exchanger, a high calorific value fuel gas containing a large amount of petroleum gas can be easily obtained without using a high temperature heat source such as steam. I found out.

即ち、本発明は、下記の方法を提供するもので
ある: 液化天然ガスと液化石油ガスの混合気化方法
であつて、 (i) 水を熱源とし冷媒を中間熱媒体とする熱交
換器において気液混相からなる天然ガス流中
の液化石油ガスの凝固点以上の温度を有する
部分に微細化した液化石油ガスを混合する工
程、及び (ii) 水を熱源とする横型多管式熱交換器におい
て伝熱管内を通る水により伝熱管外を通る上記
(i)で得た混合ガスを加熱する工程 を備えたことを特徴とする液化天然ガスと液化
石油ガスの混合気化方法。
That is, the present invention provides the following method: A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, which comprises: (i) heating water in a heat exchanger using water as a heat source and a refrigerant as an intermediate heat medium; (ii) mixing finely divided liquefied petroleum gas into a part of a natural gas stream consisting of a liquid mixed phase that has a temperature above the freezing point of liquefied petroleum gas; The water passing through the heat tube causes the water to flow outside the heat transfer tube.
A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, comprising a step of heating the mixed gas obtained in (i).

液化天然ガスと液化石油ガスの混合気化方法
であつて、 (i) 水を熱源とし冷媒を中間熱媒体とする熱交
換器において気液混相からなる天然ガス流中
の液化石油ガスの凝固点以上の温度を有する
部分に微細化した液化石油ガスを混合する工
程、及び (ii) 水を熱源とする横型多管式熱交換器におい
て上記(i)で得た混合ガスに微細化した液化石
油ガスを多段階で分散混合し、伝熱管内を通
る水により伝熱管外を通る該混合物を加熱す
る工程 を備えたことを特徴とする液化天然ガスと液化
石油ガスの混合気化方法。
A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, comprising: (i) a heat exchanger using water as a heat source and a refrigerant as an intermediate heat medium; (ii) mixing the finely divided liquefied petroleum gas into the mixed gas obtained in (i) above in a horizontal multi-tubular heat exchanger using water as a heat source; A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, comprising the steps of performing dispersion mixing in multiple stages and heating the mixture passing outside the heat transfer tube with water passing through the heat transfer tube.

以下図面に示す実施態様を参照しつつ本発明を
更に詳細に説明する。
The present invention will be described in more detail below with reference to embodiments shown in the drawings.

第1図において、LNGはライン1から冷媒を
中間熱媒体とする第一熱交換器3に供給される。
熱交換器3は、プロパン、アンモニア、フロン等
の冷媒を収容しており、該冷媒はライン5を通る
海水、河川水、湖沼水、温排水等の熱源水との熱
交換による気化及びライン7を通るLNGとの熱
交換による液化を繰り返す。熱交換器3は、機能
的には、LNGの加熱部、気化部及び加熱部を構
成している。本発明においては、加熱されて気液
混相となつた天然ガス流中のLPGの凝固点以上
の温度を有する部分にライン9からLPGを供給
する。
In FIG. 1, LNG is supplied from a line 1 to a first heat exchanger 3 that uses a refrigerant as an intermediate heat medium.
The heat exchanger 3 stores a refrigerant such as propane, ammonia, or fluorocarbon, and the refrigerant is vaporized by heat exchange with heat source water such as seawater, river water, lake water, warm wastewater, etc. passing through the line 5 and vaporized through the line 7. Liquefaction is repeated through heat exchange with LNG that passes through the LNG. Functionally, the heat exchanger 3 constitutes an LNG heating section, vaporization section, and heating section. In the present invention, LPG is supplied from line 9 to a portion of the natural gas stream that has been heated to become a gas-liquid mixed phase and has a temperature above the freezing point of LPG.

