JPH0144768Y2 - - Google Patents

Info

Publication number
JPH0144768Y2
JPH0144768Y2 JP1983064614U JP6461483U JPH0144768Y2 JP H0144768 Y2 JPH0144768 Y2 JP H0144768Y2 JP 1983064614 U JP1983064614 U JP 1983064614U JP 6461483 U JP6461483 U JP 6461483U JP H0144768 Y2 JPH0144768 Y2 JP H0144768Y2
Authority
JP
Japan
Prior art keywords
cooling water
water passage
passage
upper wall
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983064614U
Other languages
Japanese (ja)
Other versions
JPS59168555U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6461483U priority Critical patent/JPS59168555U/en
Publication of JPS59168555U publication Critical patent/JPS59168555U/en
Application granted granted Critical
Publication of JPH0144768Y2 publication Critical patent/JPH0144768Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はエンジンのシリンダヘツド、詳細には
冷却水通路の構造が改良されたエンジンのシリン
ダヘツドに関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an engine cylinder head, and more particularly to an engine cylinder head having an improved cooling water passage structure.

(従来技術) 通常、水冷式の多気筒エンジンにおいては、複
数の気筒の燃焼室頂壁を構成する下壁と上壁との
間に冷却水通路が形成し、エンジン冷却水をこの
冷却水通路内において気筒の列方向に流通させて
シリンダヘツドを冷却している。このように形成
されるシリンダヘツド内の冷却水通路は従来、例
えば実開昭57−150223号公報に示されるように、
上流側から下流側に亘つて略均一な断面積(通路
面積)を有するように形成されていた。しかし、
この冷却水通路内を流通する冷却水の流れは、通
路内の絞り部や曲がり部等を通過して、通路内で
次第に圧力損失を生じ、したがつて下流側におい
ては上流側におけるよりも冷却水の流速が低下す
る。このように冷却水の流速が低下すると、その
部分においては燃焼室頂壁から冷却水への熱放出
が効率良く行なわれず、シリンダヘツドの温度上
昇を招く。
(Prior art) Normally, in a water-cooled multi-cylinder engine, a cooling water passage is formed between a lower wall and an upper wall that constitute the top wall of the combustion chamber of a plurality of cylinders, and the engine cooling water is transferred to the cooling water passage. Inside, the cylinder heads are cooled by flowing in the direction of the rows of cylinders. Conventionally, the cooling water passage in the cylinder head formed in this way is
It was formed to have a substantially uniform cross-sectional area (passage area) from the upstream side to the downstream side. but,
The flow of cooling water flowing through this cooling water passage passes through constrictions and bends in the passage, gradually causing a pressure loss within the passage, and therefore the cooling water on the downstream side is cooler than on the upstream side. Water flow rate decreases. When the flow rate of the cooling water decreases in this manner, heat is not efficiently released from the top wall of the combustion chamber to the cooling water at that portion, leading to an increase in the temperature of the cylinder head.

上記のようにシリンダヘツドが局部的に温度上
昇すると、該シリンダヘツドに温度勾配が生じて
熱変形が発生し、シリンダブロツクとの合せ面か
ら水洩れ、ガス洩れが生じたり、最悪の場合には
シリンダヘツドにクラツクが生じる、等の各種不
具合が発生する。
As mentioned above, if the temperature of the cylinder head locally increases, a temperature gradient will occur in the cylinder head and thermal deformation will occur, causing water or gas leakage from the mating surface with the cylinder block, or in the worst case scenario. Various problems occur, such as cracks in the cylinder head.

シリンダヘツドにおいて冷却され難い個所が有
る場合、実開昭54−171039号公報に示されるよう
にウオータポンプ下流の冷却水通路を2系統に分
け、一方をラジエータを介してシリンダヘツドの
冷却され難い個所に直接連通し他方はその他の個
所に連通して、冷却され難い個所の冷却効率を上
げることも考えられるが、このような装置を用い
れば当然エンジンの構造が複雑化する。
If there are parts of the cylinder head that are difficult to cool, divide the cooling water passage downstream of the water pump into two systems, as shown in Japanese Utility Model Application Publication No. 171039/1980, and use one channel to cool the parts of the cylinder head that are difficult to cool. It is conceivable that the cooling efficiency of the parts that are difficult to be cooled could be increased by having one part communicate directly with the other part and the other part with other parts, but if such a device is used, the structure of the engine will naturally become complicated.

