JPH01448A - Media preservation state measuring device - Google Patents

Media preservation state measuring device

Info

Publication number
JPH01448A
JPH01448A JP62-88318A JP8831887A JPH01448A JP H01448 A JPH01448 A JP H01448A JP 8831887 A JP8831887 A JP 8831887A JP H01448 A JPH01448 A JP H01448A
Authority
JP
Japan
Prior art keywords
light
medium
liquid
change
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62-88318A
Other languages
Japanese (ja)
Other versions
JPS64448A (en
Inventor
泰男 片野
堀口 浩幸
俊之 古田
Original Assignee
株式会社リコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リコー filed Critical 株式会社リコー
Priority to JP8831887A priority Critical patent/JPS64448A/en
Priority claimed from JP8831887A external-priority patent/JPS64448A/en
Publication of JPH01448A publication Critical patent/JPH01448A/en
Publication of JPS64448A publication Critical patent/JPS64448A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 五先公互 本発明は、流体等の媒体の保存状態測定装置、より詳細
には、有機感光体用の顔料塗料を含む液体の保存状態を
測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the storage state of a medium such as a fluid, and more particularly to an apparatus for measuring the storage state of a liquid containing a pigment coating for an organophotoreceptor.

丸」S支析 第5図は、従来の物性値測定装置の一例を説明するため
の図で、図中、1は発光素子、2は光導波路、3は受光
素子、4は被測定媒体、5は定電流源で、周知のように
、定電流源5等により駆動されて一定光欲の光を発生す
るLED等の発光索子1より発光した光は、光導波路2
に導入され、該光導波路2内を何度か反射しながら伝播
し、フォトダイオード等の受光素子3に入射する。この
とき、液体4の屈折率が変化すると、スネルの法則に従
い、反射角、屈折角が変化し、液体・・、の光散乱度合
がかわる。すなわち、液体4の屈折率変化に伴い、受光
素子3に達する光強度が変化する。また、光が反射する
際、光導波路面にそってエバネッセント波が生じるが、
この光の波長に吸収を有する溶質が液体4中に存在する
場合は、このエバネッセント波の溶質への吸収が起こる
。すなわち、液体中の溶質濃度が変化すれば、受光素子
3へ達する光強度が変化する。斯様に、液体の屈折率変
化又は溶質の吸光度変化により伝播光強度が変化し、液
体の状態が測定できる。
Figure 5 is a diagram for explaining an example of a conventional physical property value measuring device.In the figure, 1 is a light emitting element, 2 is an optical waveguide, 3 is a light receiving element, 4 is a medium to be measured, Reference numeral 5 denotes a constant current source, and as is well known, the light emitted from the light emitting cord 1 such as an LED that is driven by the constant current source 5 or the like to generate light with a constant light intensity is transmitted through the optical waveguide 2.
The light beam is introduced into the optical waveguide 2, propagates through the optical waveguide 2 while being reflected several times, and enters a light receiving element 3 such as a photodiode. At this time, when the refractive index of the liquid 4 changes, the reflection angle and refraction angle change according to Snell's law, and the degree of light scattering of the liquid changes. That is, as the refractive index of the liquid 4 changes, the intensity of light reaching the light receiving element 3 changes. Also, when light is reflected, evanescent waves are generated along the optical waveguide surface.
If a solute that absorbs at this wavelength of light is present in the liquid 4, this evanescent wave is absorbed by the solute. That is, if the solute concentration in the liquid changes, the light intensity reaching the light receiving element 3 changes. In this way, the propagating light intensity changes due to a change in the refractive index of the liquid or a change in the absorbance of the solute, and the state of the liquid can be measured.

しかし、被測定液体の保存容器の密封性が良好な場合は
、液中成分比に変化が見られず、また、酸化や熱等によ
る液中成分の化学変化に伴なうその成分の屈折率変化が
小さく、また、第2図(イ)。
However, if the storage container for the liquid to be measured has a good seal, there will be no change in the component ratio in the liquid, and the refractive index of the component will change due to chemical changes in the component in the liquid due to oxidation, heat, etc. The change is small, and Figure 2 (a).

(ロ)に示すごとく2点鎖線で示した設定波長に対する
吸光度がほとんど変化せず、液体全体の屈折率変化が小
さい場合、すなわち、液体の状態変化において、その屈
折率変化および設定光源に対する吸光変化が全くないか
或いは変化の度合が少ない場合は、上記方法により液体
の状態変化を検出することはできない。また、上記液体
が可燃性の場合、他の電気的方法による状態測定は火災
の危険がある。
As shown in (b), when the absorbance for the set wavelength shown by the two-dot chain line hardly changes and the refractive index change of the entire liquid is small, that is, when the state of the liquid changes, the refractive index change and the absorbance change for the set light source If there is no change or the degree of change is small, it is not possible to detect a change in the state of the liquid using the above method. Additionally, if the liquid is flammable, other electrical methods of measuring the condition may pose a fire risk.

