JPH0144726B2 - - Google Patents

Info

Publication number
JPH0144726B2
JPH0144726B2 JP8658582A JP8658582A JPH0144726B2 JP H0144726 B2 JPH0144726 B2 JP H0144726B2 JP 8658582 A JP8658582 A JP 8658582A JP 8658582 A JP8658582 A JP 8658582A JP H0144726 B2 JPH0144726 B2 JP H0144726B2
Authority
JP
Japan
Prior art keywords
resin
mol
modified
composition
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8658582A
Other languages
Japanese (ja)
Other versions
JPS58204003A (en
Inventor
Kimya Mizui
Masami Takeda
Yoshimi Ozaki
Saiji Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8658582A priority Critical patent/JPS58204003A/en
Publication of JPS58204003A publication Critical patent/JPS58204003A/en
Publication of JPH0144726B2 publication Critical patent/JPH0144726B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高軟化点でしかも低溶融粘度であ
り、色相、耐熱安定性および耐候安定性に優れた
変性炭化水素樹脂に関するものである。さらには
該変性炭化水素樹脂を粘結付与剤として配合する
ことにより充填剤沈降性、施工性および耐熱安定
性の優れた熱溶融型トラフイツクペイント用組成
物を得ることができ、さらには施工後の耐候安定
性、耐汚染性、圧縮強度および耐ヘアークラツク
性などの塗膜の性能の優れた熱溶融型トラフイツ
クペイント用組成物を得ることができる熱溶融型
トラフイツクペイント用粘結剤を提供するもので
ある。 従来、感圧接着剤、ホツトメルト接着剤、増粘
剤、塗料、印刷インキ、トラフイツクペイントな
どの分野において、粘結付与剤としてロジンまた
はその変性物などの天然ロジン系樹脂、アルキツ
ド樹脂、キシリレン樹脂、エポキシ樹脂などが使
用し得ることが知られている。これらの粘結付与
剤樹脂の中では、マレイン化ロジンなどのロジン
系樹脂が最も優れているとされているが、これら
のロジン系樹脂はその原料を天然物に依存してい
るために近年の著しい需要の伸びには対処できな
い。 従来のロジン系樹脂に代替し得る粘結付与剤と
して工業的に安価にかつ容易に製造できる炭化水
素樹脂が注目されており、多くの炭化水素樹脂が
提案されている。一般に、炭化水素樹脂には、芳
香族系不飽和炭化水素含有留分から製造された芳
香族系炭化水素樹脂、脂肪族系炭化水素含有留分
から製造された脂肪族系炭化水素樹脂および両者
の不飽和炭化水素含有留分を共重合した脂肪族芳
香族共重合体炭化水素樹脂などがあり、それぞれ
に適した用途に利用されている。これらの炭化水
素樹脂の変性物を熱溶融型トラフイツクペイント
用組成物の粘結付与剤として使用しても、これら
にはいずれにも次のような欠点がある。たとえ
ば、芳香族炭化水素樹脂の変性物を粘結付与剤に
使用すると、該樹脂は高軟化点であつてかつ低溶
融粘度であり、しかも組成物の充填剤の沈降性に
優れ、塗膜の耐汚染性および圧縮強度に優れてい
るが、組成物の耐熱安定性および塗膜の耐候安定
性に劣り、容易に黄変するという欠点がある。一
方、従来の脂肪族系炭化水素樹脂の変性物を粘結
付与剤に使用すると、組成物の耐熱安定性および
塗膜の耐候安定性に優れ色相に優れているが、該
粘結付与剤樹脂の溶融粘度が高く、組成物の充填
剤沈降性が大きくしかも塗膜にヘアークラツクが
発生し易いという欠点がある。また、従来の脂肪
族系炭化水素樹脂の変性物の低溶融粘度化を図れ
ば軟化点の低下が必然的に起こり、それに伴なつ
て組成物および塗膜の耐熱性、圧縮強度、耐汚染
性などの性能が劣るようになり、逆に組成物およ
び塗膜の前記性能を向上させようとすると、該樹
脂の高溶融粘度化が起こるようになる。そこで、
最近では高軟化点であつてしかも低溶融粘度の脂
肪族系炭化水素樹脂を製造する方法として、1,
3−ペンタジエン、イソプレン、ブタジエン、2
−メチル−2−ブテン、ジイソブチレンまたはこ
れらの2種以上の混合物をフリーデルクラフツ型
触媒の存在下に重合させるより脂肪族系炭化水素
樹脂を得る方法も提案されている。これらの提案
により、目的とする脂肪族系炭化水素樹脂を製造
することはできるが、この方法では石油類の熱分
解によつて生成する脂肪族系不飽和炭化水素含有
留分から該不飽和成分を抽出、抽出蒸留、蒸留、
その他の方法で分離し、これを原料として使用し
なければならないので、当然生成樹脂の原価は高
くなり、経済性に優れた方法とは言い難い。ま
た、脂肪族系と芳香族系との共重合炭化水素樹脂
の変性物を使用することによつて前述の脂肪族炭
化水素樹脂の変性物および芳香族系炭化水素樹脂
の変性物のそれぞれの欠点を改善しようとする試
みも提案されている。しかし、通常の脂肪族系不
飽和炭化水素含有留分と芳香族系不飽和炭化水素
含有留分を共重合させても、得られる炭化水素樹
脂の変性物はいずれも低軟化点であつてかつ高溶
融粘度であるものが多く、これらの共重合炭化水
素樹脂の変性物をトラフイツクペイント用組成物
の粘結付与剤として使用しても、前記脂肪族系炭
化水素樹脂の変性物または前記芳香族系炭化水素
樹脂変性物の前述の欠点を充分に改善することは
できない。 本発明者らは、従来の炭化水素樹脂変性物にみ
られた前述の欠点を改善し、高軟化点であつてか
つ低溶融粘度を有し、しかも熱溶融型トラフイツ
クペイント用組成物の粘結付与剤として配合した
場合にその組成物およびその塗膜が優れた性能を
発揮することのできる炭化水素樹脂の変性物を検
討した結果、特定の鎖状脂肪族系1,3−共役ジ
エン成分単位、脂肪族系内部モノオレフイン成分
単位、鎖状脂肪族系末端モノオレフイン成分単位
およびシクロペンタジエン成分単位からなる特定
の組成の共重合炭化水素樹脂の特定の性状のグラ
フト共重合変性物が新規重合体であることを見出
し、さらには該グラフト変性炭化水素樹脂を粘結
付与剤として配合した熱溶融型トラフイツクペイ
ント用組成物が前記目的を達成することを見出
し、本発明に到達した。本発明によれば、色相、
耐熱安定性、耐候安定性が良好であつてゲル状樹
脂を含まず、高軟化点であつて低溶融粘度の脂肪
族系炭化水素樹脂の変性物が得られるという特徴
があり、さらに本発明の該変性脂肪族系炭化水素
樹脂からなる粘結付与剤を配合した熱溶融型トラ
フイツクペイント用組成物は充填剤沈降性、施工
性および耐熱安定性に優れ、該組成物から得られ
た塗膜は耐候安定性、耐汚染性、圧縮強度および
耐ヘアークラツク性に優れているという特徴を有
している。 本発明を概説すれば、本発明は、炭素原子数4
ないし5の鎖状脂肪族系1,3−共役ジエンに基
く構造単位(a)が30ないし70モル%、炭素原子数4
ないし10の脂肪族系内部モノオレフインに基く構
造単位(b)が20ないし65モル%、炭素原子数4ない
し5の鎖状脂肪族系末端モノオレフインに基く構
造単位(c)が0ないし20モル%およびシクロペンタ
ジエンに基く構造単位(d)が0ないし2モル%であ
る脂肪族炭化水素樹脂に、炭素原子数10以下の不
飽和カルボン酸、その酸無水物またはそのエステ
ルに基く構造単位(e)がグラフト結合している変性
炭化水素樹脂であつて、構造単位(e)の結合量が、
変性炭化水素樹脂のケン化価が2ないし15mg
KOH/gとなるような量であり、軟化点が85な
いし115℃で且つ、数平均分子量(n)が600な
いし1500である変性炭化水素樹脂を物質発明と
し、該変性炭化水素樹脂からなるトラフイツクペ
イント用粘結付与剤を用途発明とするものであ
る。 本発明の変性炭化水素樹脂は、炭素原子数4な
いし5の鎖状脂肪族系1,3−共役ジエンに基く
構造単位(a)が30ないし70モル%、好適には40ない
し70モル%炭素原子数4ないし10の脂肪族系内部
モノオレフインに基く構造単位(b)が20〜60モル
%、好適には25ないし50モル%(ただし、9,10
−ジヒドロジシクロペンタジエンの含有率は2モ
ル%未満である)、炭素原子数4ないし5の鎖状
脂肪族系末端モノオレフインに基く構造単位(c)が
0ないし20モル%、及び、シクロペンタジエンに
基く構造単位(d)が0ないし2モル%である脂肪族
炭化水素樹脂に、炭素原子数10以下の不飽和カル
ボン酸、その無水物またはそのエステルに基く構
造単位(e)がグラフト結合している変性炭化水素樹
脂であつて、構造単位(e)の結合量が、変性炭化水
素樹脂のケン化価が2ないし15mgKOH/gとな
るような量であり、軟化点が85ないし115℃で、
且つ、数平均分子量(n)が600ないし1500で
あり、更に数平均分子量が上記範囲にあることか
ら、一般に200℃で測定した溶融粘度が50ないし
250cps、特に50ないし200cpsの範囲にある。ここ
で、該変性炭化水素樹脂のケン化価、軟化点およ
び溶融粘度は後記の方法によつて測定した値であ
る。該変性炭化水素樹脂において、その構成成分
の炭素原子数4ないし5の鎖状脂肪族系1,3−
共役ジエンに基く構造単位(a)が70モル%より多く
なりかつ炭素原子数4ないし10の脂肪族系内部モ
ノオレフインに基く構造単位(b)が20モル%より少
なくなると、該変性炭化水素樹脂はその物性に関
して分子量分布が広くなり溶融粘度が高くなり、
また変性ロジンやエチレン・酢酸ビニル共重合体
に対する相溶性が低下するようになり、しかも該
変性炭化水素樹脂を粘結付与剤として配合した熱
溶融型トラフイツクペイント用組成物は溶融粘度
が高く、施工性に劣るようになる。該変性炭化水
素樹脂において、その構成成分の炭素原子数4な
いし5の鎖状脂肪族系1,3−共役ジエンに基く
構造単位(a)が30モル%より少なくなりかつ炭素原
子数4ないし10の脂肪族系内部モノオレフインに
基く構造単位(b)が60モル%より多くなると、該変
性炭化水素樹脂はその物性に関して軟化点が低く
なり、該変性炭化水素樹脂を粘結付与剤として配
合した熱溶融型トラフイツクペイント用組成物は
ブロツキングし易いため保存性に劣り、また溶融
作業時には骨剤沈降し易くなつて作業性に劣るよ
うになりしかもその塗膜は圧縮強度、耐汚染性お
よびヘアークラツクに劣るようになる。また、該
変性炭化水素樹脂において、その構成成分の炭素
原子数4ないし5の鎖状脂肪族系末端モノオレフ
インに基く構造単位(c)が20モル%より多くなる
と、該変性炭化水素樹脂はその物性に関して数平
均分子量(n)が小さくなり、分子量分布(
w/n)が広くなり、軟化点が低下するように
なる。その結果、該変性炭化水素樹脂を粘結付与
剤として配合した熱溶融型トラフイツクペイント