(考案の目的) 本考案は上記のような事情に鑑みてなされたも
のであり、複雑な付加装置を用いることなく、冷
却水によつて全体的に均等に冷却されうるエンジ
ンのシリンダヘツドを提供することを目的とする
ものである。
(Purpose of the invention) The present invention was made in view of the above-mentioned circumstances, and provides an engine cylinder head that can be uniformly cooled entirely by cooling water without using complicated additional equipment. The purpose is to

(考案の構成) 本考案のエンジンのシリンダヘツドは、前述し
たように複数の気筒の燃焼室頂壁を構成する下壁
と上壁との間に形成される冷却水通路を、上記上
壁の下面を冷却水通路上流側から下流側に向かつ
て次第に下壁に近付く形状とすることにより、通
路下流側の気筒の燃焼室頂壁と上壁との間の断面
積(通路面積)が、上流側の気筒の燃焼室頂壁と
上壁との間の断面積よりも小さくなるように形成
するとともに、上記上壁の下面に、冷却水通路に
沿つて略水平方向に延びるエア抜き通路を凹設し
たことを特徴とするものである。
(Structure of the invention) As described above, the cylinder head of the engine of the invention connects the cooling water passage formed between the lower wall and the upper wall that constitute the top walls of the combustion chambers of the plurality of cylinders to the upper wall. By shaping the lower surface to gradually approach the lower wall from the upstream side of the cooling water passage toward the downstream side, the cross-sectional area (passage area) between the top wall and the upper wall of the combustion chamber of the cylinder on the downstream side of the passage increases. The cross-sectional area between the combustion chamber top wall and the upper wall of the side cylinder is smaller than the cross-sectional area between the combustion chamber top wall and the upper wall, and an air bleed passage extending substantially horizontally along the cooling water passage is recessed in the lower surface of the upper wall. It is characterized by the fact that it has been established.

(考案の効果) 上記のように上流側断面積よりも下流側断面積
が小さくなるように冷却水通路を形成すると、当
然冷却水通路下流側においては通路面積が減少し
たことによつて冷却水流速が上昇し、前述したよ
うな圧力損失による流速低下と相殺して冷却水流
速はシリンダヘツド内で均一化する。したがつて
シリンダヘツドは全体的に均等に冷却されるよう
になり、前述したような熱変形の発生が防止され
る。
(Effect of the invention) When the cooling water passage is formed so that the downstream cross-sectional area is smaller than the upstream cross-sectional area as described above, the cooling water naturally flows downstream of the cooling water passage due to the reduced passage area. The flow rate increases and the cooling water flow rate becomes uniform within the cylinder head, offsetting the decrease in flow rate due to the pressure loss as described above. Therefore, the cylinder head is cooled uniformly as a whole, and the occurrence of thermal deformation as described above is prevented.

そしてこの冷却水流速均一化を図るために、上
壁の下面を上述のような形状としているので、燃
焼室頂壁を構成する下壁の形状および厚さは各気
筒間で変える必要がなく、よつて、特に均一冷却
の要求が高い各気筒の燃焼室周りについてその要
求が実現され、シリンダヘツドの熱変形が確実に
防止される。
In order to equalize the cooling water flow velocity, the lower surface of the upper wall is shaped as described above, so there is no need to change the shape and thickness of the lower wall that constitutes the top wall of the combustion chamber between each cylinder. Therefore, the requirement for uniform cooling is achieved especially around the combustion chamber of each cylinder, and thermal deformation of the cylinder head is reliably prevented.

また、上記のようなエア抜き通路が設けられて
いるから、上壁が上述のようにして傾斜していて
も、冷却水通路内に存在する空気はこのエア抜き
通路を通つて冷却水通路下流側に排出され得る。
なおこのエア抜き通路は、冷却水通路に沿つて長
く延びるものであるが、上壁の下面に凹設される
ものであるから、上壁内に穿設するような場合と
異なり、容易に形成可能である。
In addition, since the air bleed passage described above is provided, even if the upper wall is inclined as described above, the air existing in the cooling water passage passes through this air bleed passage and flows downstream of the cooling water passage. Can be drained to the side.
This air vent passage extends long along the cooling water passage, but since it is recessed into the lower surface of the upper wall, it can be easily formed unlike the case where it is bored inside the upper wall. It is possible.