かくして、LPGの大部分はLNGの液相中に溶
解する。このLPGとLNGとの混合液相の気化に
際しては、沸騰伝熱を生じるので、総括伝熱係数
が著るしく向上し、気化効率が改善される。
LPGの主成分であるプロパンの凝固点は約−
187.7℃、n−ブタンの凝固点は約−138.4℃、i
−ブタンの凝固点は約−159.6℃であるから、使
用するLPGの組成に応じてLPG供給時点を定め
れば良い。本発明においては、第一熱交換器3と
して中間熱媒体を使用する間接加熱型の熱交換器
を採用するので、オープンラツク型式の熱交換器
等の場合と異なつて、熱源水の氷結による伝熱面
積の減少は全く生ぜず、従つて設備も小型化され
る。気化天然ガス及び気化石油ガスからなる混合
ガスは、次いでライン11から第二熱交換器であ
る横型多管式熱交換器13に送られ、ライン15
から供給されて伝熱管内を通る熱源水と伝熱管を
介して熱交換して加熱され、目的とする気化混合
ガスとなり、ライン17から取り出される。
Thus, most of the LPG is dissolved in the liquid phase of LNG. When this mixed liquid phase of LPG and LNG is vaporized, boiling heat transfer occurs, so the overall heat transfer coefficient is significantly improved and the vaporization efficiency is improved.
The freezing point of propane, the main component of LPG, is approximately -
187.7℃, the freezing point of n-butane is approximately -138.4℃, i
- Since the freezing point of butane is about -159.6°C, the LPG supply point can be determined depending on the composition of the LPG used. In the present invention, since an indirect heating type heat exchanger using an intermediate heat medium is adopted as the first heat exchanger 3, unlike the case of an open rack type heat exchanger etc., heat transfer due to freezing of the heat source water is prevented. There is no reduction in the thermal area and the equipment is therefore also smaller. The mixed gas consisting of vaporized natural gas and vaporized petroleum gas is then sent from line 11 to horizontal shell-and-tube heat exchanger 13, which is a second heat exchanger, and then to line 15.
It is heated by exchanging heat with heat source water supplied from the heat exchanger tube and passing through the heat exchanger tube, and becomes the target vaporized mixed gas, which is taken out from the line 17.

第1図に示す実施態様においては、ライン15
から第二熱交換器13に供給された熱源水が、ラ
イン19を経て更に第一熱交換器3における熱源
として使用されるので、熱効率が極めて高く経済
的に有利である。しかしながら、第一及び第二熱
交換器に対する熱源水の供給を別個に行なつても
良い。
In the embodiment shown in FIG.
Since the heat source water supplied to the second heat exchanger 13 via the line 19 is further used as a heat source in the first heat exchanger 3, the thermal efficiency is extremely high and it is economically advantageous. However, the heat source water may be supplied to the first and second heat exchangers separately.

第2図において、第1図におけると同様の機能
を有する部材は、同一の番号で示されている。第
一交換器3において、加熱されて気液混相となつ
た天然ガス流中に凝固を生じない様に留意しつつ
ライン9からLPGを加え、ライン11から天然
ガス及び石油ガスからなる気化混合ガスを得る。
得られた気化混合ガスは、第二熱交換器21にお
いて、分岐ラインD1,D2,D3………から更に
LPGを順次分散混合される。
In FIG. 2, parts having similar functions as in FIG. 1 are designated by the same numbers. In the first exchanger 3, LPG is added from the line 9 while being careful not to cause coagulation to the heated natural gas flow which becomes a gas-liquid mixed phase, and a vaporized mixed gas consisting of natural gas and petroleum gas is added from the line 11. get.
The obtained vaporized mixed gas is further passed through the branch lines D 1 , D 2 , D 3 . . . in the second heat exchanger 21.
LPG is sequentially dispersed and mixed.

熱交換器21は、第3図から明らかな如く、複
数個の仕切P1,P2………により複数個に空間に
区画されている。第2図及び第3図に示す方法に
おいては、ライン23からの混合すべきLPGの
全量をライン11からの気化天然ガスに混合する
のではなく、分岐ラインD1,D2,D3………に分
散し、前記複数個の仕切P1,P2………により形
成された複数個の空間において、熱源水の通る伝
熱管に対しほぼ直角の方向に滴下又は降下する間
に次第に温度の上昇する気化天然ガスに順次混合
する。かくして、LPGは、伝熱管表面に層状に
広がりつつ徐々に熱交換器下方に移動する間に、
伝熱管内の熱源水及び気化天然ガスにより良好に
加熱され、効率良く、気化する。この場合、各点
での気化天然ガスの温度に対応してLPGの露点
限界間でLPGを混合することができるので、
LPGの混入量に対する制限は更に大巾に緩和さ
れ、高発熱量の燃料ガスを得ることが可能とな
る。
As is clear from FIG. 3, the heat exchanger 21 is partitioned into a plurality of spaces by a plurality of partitions P 1 , P 2 . . . . In the method shown in FIGS. 2 and 3, the entire amount of LPG to be mixed from line 23 is not mixed with the vaporized natural gas from line 11, but instead of being mixed with the vaporized natural gas from line 11, branch lines D 1 , D 2 , D 3 . ..., and in the plurality of spaces formed by the plurality of partitions P 1 , P 2 ......, the temperature gradually increases as the heat source water drips or descends in a direction approximately perpendicular to the heat transfer tube through which it passes. Sequentially mixed into the rising vaporized natural gas. In this way, while LPG spreads in a layer on the heat exchanger tube surface and gradually moves down the heat exchanger,
It is well heated by the heat source water and vaporized natural gas in the heat transfer tube and vaporized efficiently. In this case, LPG can be mixed between the dew point limits of LPG corresponding to the temperature of vaporized natural gas at each point, so
Restrictions on the amount of LPG mixed in are further relaxed to a large extent, making it possible to obtain fuel gas with a high calorific value.