用組成物はブロツキングし易くなりかつ保存性に
劣り、また溶融作業時に骨剤沈降性が大きくなつ
て作業性に劣るようになり、しかもその塗膜は圧
縮強度、耐汚染性、ヘアークラツクに劣るように
なる。さらに、該変性炭化水素樹脂において、そ
の構成成分のシクロペンタジエンに基く構造単位
(d)が2モル%より多くなると、該変性炭化水素樹
脂はゲル状不溶性樹脂が多くなり、色相および耐
熱安定性が低下するようになり、該変性炭化水素
樹脂を粘結付与剤として配合した熱溶融型トラフ
イツクペイント用組成物は溶融粘度が高くなつて
作業性に劣るようになり、その塗膜は白色度に劣
るようになる。該変性炭化水素樹脂において、そ
の構成成分の不飽和カルボン酸、その酸無水物ま
たはそのエステルに基く構造単位(e)の含有率、す
なわち該変性炭化水素樹脂のケン化価が2mg
KOH/gよりも小さくなると、該変性炭化水素
樹脂を配合した熱溶融型トラフイツクペイント用
組成物は流動性がほとんどなくなるので、施工時
の作業性が著しく劣るようになる。また、ケン化
価が15mgKOH/gよりも大きくなると、該熱溶
融型トラフイツクペイント用組成物は骨剤沈降性
が大きくなるので施工時の作業性に劣るようにな
り、その塗膜は白色度に劣るようになる。該変性
炭化水素樹脂の軟化点が85℃より低くなると、該
変性炭化水素樹脂を配合した熱溶融型トラフイツ
クペイント用組成物はブロツキングし易くなるた
め保存性に劣るようになり、また溶融作業時の骨
剤沈降性が大きくなり、施工時の作業性に劣るよ
うになり、その塗膜は圧縮強度、耐汚染性および
耐ヘアークラツクに劣るようになる。また、軟化
点が115℃より高くなると、該熱溶融型トラフイ
ツクペイント用組成物は溶融混合に長時間を要す
るようになるため、作業性およびコストに劣るよ
うになる。該変性炭化水素樹脂の溶融粘度が
250cpsより大きくなると、該変性炭化水素樹脂を
配合した熱溶融型トラフイツクペイント用組成物
は高粘度であるために施工性に劣るようになる。
また、溶融粘度が50cpsより小さくなると、該熱
溶融型トラフイツクペイント用組成物は充填剤沈
降性が大きくなりかつその粘度安定性に劣るよう
になる。その結果、その塗膜は圧縮強度、耐汚染
性および耐ヘアークラツクに劣るようになる。 本発明の変性炭化水素樹脂の性状についてさら
に説明すること、その色相(ガードナー200℃)
は通常4ないし10、好ましくは4ないし8の範囲
であり、またその数平均分子量(n)は600な
いし1500の範囲であり、その分子量分布(w/
Mn)は1.2ないし3.5の範囲である。また、本発
明の変性炭化水素樹脂は、通常直鎖状ないしは分
枝鎖状の鎖状脂肪族炭化水素樹脂の幹に不飽和カ
ルボン酸、その酸無水物またはそのエステルに基
く構造単位(e)がグラフト共重合した実質状鎖状構
造であり、架橋硬化型構造(ゲル状架橋構造)を
有していない。本発明の変性炭化水素樹脂が架橋
硬化型構造を有さずかつ実質状鎖状構造であるこ
とは、ペンタン、ヘキサン、ヘプタンなどの脂肪
族系炭化水素、トルエン、キシレン、シメンなど
の芳香族炭化水素等の溶媒に溶解すること、およ
び200℃で完全に溶解することによつてわかる。
なお、ここで前述の色相、数平均分子量、分子量
分布は後記方法によつて測定した。 本発明の変性炭化水素樹脂を構成する炭素原子
数4ないし5の鎖状脂肪族系1,3−共役ジエン
成分として具体的には、1,3−ブタジエン、
1,3−ペンタジエン、イソプレンなどを例示す
ることができる。これらの鎖状脂肪族系1,3−
共役ジエン成分は2種以上の混合成分であつても
差し支えない。これらの鎖状脂肪族系1,3−共
役ジエン成分のうちでは、1,3−ペンタジエン
が好ましい。 本発明の変性炭化水素樹脂を構成する炭素原子
数4ないし10の脂肪族系内部モノオレフイン成分
として具体的には、2−ブテン、2−メチル−2
−ブテン、2−ペンテン、シクロペンテンなどを
例示することができ、これらの2種以上の混合成
分であつても差し支えない。これらの脂肪族系内
部モノオレフイン成分単位のうちでは、炭素原子
数5の脂肪族系内部モノオレフイン成分単位を主
成分とする脂肪族系内部モノオレフインであるこ
とが好ましい。上記成分中に9,10−ジヒドロジ
シクロペンタジエンが含有されていてもよいが、
その含有量は2モル%未満である。 本発明の変性炭化水素樹脂を構成する炭素原子
数4ないし5の鎖状脂肪族系末端モノオレフイン
成分として具体的には、1−ブテン、イソブチレ
ン、1−ペンテン、2−メチル−1−ブテン、3
−メチル−1−ブテンなどを例示することがで
き、これあらの2成分以上の混合成分であつても
差し支えない。これらの鎖状脂肪族系末端モノオ
レフイン成分のうちでは、炭素原子数5の郡脂肪
族系末端モノオレフイン成分を主成分とする脂肪
族系末端モノオレフインであることが好ましい。 また、本発明の変性炭化水素樹脂のグラフト共
重合成分である炭素原子数10以下の不飽和カルボ
ン酸、その酸無水物またはそのエステル成分とし
て具体的には、マレイン酸、シトラコン酸、イタ
コン酸、グルタコン酸などの炭素原子数4ないし
5の不飽和ジカルボン酸、無水マレイン酸、無水
シトラコン酸、無水イタコン酸、無水グルタコン
酸などの該不飽和ジカルボン酸の酸無水物、マレ
イン酸モノメチル、シトラコン酸モノメチル、イ
タコン酸モノメチル、グルタコン酸モノメチル、
マレイン酸ジメチル、シトラコン酸ジメチル、イ
タコン酸ジメチル、グルタコン酸ジメチルなどの
不飽和ジカルボン酸のエステルが好適であるが、
アクリル酸、メタクリル酸、アクリル酸エチル、
メタクリル酸メチル等の不飽和モノカルボン酸ま
たはそのエステルをも用いることができる。グラ
フト共重合変性成分のうちでは、α,β−不飽和
ジカルボン酸またはその酸無水物であることが好
ましく、とくにマレイン酸または無水マレイン酸
であることが好ましい。 本発明の変性炭化水素樹脂は、前記鎖状脂肪族
系1,3−共役ジエン成分、脂肪族系内部モノオ
レフイン成分、鎖状脂肪族系末端モノオレフイン
成分およびシクロペンタジエン成分からなりかつ
前記組成の脂肪族炭化水素樹脂とグラフト共重合
変性成分とて例示した前記不飽和カルボン酸、そ
の酸無水物またはそのエステルとを、加熱下に反
応させることにより得られる。このグラフト共重
合反応は、該脂肪族炭化水素樹脂100重量部に対
して通常0.01ないし10重量部、好ましくは0.1な
いし5重量部の前記グラフト共重合変性成分を加
熱することにより実施される。グラフト共重合反
応の際の温度は通常140ないし250℃、好ましくは
160ないし220℃の範囲であり、また反応を促進さ
せるために通常のラジカル重合開始剤の存在下に
反応を行うことも可能である。反応終了後の混合
物中に未反応の前記グラフト共重合変性成分が存
在する場合には、これを留去、その他の常法によ
つて除去することが望ましい。また、グラフト共
重合反応は必要に応じて脂肪族系炭化水素溶媒ま
たは芳香族系炭化水素溶媒の存在下に実施するこ
ともできる。 また、本発明の変性炭化水素樹脂を製造する際
の原料となる前記脂肪族炭化水素樹脂を製造する
方法として、例えば次の方法を例示することがで
きる。 沸点が−20ないし+100℃の範囲の留分であり、
全不飽和成分中の鎖状脂肪族系1,3−共役ジエ
ン成分が20モル%以上の範囲、鎖状脂肪族系末端
モノオレフイン成分が30モル%以下の範囲および
シクロペンタジエン成分が5モル%以下の範囲に
ある脂肪族系不飽和炭化水素含有留分 (f) および全不飽和成分中の脂肪族系内部オレフ
イン成分80モル%以上の範囲、鎖状脂肪族系末
端モノオレフイン成分が15モル%以下の範囲お
よびシクロペンタジエン成分が5モル%以下の
範囲にある脂肪族系内部オレフイン含有留分(g)
からなる混合留分であり、かつその中の不飽和
成分中の鎖状脂肪族系1,3−共役ジエン成分
が10ないし60モル%の範囲、脂肪族系内部オレ
フイン成分が40ないし90モル%の範囲、鎖状脂
肪族系末端モノオレフイン成分が0なしい25モ
ル%の範囲およびシクロペンタジエン成分が0
ないし5モル%の範囲にある混合留分を、フリ
ーデルクラフツ型触媒の存在下に重合させるこ
とにより前記脂肪族系炭化水素樹脂が得られ
る。 本発明の変性炭化水素樹脂の平均樹脂組成、ケ
ン化価、軟化点、色相、溶融粘度、重量平均分子
量、分子量分布は次の方法により測定した。 (1) 平均樹脂組成 原料および重合残油中のモノマー組成をガス
クロマトフイーにより分析し、各モノマー成分
の反応量を求め、この値から平均樹脂組成を求
めた。 (2) ケン化価 JIS K−5902の方法により測定した。 (3) 軟化点 JIS K−2531の方法により測定した。 (4) 色相 JIS K−5400規定のガードナ標準色にて溶融
色相を測定した。 (5) 溶融粘度 EMILA型回転粘度計(デンマーク、
EMILA社製)を使用し、200℃で測定した。 (6) 数平均分子量(n)、重量平均分子量(
w)、分子量分布(w/n) GPC法(ポリスチレン基準)にて測定した。 (7) 他の樹脂との相溶性 エチレン・酢酸ビニル共重合体および変性ロ
ジンに対する相溶性を次に示した方法を次に示
した方法で測定し、次の三段階で評価した。 〇:透明、△:半透明、×:不透明 (i) 三井ポリケミカル製品エバフレツクス210(酢
酸ビニル含量28重量%)と炭化水素樹脂とを、
当量宛180℃の熱板上で混合し、これをポリエ
ステルフイルム上に約1mmの厚さに塗布して、
その塗膜の透明性を評価した。 (ii) トラフイツクペイント用として市販されてい
る変性ロジン(マレイン化エステルタイプ;軟
化点94℃、酸価24、溶融粘度150cps)と炭化水
素樹脂とを、同量づつ試験管にとり、180℃の
油浴上で溶解、混合し、室温に冷却した混合物
について、その透明性を評価した。 次に、本発明の変性炭化水素樹脂を粘結付与剤
として配合した熱溶融型トラフイツクペイント用
組成物について説明する。この熱溶融型トラフイ
ツクペイント用組成物には前記変性炭化水素樹脂
からなる粘結付与剤(A)の他に、通常は、チタン
白、亜鉛華、黄鉛、ベンガラ、フタロシアニング
リーンなどの顔料(B);炭酸カルシウム、硅砂、寒
水砂、タルク、硫酸カルシウムなどの充填剤(C);
ガラスビーズまたはカツトガラスなどの光反射性
物質あるいは渇り防止性物質(D)などが配合され、
その他に必要に応じて、マレイン化ロジンなどの
ロジン変性物、アルキツド系樹脂、エポキシ系樹
脂、ポリエチレン、ポルプロピレン、エチレン−
酢酸ビニル共重合体などのような前記の変性炭化
水素樹脂(A)以外の粘結付与剤(E);合成ワツクス、
パラフインワツクス、ジオクチルフタレート、ジ
ブチルフタレート、流動パラフイン、、塩化ジフ
エニル、アルキツド系樹脂、鉱物油などの可塑剤
(F);耐熱安定剤(G);耐侯安定性(H)などが配合され
るる。 この熱溶融型トラフイツクペイント用組成物に
これらの成分を配合する場合の配合割合は、前記
の変性炭化水素樹脂からなる粘結付与剤(A)100重
量部に対して、顔料(B)は2ないし200重量部の範
囲、充填剤(C)は50ないし1000重量部の範囲、光反
射性物質あるいは滑り防止性物質(D)は3ないし
200重量部の範囲、変性炭化水素樹脂以外の粘結
付与剤(E)は10ないし1000重量部の範囲である。そ