(実施例) 以下、図面を参照して本考案の実施例について
詳細に説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本考案の1実施例によるエンジンのシ
リンダヘツドを示す側断面図であり、第2図はそ
の−線断面図である。本実施例のシリンダヘ
ツド1は一例として4気筒エンジン用のものであ
り、4つのシリンダ2a,2b,2c,2dが設
けられたシリンダブロツク3の上部にガスケツト
4を介して取り付けられている。シリンダブロツ
ク3にはシリンダ2a,2b,2c,2dを取り
囲む冷却水通路5が形成され、該冷却水通路5は
シリンダブロツク3の一端(第1図中左端)にお
いて該シリンダブロツク3に取り付けられたウオ
ータポンプ6の渦室7と連通されている。
FIG. 1 is a side sectional view showing a cylinder head of an engine according to one embodiment of the present invention, and FIG. 2 is a sectional view thereof taken along the line -2. The cylinder head 1 of this embodiment is for a four-cylinder engine, for example, and is attached via a gasket 4 to the upper part of a cylinder block 3 in which four cylinders 2a, 2b, 2c, and 2d are provided. A cooling water passage 5 surrounding the cylinders 2a, 2b, 2c, and 2d is formed in the cylinder block 3, and the cooling water passage 5 is attached to the cylinder block 3 at one end (the left end in FIG. 1) of the cylinder block 3. It communicates with the vortex chamber 7 of the water pump 6.

一方シリンダヘツド1は、各気筒の燃焼室8
a,8b,8c,8dの頂壁9a,9b,9c,
9dを構成する下壁9と、この下壁9から上方に
離れた上壁10とを有し、これら下壁9と上壁1
0との間に冷却水通路11が形成されている。こ
の冷却水通路11は、シリンダブロツク3の上壁
(図示せず)に設けられた開口を通して該シリン
ダブロツク3の冷却水通路5と連通している。ウ
オータポンプ6のインペラ12を固定する回転軸
13が、プーリ14、ベルト15を介してエンジ
ンのクランクシヤフト(図示せず)によつて回転
駆動されると、冷却水は該ウオータポンプ6の渦
室7から、シリンダブロツク3の冷却水通路5お
よびシリンダヘツド1の冷却水通路11に圧送さ
れ、これら冷却水通路5,11内を第1図におい
て左方から右方に向かつて流れ、該冷却水によつ
てシリンダブロツク3およびシリンダヘツド1が
冷却される。この冷却水はシリンダヘツド1の冷
却水出口16からラジエータ、あるいはウオータ
ポンプ6に送られる。
On the other hand, the cylinder head 1 has a combustion chamber 8 for each cylinder.
Top walls 9a, 9b, 9c of a, 8b, 8c, 8d,
9d, and an upper wall 10 separated upward from the lower wall 9.
0, a cooling water passage 11 is formed between the two. This cooling water passage 11 communicates with the cooling water passage 5 of the cylinder block 3 through an opening provided in the upper wall (not shown) of the cylinder block 3. When the rotating shaft 13 to which the impeller 12 of the water pump 6 is fixed is rotationally driven by the engine crankshaft (not shown) via the pulley 14 and belt 15, the cooling water flows into the vortex chamber of the water pump 6. 7, the cooling water is fed under pressure to the cooling water passage 5 of the cylinder block 3 and the cooling water passage 11 of the cylinder head 1, and flows in these cooling water passages 5, 11 from left to right in FIG. The cylinder block 3 and cylinder head 1 are cooled by this. This cooling water is sent from a cooling water outlet 16 of the cylinder head 1 to a radiator or a water pump 6.

上述の通りシリンダヘツド1の冷却水通路11
は、第1図中左方が上流側、右方が下流側となる
が、第1図に明確に示されているように該冷却水
通路11を画成するシリンダヘツド1の上壁10
は、通路上流側から下流側に向かつて次第に下壁
9に近づくような形状に形成されている。したが
つて各気筒の燃焼室8a,8b,8c,8dの頂
壁9a,9b,9c,9dと上壁10との間の冷
却水通路11の断面積(通路面積)は、通路下流
側に行くにしたがつて次第に小さくなつている。
なお燃焼室8a,8b,8c,8dの頂壁9a,
9b,9c,9dは、中央部が上方に突出してい
るので、部分的には冷却水通路11の断面積が上
流側よりも下流側において大きくなつている個所
も有るが、各気筒単位で頂壁9a,9b,9c,
9dと上壁10との間の冷却水通路断面積を比較
すれば、冷却水通路下流側の通路断面積が冷却水
通路上流側の通路断面積よりも小さくなつてい
る。
As mentioned above, the cooling water passage 11 of the cylinder head 1
In FIG. 1, the left side is the upstream side and the right side is the downstream side, and as clearly shown in FIG. 1, the upper wall 10 of the cylinder head 1 defining the cooling water passage 11
is formed in a shape that gradually approaches the lower wall 9 from the upstream side of the passage toward the downstream side. Therefore, the cross-sectional area (passage area) of the cooling water passage 11 between the top wall 9a, 9b, 9c, 9d of the combustion chamber 8a, 8b, 8c, 8d of each cylinder and the upper wall 10 is It gradually gets smaller as you go.
Note that the top walls 9a of the combustion chambers 8a, 8b, 8c, 8d,
9b, 9c, and 9d have their central portions protruding upward, so the cross-sectional area of the cooling water passage 11 is partially larger on the downstream side than on the upstream side; Walls 9a, 9b, 9c,
Comparing the cross-sectional area of the cooling water passage between 9d and the upper wall 10, the passage cross-sectional area on the downstream side of the cooling water passage is smaller than the passage cross-sectional area on the upstream side of the cooling water passage.