目     的 本発明は、上述のごとき実情に鑑みてなされたもので、
液体等の媒体の保存状態の品質検査において1品質劣化
時に屈折率変化が少ない媒体に関して、検出感度を上げ
、かつ測定精度を保つことのできる装置を提供すること
を目的としてなされたものである。
Purpose The present invention was made in view of the above-mentioned circumstances.
The purpose of this invention is to provide an apparatus that can increase detection sensitivity and maintain measurement accuracy for media whose refractive index changes little when quality deteriorates during quality inspection of storage conditions of media such as liquids.

購−一一成5 本発明は、上記目的を達成するために、発光素子と受光
素子を少なくとも一部が被測定媒体に接した光導波路で
結合し、前記発光素子の発光波長を、化学変化した被測
定媒体が光吸収感度を有する波長帯域の値に設定し、前
記受光素子の出力レベルで媒体の状態を検出することを
特徴としたものである。以下、本発明の実施例に基づい
て説明する。
In order to achieve the above object, the present invention combines a light-emitting element and a light-receiving element with an optical waveguide at least partially in contact with a medium to be measured, and changes the emission wavelength of the light-emitting element by chemical change. The measured medium is set to a value in a wavelength band in which the measured medium has light absorption sensitivity, and the state of the medium is detected by the output level of the light receiving element. Hereinafter, the present invention will be explained based on examples.

第1図は1本発明の一実施例を説明するための図で、図
中、11は定電流源、12は該定電流源11により一定
光量の光を発生するLED等の発光素子(光源)、13
は該発光素子12により発光した光が導入される光導波
路、14は該光導波路13内を反射しながら伝播して該
光導波路13から放出される光が入射される受光素子、
15は被測定媒体で、発光素子の発光波長は、化学変化
した被測定液体が光吸収感度を有する波長帯域の値に設
定されている0本実施例では、被測定媒体として、複写
機のOPC(有機感光体)ドラム作製で使用される顔料
用の溶剤であるシクロヘキサノンあるいは顔料塗料液等
が使用される。シクロヘキサノンは、空気中に放置して
おくと、酸素と水と光の作用によりベンゼン環が開いて
アジピン酸や5−ヘキセンアルデヒドあるいはカプロン
酸に変化する。そして、この化学変化に伴い、上記被測
定液体成分の噸光スペクトルが変化する。
FIG. 1 is a diagram for explaining one embodiment of the present invention. In the figure, 11 is a constant current source, and 12 is a light emitting element (light source) such as an LED that generates a constant amount of light by the constant current source 11. ), 13
14 is an optical waveguide into which the light emitted by the light emitting element 12 is introduced; 14 is a light receiving element into which the light propagated through the optical waveguide 13 while being reflected and emitted from the optical waveguide 13 is incident;
Reference numeral 15 denotes a medium to be measured, and the emission wavelength of the light emitting element is set to a value in a wavelength band in which a chemically changed liquid to be measured has light absorption sensitivity. (Organic photoreceptor) Cyclohexanone, which is a solvent for pigments used in the production of drums, or a pigment coating liquid is used. When cyclohexanone is left in the air, the benzene ring opens due to the action of oxygen, water, and light, and it transforms into adipic acid, 5-hexenaldehyde, or caproic acid. As a result of this chemical change, the optical spectrum of the liquid component to be measured changes.

第2図(イ)は正常な液体の吸収スペクトル、第2図(
ロ)は酸化等により劣化した液体の吸光スペクトルを表
わした図で、図示のように、光源波長を破線の波長に設
定した場合、酸化等の劣化により液体状態が変化すると
その吸光ピークがあられれ、伝播光のエバネッセント波
の吸収にともなう吸光量が増大し、受光素子で受光する
光量が減少するので、これより状態変化の検知が可能と
なる。
Figure 2 (a) shows the absorption spectrum of a normal liquid;
B) is a diagram showing the absorption spectrum of a liquid that has deteriorated due to oxidation, etc. As shown in the figure, when the light source wavelength is set to the wavelength indicated by the broken line, when the liquid state changes due to deterioration such as oxidation, the absorption peak will appear. , the amount of light absorbed increases with the absorption of the evanescent wave of the propagating light, and the amount of light received by the light receiving element decreases, making it possible to detect a change in state.