の他の可塑剤(F)、耐熱安定剤(G)および耐侯安定剤
(H)については必要に応じて適宜量配合される。 本発明の熱溶融型トラフイツクペイント用顔料
には、その組成物中に含有される成分によつて、
たとえば次の種類のものがある。すなわち、変性
炭化水素樹脂からなる粘結付与剤(A)、顔料(B)およ
び充填剤(C)を含有する熱溶融型トラフイツクペイ
ント用組成物;変性炭化水素樹脂からなる粘結付
与剤(A)、顔料(B)、充填剤(C)および光反射性物質あ
るいは滑り防止性物質(D)を含有する熱溶融型トラ
フイツクペイント用組成物;変性炭化水素樹脂か
らなる粘結付与剤(A)、顔料(B)および光反射性物質
あるいは滑り防止性物質(D)を含有す熱溶融型トラ
フイツクペイント用組成物などを例示することが
できる。これらのいずれの熱溶融型トラフイツク
ペイント用組成物にも、必要に応じて変性炭化水
素樹脂からなる粘結付与剤(A)以外の粘結付与剤
(E)、可塑性、(F)、耐熱安定剤(G)あるいは耐侯安定
剤(H)をそれぞれ適宜量配合することができる。 この熱溶融型トラフイツクペイント用組成物を
調製する方法としては、変性炭化水素樹脂からな
る粘結付与剤を溶融状態で撹拌しながら顔料、充
填剤、光反射性物質あるいは滑り防止性物質およ
び必要に応じてその他の成分を配合する方法、あ
るいは全成分を混合した後に溶融させる方法など
をあげることができる。 本発明の熱溶融型トラフイツクペイント用組成
物は通常の熱溶融型トラフイツクペイント塗装施
工機によつて容易に施工することができる。 以上に詳述したように、本発明の変性炭化水素
樹脂を粘結付与剤として配合した熱溶融型トラフ
イツクペイント用組成物は、該組成物の充填剤の
沈降性および耐熱安定剤などの組成物の物性に優
れ、該組成物から得れた塗膜の耐侯性、耐汚染
性、圧縮強度が改善されかつヘアークラツクの発
性が抑制されるなど塗膜の物性が改善されるとい
う特徴を有している。 次に、本発明の変性炭化水素樹脂を粘結付与剤
として配合した熱溶融型トラフイツクペイント用
組成物を実施例によつて具体的に説明する。な
お、実施例および比較例において粘結付与剤とし
て使用した変性炭化水素樹脂を実施例1ないし8
に示した。また、熱溶融型トラフイツクペイント
用組成物の調製法およびその評価方法を次に示し
た。 (1) 熱溶融型トラフイツクペイント用組成物の調
製方法 変性炭化水素樹脂および/あるいはマレイン
化ロジン、アルキツド樹脂、チタン白、炭酸カ
ルシウムおよびガラスビーズを所定の割合で
200℃で30分間混合して均一な組成物を調製し
た。 (2) 評価方法 (i) 熱溶融型トラフイツクペイント用組成物の
軟化点 JIS K5665の方法に従つて測定した。 (ii) 熱溶融型トラフイツクペイント用組成物の
溶融粘度 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物の温度を200℃にした後、
EMILA型回転粘度計(デンマーク、
EMILA社製)によ剪断速度176sec-1で測定
した。 (iii) 熱溶融型トラフイツクペイント用組成物の
流動度 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物を200℃で溶融撹拌し、金属製の
杓(31mmφ、深さ24mm)でその一部をすばや
くすくい取、平滑なアルミ板状に30mmの高さ
から流し落した。硬化して円板状となつた組
成物の長径(b)を測定し、その平均値〔(a+
b)/2〕をもつて流動度とした。 (iv) 熱溶融型トラフイツクペイント用組成物の
充填剤の沈降性 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物を50mlのビーカーに満たし、240
℃で2時間静置した後に冷却、硬化させ、垂
直面で切断し、切断面における充填剤の沈降
率(%)によつて表わした。 (v) 熱溶融型トラフイツクペイント用組成物の
耐熱安定性 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物を240℃で2時間加熱した後、JIS
K5665の5および6に記載された方法で試験
片を作成し、塗膜の白色度を(vi)の方法に従つ
て測定して、加熱前と比較した。 (vi) 塗膜の白色度 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物からJIS K5665の5および6に記
載された方法に従つて試験片を作成し、カラ
ースタジオでL、a、b値を測定し、これら
の値から白色度W(%)=100−{(100−L)2
a2+b21/2を算出した。 (vii) 塗膜の耐侯性 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物からJIS K5665の5および6に記
載された方法に従つて白色塗装試験片を作成
した。この試験片を(x)に示した方法で促進劣
化させた後、(vi)に示す方法でカラースタジオ
でb値を測定し、このb値によつて劣化促進
黄色度を表わした。この劣化促進黄色度によ
つて塗膜の耐侯性を表わした。 (viii) 塗膜の耐汚染性 (1)で調製した熱溶融型トラフイツクペイン
ト用組成物からJIS K5665の5および6に記
載された方法に従つて試験片を作成した。そ
の24時間後に塗膜上に赤上95重量部およびカ
ーボンブラツク5重量部よりなる粉末を散布
した後、はけで該粉末を除去し、塗膜の白色
度を(vi)に従つて測定して汚染後の保持率
(%)で示した。 (ix) 塗膜の圧縮強度 JIS K5665に従つて測定した。ただし、圧
縮強度は1分間50mmとした。 (x) 塗膜のヘアークラツク (1)で調製した熱溶融型トラフイツクペイン
ト用組成物かJIS K5665の5および6に記載
された方法に従つて試験片を作成した。その
試験片をサンシヤインウエザオメーター(ス
ガ試験機社製)によつて、ブラツクパネル温
度63±3℃、スプレー9min/hr、相対湿度
約50%、照射時間120hrなる条件下で劣化促
進試験を行つた。その結果、外観の変化を次
の4段階で評価した。 A:変化なし B:細いヘアークラツクが出現 C:太いヘアークラツクが出現 D:多数の太いヘアークラツクが出現 参考例 1 6オートクレーブ(SUS 304製)の撹拌翼
に予め金網製触媒挿入篭を固定しておく。この篭
の中に日本エンゲルハルト社製パラジウム系触媒
PGC−Cを284g入れる。次にオートクレーブの
なかへナフサの熱分解で得られるC5留分2100g
とエチルメルカプタン1.8mlを加える。そして水
素ボンベから水素を加え、温度90〜100℃、圧力
10〜20Kg/cm2で約9時間反応させた。放冷、脱圧
後内溶液を取り出した。この水素添加反応液をA
留分とし、原料と共にそれらの組成を表1にし
た。
The present invention relates to a modified hydrocarbon resin that has a high softening point, low melt viscosity, and excellent hue, heat resistance stability, and weather resistance stability. Furthermore, by blending the modified hydrocarbon resin as a tackifying agent, it is possible to obtain a composition for hot-melt traffic paint that has excellent filler settling properties, workability, and heat resistance stability. Provided is a binder for hot-melt traffic paint that can yield a hot-melt traffic paint composition with excellent coating film performance such as weather stability, stain resistance, compressive strength, and hair crack resistance. It is something to do. Traditionally, natural rosin resins such as rosin or its modified products, alkyd resins, and xylylene resins have been used as tackifying agents in the fields of pressure sensitive adhesives, hot melt adhesives, thickeners, paints, printing inks, traffic paints, etc. It is known that epoxy resins and the like can be used. Among these tackifier resins, rosin-based resins such as maleated rosin are said to be the most superior, but these rosin-based resins rely on natural products for their raw materials, so they have become less popular in recent years. Unable to cope with significant demand growth. Hydrocarbon resins, which can be produced industrially at low cost and easily, are attracting attention as tackifiers that can replace conventional rosin-based resins, and many hydrocarbon resins have been proposed. In general, hydrocarbon resins include aromatic hydrocarbon resins produced from fractions containing aromatic unsaturated hydrocarbons, aliphatic hydrocarbon resins produced from fractions containing aliphatic hydrocarbons, and unsaturated There are aliphatic aromatic copolymer hydrocarbon resins made by copolymerizing hydrocarbon-containing fractions, and each is used for its appropriate purpose. Even when modified products of these hydrocarbon resins are used as