前述した通り、冷却水通路11内を流れる冷却
水の流れは次第に圧力損失を生じて、下流側に行
くほど流速が低下しやすくなつている。しかし、
上記のように冷却水通路11の断面積を設定して
おくと、冷却水通路11の断面積が減少している
ことにより冷却水は下流側に行くほど流速が上昇
し、上記圧力損失による流速低下と相殺して冷却
水流速は上流部から下流部に亘つて略均一とな
る。したがつてシリンダヘツド1はこの冷却水に
よつて全体的に均等に冷却されるようになり、部
分的に高温の個所が生じることがなくなつて該シ
リンダヘツド1の熱変形が防止される。
As described above, the flow of cooling water flowing through the cooling water passage 11 gradually causes a pressure loss, and the flow rate tends to decrease as it goes downstream. but,
When the cross-sectional area of the cooling water passage 11 is set as described above, the flow velocity of the cooling water increases as it goes downstream due to the decrease in the cross-sectional area of the cooling water passage 11, and the flow velocity due to the pressure loss described above. Offsetting this decrease, the cooling water flow velocity becomes approximately uniform from the upstream portion to the downstream portion. Therefore, the cylinder head 1 is uniformly cooled as a whole by this cooling water, and there are no localized hot spots, thereby preventing thermal deformation of the cylinder head 1.

なお本実施例においては、上壁10の最高レベ
ル(当然ながら冷却水通路11の最上流部におい
て形成される)を通路底壁レベルとして上壁10
の最下流部まで延びるエア抜き通路17が、一例
として2本設けられている。このようなエア抜き
通路17を設けておくと、エンジン組立時等に新
たに冷却水が冷却水通路11内に供給されるとき
に、冷却水通路11内に存在していた空気はこの
エア抜き通路17を通り、冷却水出口16の近傍
に設けられたジグルピン18から容易に冷却水通
路11外に排出されうる。
In this embodiment, the highest level of the upper wall 10 (naturally formed at the most upstream part of the cooling water passage 11) is taken as the passage bottom wall level.
As an example, two air vent passages 17 are provided that extend to the most downstream part of the air vent. If such an air bleed passage 17 is provided, when new cooling water is supplied into the cooling water passage 11 during engine assembly, the air existing in the cooling water passage 11 will be removed from the air bleed passage 17. It passes through the passage 17 and can be easily discharged out of the cooling water passage 11 from a jiggle pin 18 provided near the cooling water outlet 16 .

以上説明した実施例においては、冷却水通路1
1の断面積は上流側から下流側に向かつて漸減す
るようになつているが、この断面積を段階的に減
少させてもよい。しかし上記実施例のようにすれ
ば、冷却水の流れの圧力損失はより小さく抑えら
れる。
In the embodiment described above, the cooling water passage 1
Although the cross-sectional area of No. 1 gradually decreases from the upstream side to the downstream side, this cross-sectional area may be decreased in stages. However, if the above embodiment is adopted, the pressure loss of the flow of cooling water can be suppressed to a smaller level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の1実施例を示す側断面図、第
2図は第1図の−線断面図である。 1……シリンダヘツド、2a,2b,2c,2
d……シリンダ、8a,8b,8c,8d……燃
焼室、9……シリンダヘツドの下壁、9a,9
b,9c,9d……燃焼室頂壁、10……シリン
ダヘツドの上壁、11……冷却水通路、17……
エア抜き通路、19……冷却水通路の側壁。
FIG. 1 is a side sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view taken along the line -- in FIG. 1...Cylinder head, 2a, 2b, 2c, 2
d...Cylinder, 8a, 8b, 8c, 8d...Combustion chamber, 9...Lower wall of cylinder head, 9a, 9
b, 9c, 9d...Top wall of combustion chamber, 10...Top wall of cylinder head, 11...Cooling water passage, 17...
Air vent passage, 19...side wall of cooling water passage.