第3図は、正常なシクロヘキサノン(曲線A)と経時化
学変化したシクロヘキサノン(amB)の吸光スペクト
ルを示し、光源の波長が400nm付近では、正常なシ
クロヘキサノンの吸光度は0であるが、劣化したシクロ
ヘキサノンの吸光度は増加している。従って、透明樹脂
、ガラス等で光導波路13を構成したファイバ中に光が
通されると、伝播光の一部はファイバ表面に浸み出しエ
バネッセント波が生じるが、このエバネッセント波は周
囲の液体に吸収特性があると、ファイバ出力光のレベル
が低下する。すなわち、光源12の波長を400nmに
設定しておくと、エバネッセント波の、化学変化したシ
クロへキサノン15への吸収が増大するため、受光素子
14で受光する光量が減少する。したがって、液体の化
学変化による状態の測定が可能となる。更に、光導波路
13が曲げRを有していると、エバネッセント波の影響
が大となり、吸光ピークのずれに伴うエバネッセント波
の液体への吸光度が増大し、液体の化学変化による状態
変化に対する検知感度が向上する。
Figure 3 shows the absorption spectra of normal cyclohexanone (curve A) and cyclohexanone (amB) that has undergone chemical changes over time. When the wavelength of the light source is around 400 nm, the absorbance of normal cyclohexanone is 0, but that of degraded cyclohexanone. The absorbance is increasing. Therefore, when light is passed through the fiber that constitutes the optical waveguide 13 from transparent resin, glass, etc., a portion of the propagating light seeps out onto the fiber surface and generates evanescent waves, but this evanescent wave is transmitted to the surrounding liquid. Absorption properties reduce the level of fiber output light. That is, when the wavelength of the light source 12 is set to 400 nm, the absorption of the evanescent wave into the chemically changed cyclohexanone 15 increases, so the amount of light received by the light receiving element 14 decreases. Therefore, it becomes possible to measure the state of the liquid due to chemical changes. Furthermore, if the optical waveguide 13 has a bend R, the influence of evanescent waves becomes large, and the absorbance of the evanescent waves to the liquid increases due to the deviation of the absorption peak, and the detection sensitivity to state changes due to chemical changes in the liquid increases. will improve.

第4図は、400nmの光源として、蛍光燈に狭帯域フ
ィルターを通した光源を使用し、3日間放置したシクロ
へキサノンへ、該光源より発生した光が導入される光導
波路を浸漬した時の受光素子の相対出力値の変化を示し
たもので、同図から明らかなように、受光素子の相対出
力値の低下からシクロヘキサノンの状態変化を検知する
ことができる。このようにして、シクロヘキサノンある
いはシクロヘキサノンを溶剤として用いた○PC」塗料
の状態変化の検出が可能となる。
Figure 4 shows the results when a fluorescent light passed through a narrow band filter is used as a 400 nm light source, and the optical waveguide through which the light generated from the light source is introduced is immersed in cyclohexanone that has been left for 3 days. This figure shows changes in the relative output value of the light-receiving element, and as is clear from the figure, a change in the state of cyclohexanone can be detected from a decrease in the relative output value of the light-receiving element. In this way, it becomes possible to detect a change in the state of cyclohexanone or a ○PC'' paint using cyclohexanone as a solvent.

同様の液体として、作動油等の各種油も400〜500
nm付近に、劣化等による化学変化による吸光ピークが
あられれるので、上記と同様にして5作動油の劣化のオ
ンラインモニターが可能である。而して、本発明による
測定装置は光学的に測定する装置であるため、油のよう
な可燃性液体において使用しても火災の危険性がない、
なお、被測定媒体としては、ゲル状のものでもゾル状の
ものでもよいことは当然である。
As similar liquids, various oils such as hydraulic oil also have a rating of 400 to 500.
Since an absorption peak due to chemical changes due to deterioration etc. appears near nm, it is possible to monitor the deterioration of 5 hydraulic fluids online in the same manner as above. Since the measuring device according to the present invention is an optical measuring device, there is no risk of fire even when used with flammable liquids such as oil.
Note that it goes without saying that the medium to be measured may be in the form of a gel or a sol.

効   果 以上の説明から明らかなように、本発明によると、品質
劣化時に屈折率変化の少ない媒体の状態測定が簡単なセ
ンサで可能となり、高精度、高信頼性のある実用可能な
媒体の保存状態測定装置を提供することができる。
Effects As is clear from the above explanation, according to the present invention, it is possible to measure the condition of a medium with little change in refractive index during quality deterioration using a simple sensor, and it is possible to store a medium with high precision and high reliability in a practical manner. A condition measuring device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による媒体の保存状態測定装置の一例
を説明するための図、第2図(イ)は正常な液体の吸光
スペクトルを示す図、第2図(ロ)は劣化した液体の吸
光スペクトルを示す図、第3図は、正常なシクロヘキサ
ノンと経時化学変化したシクロヘキサノンの吸光スペク
トルを示す図、第4図は、シクロヘキサノンの空気中放
置時間と出力光量変化率を示す図、第5図は、従来の物
性値測定装置の一例を説明するための図である。 11・・・定電流源、12・・・発光素子(光源)、1
3・・・光導波路、14・・・受光素子、15・・・被
測定媒体。 第1図 第3図 3IL灸(nm)
Figure 1 is a diagram for explaining an example of the storage state measuring device for a medium according to the present invention, Figure 2 (a) is a diagram showing the absorption spectrum of a normal liquid, and Figure 2 (b) is a diagram showing an absorption spectrum of a deteriorated liquid. Figure 3 is a diagram showing the absorption spectra of normal cyclohexanone and cyclohexanone that has undergone chemical change over time. Figure 4 is a diagram showing the time when cyclohexanone is left in the air and the rate of change in output light amount. The figure is a diagram for explaining an example of a conventional physical property value measuring device. 11... constant current source, 12... light emitting element (light source), 1
3... Optical waveguide, 14... Light receiving element, 15... Measured medium. Figure 1 Figure 3 3IL Moxibustion (nm)