tackifiers for hot-melt traffic paint compositions, they all have the following drawbacks. For example, when a modified aromatic hydrocarbon resin is used as a tackifying agent, the resin has a high softening point and low melt viscosity, and also has excellent settling properties of the filler in the composition, resulting in the formation of a coating film. Although it has excellent stain resistance and compressive strength, it has the drawback of poor heat resistance stability of the composition and weather resistance stability of the coating film, and easy yellowing. On the other hand, when a modified product of a conventional aliphatic hydrocarbon resin is used as a tackifier, the composition has excellent heat resistance stability and the coating film has excellent weather resistance stability, and the hue is excellent, but the tackifier resin The disadvantages are that the melt viscosity of the composition is high, the filler sedimentation of the composition is large, and hair cracks are likely to occur in the coating film. Furthermore, if the melt viscosity of modified products of conventional aliphatic hydrocarbon resins is lowered, the softening point will inevitably be lowered, and the heat resistance, compressive strength, and stain resistance of the compositions and coatings will decrease accordingly. On the other hand, if an attempt is made to improve the performance of the composition or coating film, the melt viscosity of the resin increases. Therefore,
Recently, as a method for producing aliphatic hydrocarbon resins with a high softening point and low melt viscosity, 1.
3-pentadiene, isoprene, butadiene, 2
A method for obtaining an aliphatic hydrocarbon resin by polymerizing -methyl-2-butene, diisobutylene, or a mixture of two or more thereof in the presence of a Friedel-Crafts type catalyst has also been proposed. Although these proposals make it possible to produce the desired aliphatic hydrocarbon resin, this method involves removing the unsaturated components from the aliphatic unsaturated hydrocarbon-containing fraction produced by thermal decomposition of petroleum. extraction, extractive distillation, distillation,
Since the resin must be separated by another method and used as a raw material, the cost of the resulting resin naturally increases, and it cannot be said that this is an economically efficient method. In addition, by using a modified aliphatic and aromatic copolymerized hydrocarbon resin, it is possible to overcome the disadvantages of the above-mentioned modified aliphatic hydrocarbon resin and modified aromatic hydrocarbon resin. Attempts to improve this have also been proposed. However, even if ordinary aliphatic unsaturated hydrocarbon-containing fractions and aromatic unsaturated hydrocarbon-containing fractions are copolymerized, the resulting modified hydrocarbon resins both have a low softening point and Many of these copolymerized hydrocarbon resins have a high melt viscosity, and even if modified products of these copolymerized hydrocarbon resins are used as tackifying agents for traffic paint compositions, the modified products of the aliphatic hydrocarbon resins or the aromatic The above-mentioned drawbacks of modified hydrocarbon resins cannot be sufficiently improved. The present inventors have improved the above-mentioned drawbacks of conventional modified hydrocarbon resins, and have developed a composition for hot-melt traffic paint that has a high softening point and low melt viscosity. As a result of studying modified hydrocarbon resins that can exhibit excellent performance in compositions and coatings when incorporated as binding agents, we found that a specific chain aliphatic 1,3-conjugated diene component A graft copolymerized modified product of specific properties of a copolymerized hydrocarbon resin with a specific composition consisting of aliphatic internal monoolefin component units, chain aliphatic terminal monoolefin component units, and cyclopentadiene component units is a new polymer. Furthermore, it was discovered that a hot-melt traffic paint composition containing the graft-modified hydrocarbon resin as a tackifying agent can achieve the above object, and the present invention has been achieved. According to the invention, hue;
The present invention has the characteristics that a modified aliphatic hydrocarbon resin having good heat resistance stability and weather resistance stability, no gel-like resin, high softening point, and low melt viscosity can be obtained. The hot-melt traffic paint composition containing a tackifying agent made of the modified aliphatic hydrocarbon resin has excellent filler settling properties, workability, and heat resistance stability, and the coating film obtained from the composition is is characterized by excellent weather stability, stain resistance, compressive strength and hair crack resistance. To summarize the present invention, the present invention has 4 carbon atoms.