尚、何らかの事情により液状のLPGが第二熱
交換器21の底部に溜つた場合には、抜出しライ
ンW1,W2,W3………からポンプ25によりこ
れを抜き出し、ライン27からライン23に循環
しても良い。さらに原料LPG中の不純分等の重
質な成分については系外へブローしてもよい。
If liquid LPG accumulates at the bottom of the second heat exchanger 21 for some reason, it is extracted from the extraction lines W 1 , W 2 , W 3 . It may be circulated to Furthermore, heavy components such as impurities in the raw LPG may be blown out of the system.

第2図に示す方法によれば、第1図に示す方法
に比して、更に多量のLPGを効率良くLNGに混
合気化させることが出来る。
According to the method shown in FIG. 2, a larger amount of LPG can be mixed and vaporized into LNG more efficiently than in the method shown in FIG. 1.

上述のいずれの方法においても、LPGは出来
るだけ微細化した状態で天然ガス或いは天然ガス
と石油ガスとの混合ガスに加えることが好まし
い。LPGの微細化方法としては、噴霧ノズル方
式、トレイアンドスパージパイプ方式、穴明けパ
イプによる噴霧方式等が好ましい例として挙げら
れる。
In any of the above methods, it is preferable to add LPG to natural gas or a mixed gas of natural gas and petroleum gas in a state as fine as possible. Preferred examples of methods for atomizing LPG include a spray nozzle method, a tray and sparge pipe method, and a spray method using a perforated pipe.

発明の効果 本発明方法によれば、以下の如き顕著な効果が
奏される。
Effects of the Invention According to the method of the present invention, the following remarkable effects are achieved.

(i) スチーム等の高温度熱源を使用する必要がな
いので、コストダウンが可能である。
(i) Since there is no need to use a high temperature heat source such as steam, costs can be reduced.

(ii) LPGの凝固及び気化石油ガスの液化が防止
される。
(ii) Coagulation of LPG and liquefaction of vaporized petroleum gas is prevented.

(iii) LNGに対するLPGの混合比に対する制限が
実質上存在しないので、両ガスからなる混合ガ
スの発熱量を任意に調整し得る。
(iii) Since there is virtually no restriction on the mixing ratio of LPG to LNG, the calorific value of the mixed gas consisting of both gases can be adjusted arbitrarily.

(iv) 第一熱交換器として冷媒を中間熱媒体とする
間接加熱型の熱交換器を使用するので、オープ
ンラツク型式の熱交換器等の場合と異なり、熱
源水の氷結による伝熱面積の減少は生じない。
従つて、設備を小型化することが出来る。
(iv) Since an indirect heating type heat exchanger using a refrigerant as an intermediate heat medium is used as the first heat exchanger, unlike the case of an open rack type heat exchanger, the heat transfer area due to freezing of the heat source water is reduced. No reduction occurs.
Therefore, the equipment can be downsized.

(v) 気化効率が高いので、全設備を小型化するこ
とができる。
(v) Since the vaporization efficiency is high, the entire equipment can be downsized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、特許請求の範囲第1項に記載の発明
に対する一実施例を示すフローダイヤグラム、第
2図は、特許請求の範囲第2項に記載の発明に対
応する一実施例を示すフローダイヤグラム、第3
図は、第2図に示す第二熱交換器の詳細を示す図
面である。 1……LNG供給ライン、3……第一熱交換器、
5……熱源水通過ライン、7……LNG通過ライ
ン、9……LPG供給ライン、13……第二熱交
換器、15……熱源水供給ライン、17……気化
混合ガス取出しライン、21……第二熱交換器、
23……LPG供給ライン、P1,P2……第二熱交
換器21内の仕切、D1,D2,D3……ライン23
からの分岐ライン、W1,W2,W3……LPG抜出
しライン、25……ポンプ、27……LPG循環
ライン。
FIG. 1 is a flow diagram showing an embodiment of the invention as set forth in claim 1, and FIG. 2 is a flow diagram showing an embodiment of the invention as set forth in claim 2. Diagram, 3rd
The figure is a diagram showing details of the second heat exchanger shown in FIG. 2. 1... LNG supply line, 3... First heat exchanger,
5... Heat source water passing line, 7... LNG passing line, 9... LPG supply line, 13... Second heat exchanger, 15... Heat source water supply line, 17... Vaporized mixed gas extraction line, 21... ...Second heat exchanger,
23...LPG supply line, P1 , P2 ...Partition inside the second heat exchanger 21, D1 , D2 , D3 ...Line 23
Branch lines from W 1 , W 2 , W 3 ... LPG extraction line, 25 ... pump, 27 ... LPG circulation line.