Claims (2)

【特許請求の範囲】[Claims] (1)、発光素子と受光素子を少なくとも一部が被測定
媒体に接した光導波路で結合し、前記発光素子の発光波
長を、化学変化した被測定媒体が光吸収感度を有する波
長帯域の値に設定し、前記受光素子の出力レベルで媒体
の化学状態変化を検出することを特徴とする媒体の保存
状態測定装置。
(1) A light-emitting element and a light-receiving element are coupled through an optical waveguide at least partially in contact with a medium to be measured, and the emission wavelength of the light-emitting element is set to a value in a wavelength band in which the chemically changed medium to be measured has light absorption sensitivity. 1. An apparatus for measuring the storage state of a medium, characterized in that a change in the chemical state of the medium is detected based on the output level of the light-receiving element.
(2)、前記光導波路は被測定媒体に接する部分の光路
に曲げを有し、かつ、ガラス、石英または透明樹脂材で
構成されていることを特徴とする特許請求の範囲第(1
)項に記載の媒体の保存状態測定装置。
(2) The optical waveguide has a bend in the optical path at a portion in contact with the medium to be measured, and is made of glass, quartz, or a transparent resin material.
) Storage state measuring device for the medium described in item 1.
JP8831887A 1987-02-06 1987-04-10 Instrument for measuring preservation condition of medium Pending JPS64448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8831887A JPS64448A (en) 1987-02-06 1987-04-10 Instrument for measuring preservation condition of medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-26535 1987-02-06
JP2653587 1987-02-06
JP8831887A JPS64448A (en) 1987-02-06 1987-04-10 Instrument for measuring preservation condition of medium

Publications (2)

Publication Number Publication Date
JPH01448A true JPH01448A (en) 1989-01-05
JPS64448A JPS64448A (en) 1989-01-05

Family

ID=26364322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8831887A Pending JPS64448A (en) 1987-02-06 1987-04-10 Instrument for measuring preservation condition of medium

Country Status (1)

Country Link
JP (1) JPS64448A (en)

Similar Documents

Publication Publication Date Title
US5712934A (en) Fiber optic infrared sensor
EP0521128B1 (en) Method and apparatus for optically measuring concentration of an analyte
DeGrandpre et al. Long path fiber-optic sensor for evanescent field absorbance measurements
US5640234A (en) Optical sensor for detection of chemical species
US4045668A (en) Method and apparatus for immiscible liquids measurement
US7190851B2 (en) Waveguide-based optical chemical sensor
US20090216419A1 (en) Methods and Apparatus for Optical Monitoring of Fluid
Gupta et al. Fiber-optic evanescent field absorption sensor: a theoretical evaluation
US4893894A (en) Evanescent sensor
Regan et al. Novel Teflon-coated optical fibres for TCE determination using FTIR spectroscopy
Klunder et al. Temperature effects on a fiber-optic evanescent wave absorption sensor
JPH01448A (en) Media preservation state measuring device
JP2006275817A (en) Method and device for detecting formaldehyde
Mendoza et al. Embeddable distributed moisture and pH sensors for nondestructive inspection of aircraft lap joints
Jones et al. A field-deployable dual-wavelength fiber-optic pH sensor instrument based on solid-state optical and electrical components
Samian et al. Non‐touch detection of rhodamine B concentration in distilled water using fiber coupler based on displacement sensor
Ashworth et al. Transducer mechanisms for optical biosensors. Part 2: Transducer design
DeGrandpre et al. Evanescent field fiber optic probe for process analysis
JPS59206746A (en) Measuring device for refractive index of fluid
Lennie et al. Near-infrared sensing utilizing the evanescent field
JPH10104163A (en) Optical sensor for detecting organic substance in water
KR810000796B1 (en) Immiscible liquid measurement
Ruddy et al. Spectroscopy of fluids using evanescent wave absorption on multimode fiber
JPH09329553A (en) Optical sensor for detection chemical substance dissolved or dispersed in water
JPH0219745A (en) Measuring instrument for physical property value of liquid