30 to 70 mol% of structural units (a) based on 1 to 5 chain aliphatic 1,3-conjugated dienes, 4 carbon atoms
20 to 65 mol % of the structural unit (b) based on an aliphatic internal monoolefin having 4 to 10 carbon atoms, and 0 to 20 mol % of the structural unit (c) based on a chain aliphatic terminal monoolefin having 4 to 5 carbon atoms. % and a structural unit (d) based on cyclopentadiene in an amount of 0 to 2 mol %, a structural unit (e ) are graft-bonded, and the bonding amount of structural unit (e) is
Saponification value of modified hydrocarbon resin is 2 to 15mg
A modified hydrocarbon resin having an amount of KOH/g, a softening point of 85 to 115°C, and a number average molecular weight (n) of 600 to 1500 is defined as a material invention, and a trough made of the modified hydrocarbon resin is defined as a material invention. The application invention is a tackifying agent for paints. In the modified hydrocarbon resin of the present invention, the structural unit (a) based on a chain aliphatic 1,3-conjugated diene having 4 to 5 carbon atoms contains 30 to 70 mol%, preferably 40 to 70 mol% carbon. The structural unit (b) based on an aliphatic internal monoolefin having 4 to 10 atoms is 20 to 60 mol%, preferably 25 to 50 mol% (however, 9, 10
- content of dihydrodicyclopentadiene is less than 2 mol %), 0 to 20 mol % of structural units (c) based on a chain aliphatic terminal monoolefin having 4 to 5 carbon atoms, and cyclopentadiene A structural unit (e) based on an unsaturated carboxylic acid having 10 or less carbon atoms, an anhydride thereof, or an ester thereof is graft-bonded to an aliphatic hydrocarbon resin containing 0 to 2 mol% of a structural unit (d) based on A modified hydrocarbon resin having a softening point of 85 to 115°C, in which the bonding amount of structural unit (e) is such that the saponification value of the modified hydrocarbon resin is 2 to 15 mgKOH/g, and the softening point is 85 to 115°C. ,
In addition, the number average molecular weight (n) is 600 to 1500, and since the number average molecular weight is within the above range, the melt viscosity measured at 200°C is generally 50 to 1500.
250cps, especially in the 50 to 200cps range. Here, the saponification value, softening point and melt viscosity of the modified hydrocarbon resin are values measured by the method described below. In the modified hydrocarbon resin, its constituent components are chain aliphatic 1,3-carbon atoms having 4 to 5 carbon atoms.
When the structural unit (a) based on a conjugated diene is more than 70 mol% and the structural unit (b) based on an aliphatic internal monoolefin having 4 to 10 carbon atoms is less than 20 mol%, the modified hydrocarbon resin Regarding its physical properties, the molecular weight distribution is wide and the melt viscosity is high;
In addition, the compatibility with modified rosins and ethylene/vinyl acetate copolymers is reduced, and hot-melt traffic paint compositions containing the modified hydrocarbon resin as a tackifying agent have a high melt viscosity. Workability becomes inferior. In the modified hydrocarbon resin, the structural unit (a) based on a chain aliphatic 1,3-conjugated diene having 4 to 5 carbon atoms as a constituent component thereof is less than 30 mol % and has 4 to 10 carbon atoms. When the structural unit (b) based on aliphatic internal monoolefin exceeds 60 mol%, the modified hydrocarbon resin has a low softening point in terms of its physical properties, and the modified hydrocarbon resin is blended as a tackifying agent. Heat-melting traffic paint compositions tend to block, resulting in poor storage stability, and during melting, aggregates tend to settle, resulting in poor workability, and the resulting coating film has poor compressive strength, stain resistance, and hair cracking become inferior to In addition, when the structural unit (c) based on a chain aliphatic terminal monoolefin having 4 to 5 carbon atoms as a constituent component of the modified hydrocarbon resin exceeds 20 mol%, the modified hydrocarbon resin Regarding physical properties, the number average molecular weight (n) becomes smaller and the molecular weight distribution (
w/n) becomes wider and the softening point becomes lower. As a result, hot-melt traffic paint compositions containing the modified hydrocarbon resin as a tackifying agent tend to block easily and have poor storage stability, and also have a high aggregate settling property during melting operations, making them difficult to work with. Moreover, the coating film becomes inferior in compressive strength, stain resistance, and hair cracks. Furthermore, in the modified hydrocarbon resin, a structural unit based on cyclopentadiene as a constituent component thereof
When (d) exceeds 2 mol%, the modified hydrocarbon resin contains a large amount of gel-like insoluble resin, resulting in a decrease in hue and heat resistance stability. The hot-melt traffic paint composition has a high melt viscosity, resulting in poor workability, and the resulting coating film has poor whiteness. In the modified hydrocarbon resin, the content of the structural unit (e) based on the constituent unsaturated carboxylic acid, its acid anhydride or its ester, that is, the saponification value of the modified hydrocarbon resin is 2 mg.
If it is less than KOH/g, the hot-melt traffic paint composition containing the modified hydrocarbon resin will have almost no fluidity, resulting in significantly poor workability during application. Furthermore, if the saponification value is greater than 15 mgKOH/g, the composition for hot-melting traffic paint will have a high aggregate sedimentation property, resulting in poor workability during construction, and the paint film will have a low whiteness. become inferior to When the softening point of the modified hydrocarbon resin is lower than 85°C, the hot-melt traffic paint composition containing the modified hydrocarbon resin becomes susceptible to blocking, resulting in poor storage stability, and during melting work. The aggregate settling property of the coating becomes large, and the workability during construction becomes inferior, and the resulting coating film becomes inferior in compressive strength, stain resistance, and hair crack resistance. Furthermore, if the softening point is higher than 115° C., the heat-melting traffic paint composition requires a long time for melting and mixing, resulting in poor workability and cost. The melt viscosity of the modified hydrocarbon resin is
If it exceeds 250 cps, the heat-melting traffic paint composition containing the modified hydrocarbon resin will have a high viscosity and will be inferior in workability.
Further, when the melt viscosity is lower than 50 cps, the composition for hot-melt traffic paint has a high filler sedimentation property and is inferior in viscosity stability. As a result, the coating has poor compressive strength, stain resistance and hair crack resistance. To further explain the properties of the modified hydrocarbon resin of the present invention, its hue (Gardner 200°C)
is usually in the range of 4 to 10, preferably 4 to 8, and its number average molecular weight (n) is in the range of 600 to 1500, and its molecular weight distribution (w/
Mn) ranges from 1.2 to 3.5. Furthermore, the modified hydrocarbon resin of the present invention usually has a structural unit (e) based on an unsaturated carboxylic acid, an acid anhydride thereof, or an ester thereof in the backbone of a linear or branched chain aliphatic hydrocarbon resin. It has a substantially chain-like structure obtained by graft copolymerization, and does not have a cross-linked hardening type structure (gel-like cross-linked structure). The fact that the modified hydrocarbon resin of the present invention does not have a cross-linked hardening type structure and has a substantially chain structure means that it has aliphatic hydrocarbons such as pentane, hexane, and heptane, aromatic hydrocarbons such as toluene, xylene, and cymene. This can be determined by dissolving in a solvent such as hydrogen and by completely dissolving at 200°C.