Claims (1)

【実用新案登録請求の範囲】 複数の気筒の燃焼室頂壁を構成する下壁と上壁
との間に冷却水通路が形成され、この冷却水通路
内において冷却水を上記複数の気筒の列方向に流
通させるようにしたエンジンのシリンダヘツドに
おいて、 上記上壁の下面を冷却水通路上流側から下流側
に向かつて次第に下壁に近付く形状として、冷却
水通路上流側に位置する気筒の燃焼室頂壁と上壁
との間の冷却水通路の断面積よりも、冷却水通路
下流側に位置する気筒の燃焼室頂壁と上壁との間
の冷却水通路の断面積を小さくするとともに、 該上壁の下面に、冷却水通路に沿つて略水平方
向に延びるエア抜き通路を凹設したことを特徴と
するエンジンのシリンダヘツド。
[Claims for Utility Model Registration] A cooling water passage is formed between a lower wall and an upper wall that constitute the top walls of the combustion chambers of the plurality of cylinders, and within this cooling water passage, the cooling water is supplied to the rows of the plurality of cylinders. In the cylinder head of the engine, in which the lower surface of the upper wall is shaped so that it gradually approaches the lower wall from the upstream side of the cooling water passage toward the downstream side, the combustion chamber of the cylinder located on the upstream side of the cooling water passage The cross-sectional area of the cooling water passage between the top wall and the upper wall of the combustion chamber of the cylinder located downstream of the cooling water passage is made smaller than the cross-sectional area of the cooling water passage between the top wall and the upper wall, A cylinder head for an engine, characterized in that an air bleed passage extending substantially horizontally along a cooling water passage is recessed in the lower surface of the upper wall.
JP6461483U 1983-04-28 1983-04-28 engine cylinder head Granted JPS59168555U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6461483U JPS59168555U (en) 1983-04-28 1983-04-28 engine cylinder head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6461483U JPS59168555U (en) 1983-04-28 1983-04-28 engine cylinder head

Publications (2)

Publication Number Publication Date
JPS59168555U JPS59168555U (en) 1984-11-12
JPH0144768Y2 true JPH0144768Y2 (en) 1989-12-25

Family

ID=30194797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6461483U Granted JPS59168555U (en) 1983-04-28 1983-04-28 engine cylinder head

Country Status (1)

Country Link
JP (1) JPS59168555U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148647A (en) * 1980-04-22 1981-11-18 Nissan Motor Co Ltd Cooling water jacket of internal combustion engine cylinder head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174716U (en) * 1981-04-28 1982-11-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148647A (en) * 1980-04-22 1981-11-18 Nissan Motor Co Ltd Cooling water jacket of internal combustion engine cylinder head

Also Published As

Publication number Publication date
JPS59168555U (en) 1984-11-12

Similar Documents

Publication Publication Date Title
US7104226B2 (en) Cylinder liner cooling structure
US5690082A (en) Structure for supporting EGR valve in engine
JPH07103828B2 (en) Cylinder head for water-cooled multi-cylinder engine
US4109617A (en) Controlled flow cooling system for low weight reciprocating engine
US11105294B2 (en) Cylinder head for an internal combustion engine
WO2017068732A1 (en) Cooling structure for water-cooled engine
JP3844249B2 (en) Engine cooling system
JPS6346260B2 (en)
CN105339639A (en) Cylinder head for internal combustion engine
JP2010014067A (en) Cylinder block for internal combustion engine
EP1251260B1 (en) Internal combustion engine
US10190531B2 (en) Water jacket for a cylinder head
JPH04231655A (en) Engine cooling device
JP2002221079A (en) Cylinder block for reciprocating type water-cooled internal combustion engine
JP6449477B2 (en) Cylinder head water jacket structure
JPH0144768Y2 (en)
JPS6183408A (en) Air cooling type multi-cylinder internal combustion engine
CN103967644B (en) Cylinder head for internal combustion engine
JPS62157264A (en) Air-cooled type cylinder head
JPH05312037A (en) Cylinder block of internal combustion engine
JPH08296494A (en) Cooling device of cylinder block
JP2893305B2 (en) Internal combustion engine cooling system
JP2005325712A (en) Internal combustion engine
JPS61149551A (en) Cylinder head structure of engine
JP3027808B2 (en) Cylinder head with cooling water flow path, method of manufacturing the same, and casting core used for manufacturing