Claims (1)

【特許請求の範囲】 1 液化天然ガスと液化石油ガスの混合気化方法
であつて、 (i) 水を熱源とし冷媒を中間熱媒体とする熱交換
器において気液混相からなる天然ガス流中の液
化石油ガスの凝固点以上の温度を有する部分に
微細化した液化石油ガスを混合する工程、及び (ii) 水を熱源とする横型多管式熱交換器において
伝熱管内を通る水により伝熱管外を通る上記(i)
で得た混合ガスを加熱する工程 を備えたことを特徴とする液化天然ガスと液化石
油ガスの混合気化方法。 2 液化天然ガスと液化石油ガスの混合気化方法
であつて、 (i) 水を熱源とし冷媒を中間熱媒体とする熱交換
器において気液混相からなる天然ガス流中の液
化石油ガスの凝固点以上の温度を有する部分に
微細化した液化石油ガスを混合する工程、及び (ii) 水を熱源とする横型多管式熱交換器において
上記(i)で得た混合ガスに微細化した液化石油ガ
スを多段階で分散混合し、伝熱管内を通る水に
より伝熱管外を通る該混合物を加熱する工程 を備えたことを特徴とする液化天然ガスと液化石
油ガスの混合気化方法。
[Scope of Claims] 1. A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, comprising: A process of mixing finely divided liquefied petroleum gas with a portion having a temperature above the freezing point of the liquefied petroleum gas, and (ii) a process in which water passing through the heat exchanger tubes in a horizontal multi-tube heat exchanger using water as a heat source causes heat transfer outside the heat exchanger tubes. (i) above through
A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, comprising a step of heating the mixed gas obtained in . 2. A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, which includes: (i) a heat exchanger using water as a heat source and a refrigerant as an intermediate heat medium; (ii) mixing the finely divided liquefied petroleum gas into the mixed gas obtained in (i) above in a horizontal shell-and-tube heat exchanger using water as a heat source; A method for vaporizing a mixture of liquefied natural gas and liquefied petroleum gas, comprising the steps of: dispersing and mixing the mixture in multiple stages, and heating the mixture passing outside the heat transfer tube with water passing through the heat transfer tube.
JP18194781A 1981-11-12 1981-11-12 Mixing and evaporating method of liquefied natural gas and liquefied petroleum gas Granted JPS5884296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18194781A JPS5884296A (en) 1981-11-12 1981-11-12 Mixing and evaporating method of liquefied natural gas and liquefied petroleum gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18194781A JPS5884296A (en) 1981-11-12 1981-11-12 Mixing and evaporating method of liquefied natural gas and liquefied petroleum gas

Publications (2)

Publication Number Publication Date
JPS5884296A JPS5884296A (en) 1983-05-20
JPH0144960B2 true JPH0144960B2 (en) 1989-10-02

Family

ID=16109658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18194781A Granted JPS5884296A (en) 1981-11-12 1981-11-12 Mixing and evaporating method of liquefied natural gas and liquefied petroleum gas

Country Status (1)

Country Link
JP (1) JPS5884296A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO180426C (en) * 1995-03-16 1997-04-16 Kvaerner Moss Tech As Device for heat exchangers

Also Published As

Publication number Publication date
JPS5884296A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
JP2005520670A (en) Compact rectification unit for separation of mixed fluids and rectification process for separation of such mixed fluids
US20160010800A1 (en) Liquid Natural Gas Vaporization
JPH0144960B2 (en)
JPS59166799A (en) Evaporator for liquefied natural gas
JPH0829075A (en) Gasifying device for low temperature liquid
JP2005226665A (en) Liquefied natural gas vaporizing system
JP2668484B2 (en) Liquefied natural gas vaporizer
JP2554900Y2 (en) Underwater combustion type vaporizer
JPS6124634B2 (en)
JP3003809B2 (en) Liquefied natural gas heating system
JP4181250B2 (en) Natural gas heating method
JPS625576Y2 (en)
JPS5944556B2 (en) Vaporizer for liquefied natural gas combustion plant
AU2015271951B2 (en) Liquid natural gas vaporization
JP2684309B2 (en) Liquefied natural gas vaporizer
JPS5824080Y2 (en) liquefied natural gas vaporizer
JPH07139889A (en) Liquefied natural gas vaporizer
JPH08189785A (en) Vaporizer for liquefied natural gas
JPH0212278B2 (en)
JPH0314120B2 (en)
JP3370703B2 (en) Air temperature / steam combined vaporizer
JPH0232958Y2 (en)
US3285833A (en) Water volatilization-condensation purification process using inert gas
Lisitsyn et al. Increasing the Efficiency of Mass and Heat Exchanger Networks
JPH0417313B2 (en)