Note that the hue, number average molecular weight, and molecular weight distribution described above were measured by the methods described below. Specifically, the chain aliphatic 1,3-conjugated diene component having 4 to 5 carbon atoms constituting the modified hydrocarbon resin of the present invention includes 1,3-butadiene,
Examples include 1,3-pentadiene and isoprene. These chain aliphatic 1,3-
The conjugated diene component may be a mixed component of two or more types. Among these chain aliphatic 1,3-conjugated diene components, 1,3-pentadiene is preferred. Specifically, the aliphatic internal monoolefin component having 4 to 10 carbon atoms constituting the modified hydrocarbon resin of the present invention includes 2-butene, 2-methyl-2
-butene, 2-pentene, cyclopentene, etc., and a mixture of two or more of these components may be used. Among these aliphatic internal monoolefin component units, an aliphatic internal monoolefin having an aliphatic internal monoolefin component unit having 5 carbon atoms as a main component is preferable. Although 9,10-dihydrodicyclopentadiene may be contained in the above components,
Its content is less than 2 mol%. Specifically, the chain aliphatic terminal monoolefin component having 4 to 5 carbon atoms constituting the modified hydrocarbon resin of the present invention includes 1-butene, isobutylene, 1-pentene, 2-methyl-1-butene, 3
-Methyl-1-butene can be exemplified, and a mixture of two or more of these components may be used. Among these chain aliphatic terminal monoolefin components, an aliphatic terminal monoolefin having a group aliphatic terminal monoolefin component having 5 carbon atoms as a main component is preferable. Further, specific examples of the unsaturated carboxylic acid having 10 or less carbon atoms, its acid anhydride, or its ester component which are graft copolymerization components of the modified hydrocarbon resin of the present invention include maleic acid, citraconic acid, itaconic acid, Unsaturated dicarboxylic acids having 4 to 5 carbon atoms such as glutaconic acid, acid anhydrides of unsaturated dicarboxylic acids such as maleic anhydride, citraconic anhydride, itaconic anhydride, glutaconic anhydride, monomethyl maleate, monomethyl citraconic acid , monomethyl itaconate, monomethyl glutaconate,
Esters of unsaturated dicarboxylic acids such as dimethyl maleate, dimethyl citraconate, dimethyl itaconate, dimethyl glutaconate are preferred, but
Acrylic acid, methacrylic acid, ethyl acrylate,
Unsaturated monocarboxylic acids or esters thereof such as methyl methacrylate can also be used. Among the graft copolymerization modification components, α,β-unsaturated dicarboxylic acids or acid anhydrides thereof are preferred, and maleic acid or maleic anhydride is particularly preferred. The modified hydrocarbon resin of the present invention comprises the chain aliphatic 1,3-conjugated diene component, the aliphatic internal monoolefin component, the chain aliphatic terminal monoolefin component, and the cyclopentadiene component, and has the above composition. It can be obtained by reacting an aliphatic hydrocarbon resin with the unsaturated carboxylic acid, its acid anhydride, or its ester as exemplified as the graft copolymerization modification component under heating. This graft copolymerization reaction is carried out by heating usually 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight of the graft copolymerization modification component per 100 parts by weight of the aliphatic hydrocarbon resin. The temperature during the graft copolymerization reaction is usually 140 to 250°C, preferably
The temperature is in the range of 160 to 220°C, and it is also possible to carry out the reaction in the presence of a conventional radical polymerization initiator to accelerate the reaction. If the unreacted graft copolymerization modified component is present in the mixture after the reaction is completed, it is desirable to remove it by distillation or other conventional methods. Moreover, the graft copolymerization reaction can also be carried out in the presence of an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent, if necessary. Further, as a method for producing the aliphatic hydrocarbon resin which is a raw material for producing the modified hydrocarbon resin of the present invention, the following method can be exemplified. It is a distillate with a boiling point in the range of -20 to +100℃,
The chain aliphatic 1,3-conjugated diene component in the total unsaturated components is 20 mol% or more, the chain aliphatic terminal monoolefin component is 30 mol% or less, and the cyclopentadiene component is 5 mol%. Fraction (f) containing aliphatic unsaturated hydrocarbons in the following range, and aliphatic internal olefin component in the total unsaturated components in the range of 80 mol% or more, chain aliphatic terminal monoolefin component in the range of 15 mol % or less and aliphatic internal olefin-containing fraction (g) with a cyclopentadiene component in a range of 5 mol% or less
It is a mixed fraction consisting of 10 to 60 mol% of the chain aliphatic 1,3-conjugated diene component among the unsaturated components, and 40 to 90 mol% of the aliphatic internal olefin component. range, the chain aliphatic terminal monoolefin component is in the range of 0 to 25 mol%, and the cyclopentadiene component is 0.
The aliphatic hydrocarbon resin can be obtained by polymerizing a mixed fraction in the range of 5 to 5 mol % in the presence of a Friedel-Crafts catalyst. The average resin composition, saponification value, softening point, hue, melt viscosity, weight average molecular weight, and molecular weight distribution of the modified hydrocarbon resin of the present invention were measured by the following methods. (1) Average resin composition The monomer composition in the raw material and polymerization residual oil was analyzed by gas chromatography, the amount of reaction of each monomer component was determined, and the average resin composition was determined from this value. (2) Saponification value Measured by the method of JIS K-5902. (3) Softening point Measured by the method of JIS K-2531. (4) Hue The melting hue was measured using the Gardner standard color specified in JIS K-5400. (5) Melt viscosity EMILA type rotational viscometer (Denmark,
(manufactured by EMILA) at 200°C. (6) Number average molecular weight (n), weight average molecular weight (
w), Molecular weight distribution (w/n) Measured by GPC method (polystyrene standard). (7) Compatibility with other resins Compatibility with ethylene/vinyl acetate copolymer and modified rosin was measured by the method shown below and evaluated in the following three stages. 〇: Transparent, △: Translucent, ×: Opaque (i) Mitsui Polychemical product Evaflex 210 (vinyl acetate content 28% by weight) and hydrocarbon resin,
Mix equivalent amounts on a hot plate at 180℃, apply this on a polyester film to a thickness of about 1 mm,
The transparency of the coating film was evaluated. (ii) Equal amounts of a commercially available modified rosin for traffic paint (maleated ester type; softening point: 94°C, acid value: 24, melt viscosity: 150 cps) and hydrocarbon resin were placed in test tubes, and heated to 180°C. The mixture was dissolved and mixed on an oil bath, cooled to room temperature, and its transparency was evaluated. Next, a hot-melt traffic paint composition containing the modified hydrocarbon resin of the present invention as a tackifying agent will be described. In addition to the tackifying agent (A) made of the above-mentioned modified hydrocarbon resin, this hot-melt traffic paint composition usually contains pigments such as titanium white, zinc white, yellow lead, red iron oxide, and phthalocyanine green. B); Fillers such as calcium carbonate, silica sand, cold sand, talc, calcium sulfate (C);
Contains light-reflecting substances such as glass beads or cut glass, or anti-thirsty substances (D),
In addition, modified rosin such as maleated rosin, alkyd resin, epoxy resin, polyethylene, polypropylene, ethylene-
Tackifying agent (E) other than the above-mentioned modified hydrocarbon resin (A) such as vinyl acetate copolymer; synthetic wax;
Plasticizers such as paraffin wax, dioctyl phthalate, dibutyl phthalate, liquid paraffin, diphenyl chloride, alkyd resin, mineral oil, etc.
(F); heat-resistant stabilizer (G); weather-resistant stabilizer (H), etc. are blended. When blending these components into this hot-melt traffic paint composition, the blending ratio is 100 parts by weight of the tackifying agent (A) made of the above-mentioned modified hydrocarbon resin, and 100 parts by weight of the pigment (B). The filler (C) is in the range of 50 to 1000 parts by weight, and the light-reflecting substance or anti-slip substance (D) is in the range of 3 to 200 parts by weight.
The amount of the tackifying agent (E) other than the modified hydrocarbon resin is in the range of 10 to 1000 parts by weight. Other plasticizers (F), heat stabilizers (G) and weather stabilizers
(H) is added in an appropriate amount as necessary. Depending on the components contained in the composition, the pigment for hot-melt traffic paint of the present invention has the following properties:
For example, there are the following types: That is, a composition for hot-melt traffic paint containing a tackifying agent (A) made of a modified hydrocarbon resin, a pigment (B), and a filler (C); A), a composition for hot-melting traffic paint containing a pigment (B), a filler (C), and a light-reflecting substance or an anti-slip substance (D); a tackifier consisting of a modified hydrocarbon resin ( A), a pigment (B), and a composition for hot-melting traffic paint containing a light-reflecting substance or an anti-slip substance (D). Any of these hot-melt traffic paint compositions may contain a tackifier other than the tackifier (A) made of a modified hydrocarbon resin, if necessary.
Appropriate amounts of (E), plasticity stabilizer, (F), heat-resistant stabilizer (G), or weather-resistant stabilizer (H) can be added. The method for preparing this composition for hot-melt traffic paint involves stirring a molten tackifying agent made of a modified hydrocarbon resin while adding pigments, fillers, light-reflecting substances or anti-slip substances, and the like. Examples include a method of blending other components depending on the situation, or a method of mixing all the components and then melting them. The hot-melt traffic paint composition of the present invention can be easily applied using a conventional hot-melt traffic paint application machine. As detailed above, the hot-melt traffic paint composition containing the modified hydrocarbon resin of the present invention as a tackifying agent has a composition that improves the sedimentation properties of the filler and the composition of the heat-resistant stabilizer. The composition has excellent physical properties, and the physical properties of the coating film obtained from the composition are improved, such as improved weather resistance, stain resistance, and compressive strength, and the occurrence of hair cracks is suppressed. are doing. Next, a hot-melt traffic paint composition containing the modified hydrocarbon resin of the present invention as a tackifying agent will be specifically explained with reference to Examples. In addition, the modified hydrocarbon resin used as a tackifying agent in Examples and Comparative Examples was used in Examples 1 to 8.
It was shown to. Further, a method for preparing a composition for hot-melting traffic paint and a method for evaluating the same are shown below. (1) Method for preparing a composition for heat-melting traffic paint Modified hydrocarbon resin and/or maleated rosin, alkyd resin, titanium white, calcium carbonate, and glass beads are mixed in a predetermined ratio.
A homogeneous composition was prepared by mixing at 200°C for 30 minutes. (2) Evaluation method (i) Softening point of hot-melt traffic paint composition Measured according to the method of JIS K5665. (ii) Melt viscosity of hot-melt traffic paint composition After raising the temperature of the hot-melt traffic paint composition prepared in (1) to 200°C,
EMILA type rotational viscometer (Denmark,
(manufactured by EMILA) at a shear rate of 176 sec -1 . (iii) Fluidity of composition for hot-melting type traffic paint The composition for hot-melting type traffic paint prepared in (1) was melted and stirred at 200°C, and then melted with a metal ladle (31 mmφ, depth 24 mm). A portion of it was quickly scooped up and poured onto a smooth aluminum plate from a height of 30mm. The major axis (b) of the composition that has hardened into a disk shape is measured, and the average value [(a+
b)/2] was defined as the fluidity. (iv) Settling property of filler in hot-melt traffic paint composition Fill a 50 ml beaker with the hot-melt traffic paint composition prepared in (1),
After being allowed to stand for 2 hours at °C, the sample was cooled and cured, cut on a vertical plane, and expressed as the sedimentation rate (%) of the filler on the cut plane. (v) Heat-resistant stability of hot-melt traffic paint composition After heating the hot-melt traffic paint composition prepared in (1) at 240°C for 2 hours, JIS
A test piece was prepared according to the method described in 5 and 6 of K5665, and the whiteness of the coating film was measured according to the method (vi) and compared with that before heating. (vi) Whiteness of paint film A test piece was prepared from the composition for hot-melting traffic paint prepared in (1) according to the method described in JIS K5665 5 and 6, and it was tested in Color Studio for L, a. , the b value is measured, and from these values the whiteness W (%) = 100-{(100-L) 2 +
a 2 + b 2 } 1/2 was calculated. (vii) Weather resistance of coating film A white painted test piece was prepared from the hot-melt traffic paint composition prepared in (1) according to the method described in JIS K5665 5 and 6. After this test piece was subjected to accelerated deterioration using the method shown in (x), the b value was measured in a color studio using the method shown in (vi), and the accelerated deterioration yellowness was expressed by this b value. The weather resistance of the coating film was expressed by this accelerated yellowness. (viii) Stain resistance of paint film Test pieces were prepared from the hot-melt traffic paint composition prepared in (1) according to the method described in JIS K5665 5 and 6. After 24 hours, a powder consisting of 95 parts by weight of red top and 5 parts by weight of carbon black was sprinkled on the paint film, the powder was removed with a brush, and the whiteness of the paint film was measured according to (vi). It is expressed as the retention rate (%) after contamination. (ix) Compressive strength of coating film Measured according to JIS K5665. However, the compressive strength was 50 mm for 1 minute. (x) Hair cracks in paint film Test pieces were prepared from the hot-melt traffic paint composition prepared in (1) according to the method described in JIS K5665, 5 and 6. The test piece was subjected to accelerated deterioration test using Sunshine Weather-Ometer (manufactured by Suga Test Instruments Co., Ltd.) under the following conditions: black panel temperature 63±3℃, spray 9min/hr, relative humidity approximately 50%, irradiation time 120hr. I went there. As a result, changes in appearance were evaluated on the following four levels. A: No change B: Thin hair cracks appear C: Thick hair cracks appear D: Many thick hair cracks appear Reference example 1 A wire mesh catalyst insertion cage is fixed in advance to the stirring blade of a 6-autoclave (made of SUS 304). Inside this basket is a palladium-based catalyst manufactured by Engelhard Japan.
Add 284g of PGC-C. Next, 2100g of C5 fraction obtained by thermal decomposition of naphtha is placed in an autoclave.
and 1.8 ml of ethyl mercaptan. Then, add hydrogen from a hydrogen cylinder to a temperature of 90 to 100℃ and pressure.
The reaction was carried out at 10 to 20 Kg/cm 2 for about 9 hours. After cooling and depressurizing, the inner solution was taken out. This hydrogenation reaction solution is A
The fractions were treated as fractions, and their compositions are shown in Table 1 along with the raw materials.

【表】 参考例 2 C5留分から蒸留によりDCPDを除いた原料を参
考例1と同じ条件で処理した。この水素添加反応
液をB留分とし原料を共にそれらの組成を表2に
示した。
[Table] Reference Example 2 A raw material obtained by removing DCPD from the C5 fraction by distillation was treated under the same conditions as Reference Example 1. This hydrogenation reaction solution was treated as a B fraction, and the compositions of the raw materials are shown in Table 2.

【表】 参考例 3 スペントC5留分(C5留分かイソプレンを抽出
した残りの留分)を参考例1と同じ条件で処理し
た。この水素熱加反応液をC留分とし、原料と共
にその組成を表3に示した。
[Table] Reference Example 3 A spent C 5 fraction (C 5 fraction or the remaining fraction from which isoprene was extracted) was treated under the same conditions as in Reference Example 1. This hydrogen-heated reaction liquid was designated as fraction C, and its composition is shown in Table 3 together with the raw materials.

【表】【table】

【表】 実施例 1 スペントC5留分からペンタン、DCPDを蒸留で
除いた留分(1,3−ペンタジエン留分)の組成
を表4に示した。この留分をD留分とする。この
D留分163g(重合成分112.5g)と参考例1で調
製したA留分62g(重合成分37.5g)を耐圧シリ
ンダー中で混合した。混合留分の組成を表7に示
した。予め1のガラスオートクレーブに窒素雰
囲気で無水塩化アルミニウム粉砕品2.0gを、キ
シレン、ヘキサン各62gに懸濁させておく。ここ
へ耐圧シリンダーから反応温度を60℃に保ちなが
らおよそ20分で混合留分を滴下させた。滴下開始
から2時間留分させたあと常法どおりメタノール
で触媒を分解し、水洗して濃縮することにより樹
脂82gを得た。軟化点96℃、溶融粘度120cp.色相
5であつた。 この樹脂100重量部に窒素雰囲気で無水マレイ
ン酸0.5重量部加え、200℃で2時間撹拌下に反応
させた。平均樹脂組成を表7に、樹脂物性を表8
に示した。
[Table] Example 1 The composition of the fraction (1,3-pentadiene fraction) obtained by removing pentane and DCPD from the spent C 5 fraction by distillation is shown in Table 4. This fraction is designated as the D fraction. 163 g of this D fraction (112.5 g of polymerization component) and 62 g of A fraction (37.5 g of polymerization component) prepared in Reference Example 1 were mixed in a pressure cylinder. The composition of the mixed fraction is shown in Table 7. In advance, 2.0 g of anhydrous aluminum chloride pulverized product was suspended in 62 g each of xylene and hexane in a nitrogen atmosphere in a glass autoclave. The mixed distillate was added dropwise to this from a pressure cylinder over approximately 20 minutes while maintaining the reaction temperature at 60°C. After 2 hours of distillation from the start of the dropwise addition, the catalyst was decomposed with methanol in a conventional manner, washed with water, and concentrated to obtain 82 g of resin. It had a softening point of 96°C, a melt viscosity of 120 cp, and a hue of 5. 0.5 parts by weight of maleic anhydride was added to 100 parts by weight of this resin in a nitrogen atmosphere, and the mixture was reacted at 200° C. for 2 hours with stirring. The average resin composition is shown in Table 7, and the resin physical properties are shown in Table 8.
It was shown to.

【表】【table】

【表】 実施例 2 ナフサ熱分解で得られる沸点が20ないし50℃の
範囲の留分をオートクレーブで140℃で3時間ヒ
ートソークし、蒸留して得られる留分液の組成を
表5に示した。この留分をE留分とする。この留
分液243g(重合成分120g)と参考例1の生成物
50g(重合成分30g)を耐圧シリンダーの中で混
合した。混合留分の組成を表7に示した。予め1
のガラスオートクレーブに表8記載の無水塩化
アルミニウム粉砕品と溶媒を懸濁させておき温度
を60℃に保ちながら耐圧シリンダーから混合留分
をおよそ20分で滴下させた。滴下開始から2時間
重合させたあと、常法どおりメタノールで触媒を
分解し水洗して濃縮することにより樹脂80gを得
た。軟化点94.5℃、溶融粘度190cp、色相6であ
つた。 この樹脂100重量部に窒素雰囲気で無水シトラ
コン酸0.5重量部加え、200℃で2時間撹拌下平均
させた。平均樹脂組成を表7に、また樹脂物性を
表8に示した。
[Table] Example 2 The fraction with a boiling point in the range of 20 to 50°C obtained by pyrolysis of naphtha was heat soaked in an autoclave at 140°C for 3 hours, and the composition of the distillate obtained by distillation is shown in Table 5. . This fraction is designated as E fraction. 243g of this distillate (polymerization component 120g) and the product of Reference Example 1
50 g (30 g of polymerization component) were mixed in a pressure cylinder. The composition of the mixed fraction is shown in Table 7. 1 in advance
The anhydrous aluminum chloride pulverized product listed in Table 8 and a solvent were suspended in a glass autoclave, and the mixed fraction was added dropwise from a pressure cylinder over approximately 20 minutes while maintaining the temperature at 60°C. After polymerizing for 2 hours from the start of the dropwise addition, the catalyst was decomposed with methanol, washed with water, and concentrated in a conventional manner to obtain 80 g of resin. It had a softening point of 94.5°C, a melt viscosity of 190 cp, and a hue of 6. To 100 parts by weight of this resin was added 0.5 parts by weight of citraconic anhydride in a nitrogen atmosphere, and the mixture was averaged under stirring at 200°C for 2 hours. The average resin composition is shown in Table 7, and the resin physical properties are shown in Table 8.

【表】【table】

【表】 実施例 3 実施例1で使用したD留分109g(重合成分75
g)と参考例2で調製したB留分180g(重合成
分75g)を耐圧シリンダー中で混合した。この組
成を表7に示した。表8に記載の触媒、溶媒条件
以外は実施例1と同じく重合、後処理を行い樹脂
72gを得た。軟化点85℃、溶融粘度65cps、色相
5であつた。 さらに、この樹脂100重量部に窒素雰囲気で無
水マレイン酸0.8重量部を加え200℃で2時間撹拌
下に加熱し変性樹脂を得た。平均樹脂組成を表7
に、また樹脂物性を表8に示した。 実施例 4 実施例2で使用したE留分152g(重合成分75
g)と参考例2に示すB留分179g(重合成分75
g)を耐圧シリンダー中で混合した。この組成を
表7に示した。表8に記載の触媒、溶媒条件以外
は実施例1と同じく重合、後処理を行い樹脂65g
を得た。軟化点93.5℃、溶融粘度120cps、色相5
であつた。 この樹脂100重量部に窒素雰囲気で無水マレイ
ン酸0.5重量部加え、200℃で2時間撹拌下に加熱
し変性樹脂を得た。樹脂の平均組成を表7に、ま
た樹脂物性を表8に示した。 実施例 5 ナフサ熱分解で得られた沸点−10ないし+10℃
の留分の組成を表6に示した。この留分をF留分
とする。このF留分43g(重合成分42.9g)と参
考例2で調製したB留分256g(重合成分107g)
を耐圧シリンダーの中で混合する。表8に記載の
触媒と溶媒条件以外は実施例1と同じく重合、後
処理を行い、樹脂70gを得た。軟化点93℃、溶融
粘度115cps、色相4であつた。 次に実施例1と同じ条件でこの樹脂に無水マレ
イン酸を反応させ変性樹脂を得た。樹脂の平均組
成を表7に、また樹脂物性を表8に示した。
[Table] Example 3 109 g of D fraction used in Example 1 (polymerization component 75
g) and 180 g of the B fraction prepared in Reference Example 2 (polymerization component 75 g) were mixed in a pressure cylinder. The composition is shown in Table 7. Polymerization and post-treatment were carried out in the same manner as in Example 1 except for the catalyst and solvent conditions listed in Table 8.
Obtained 72g. It had a softening point of 85°C, a melt viscosity of 65 cps, and a hue of 5. Further, 0.8 parts by weight of maleic anhydride was added to 100 parts by weight of this resin in a nitrogen atmosphere and heated at 200°C for 2 hours with stirring to obtain a modified resin. Table 7 shows the average resin composition.
Furthermore, the physical properties of the resin are shown in Table 8. Example 4 152 g of E fraction used in Example 2 (polymerization component 75
g) and 179 g of B fraction shown in Reference Example 2 (polymerization component 75
g) were mixed in a pressure cylinder. The composition is shown in Table 7. Polymerization and post-treatment were carried out in the same manner as in Example 1 except for the catalyst and solvent conditions listed in Table 8. 65 g of resin
I got it. Softening point 93.5℃, melt viscosity 120cps, hue 5
It was hot. To 100 parts by weight of this resin was added 0.5 parts by weight of maleic anhydride in a nitrogen atmosphere, and the mixture was heated at 200°C for 2 hours with stirring to obtain a modified resin. The average composition of the resin is shown in Table 7, and the physical properties of the resin are shown in Table 8. Example 5 Boiling point obtained from naphtha pyrolysis -10 to +10°C
Table 6 shows the composition of the fraction. This fraction is designated as F fraction. This F fraction 43g (polymerization component 42.9g) and B fraction prepared in Reference Example 2 256g (polymerization component 107g)
are mixed in a pressure cylinder. Polymerization and post-treatment were carried out in the same manner as in Example 1, except for the catalyst and solvent conditions listed in Table 8, to obtain 70 g of resin. It had a softening point of 93°C, a melt viscosity of 115 cps, and a hue of 4. Next, this resin was reacted with maleic anhydride under the same conditions as in Example 1 to obtain a modified resin. The average composition of the resin is shown in Table 7, and the physical properties of the resin are shown in Table 8.

【表】 実施例 6 実施例1で使用したD留分と参考例3で調製し
たC留分を表7に示す割合で混合し、表8記載の
触媒と溶媒条件以外は実施例1と同じくして重
合、後処理を行い、樹脂77gを得た。軟化点92
℃、溶融粘度135cps、色相5であつた。 この樹脂100重量部に無水マレイ酸0.3重量部加
え、200℃で2時間撹拌下に加熱し変性樹脂とし
た。このものの平均樹脂組成を表7に、また樹脂
物性を表8に示した。 実施例 7 実施例2で使用したE留分と参考例3で調製し
たC留分を表7に示す割合で混合し、表8記載の
触媒と溶媒条件以外は実施例1と同じくして重
合、後処理を行い、樹脂68gを得た。軟化点95.0
℃、溶融粘度125cpg、色相4であつた。樹脂組
成を実施例1と同様にして求め、結果を表7に示
した。 この樹脂100重量部に無水マレイン酸2.0重量部
加え、200℃で2時間撹拌下に加熱反応させた。
平均樹脂組成を表7に、また樹脂物性を表8に示
した。 実施例 8 実施例1で使用したD留分と参考例3で調製し
たC留分を表7に示す割合で混合し、表8記載の
触媒、溶媒条件以外は実施例1と同じくして重
合、後処理を行い樹脂75gを得た。軟化点94℃、
溶融粘度200cps、色相6であつた。この樹脂に実
施例1と同条件で無水マレイン酸と反応させ変性
樹脂とした。平均樹脂組成を表7に、また樹脂物
性を表8に示した。 比較例 1 実施例1で使用したD留分を217g(重合成分
150g)を実施例1の混合留分に置き換えるほか
は実施例1と同じにして重合、後処理した。重合
時にゲルの副生が認められた。樹脂は軟化点95.0
℃、溶融粘度240cps、色相6であつた。この樹脂
に、さらに実施例1と同じ条件で、無水マレイン
酸と反応させた。変性樹脂の平均樹脂組成を表7
に、また樹脂物性を表8に示した。樹脂中の鎖状
脂肪族系1.3共役ジエン成分単位が75mol%を越
えると溶融粘度が高く、分子量分布が広く、相溶
性が悪くなことが明らかである。 比較例 2 実施例4で使用したE留分、B留分をそれぞれ
30g(重合成分15g)、323g(重合成分135g)
混合するほかは実施例4と同じように重合、およ
び後処理を行い、樹脂41gを得た。軟化点65℃、
溶融粘度72cps、色相8であつた。この樹脂に実
施例4と同じように無水マレイン酸と反応させ変
性樹脂とした。平均樹脂組成を表7に、また樹脂
物性を表8に示した。脂肪族系内部オレフイン成
分単位が65モル%を越えると軟化点が低いことが
明らかである。 比較例 2 スペントC5留分を常圧蒸留して沸点23℃〜35
℃の留分を分取した。この留分をG留分とし、表
7にその組成を示した。G留分342g(重合成分
150g)を使用し実施例4と同じように平均およ
び後処理し樹脂82gを得た。軟化点77.5℃、溶融
粘度77cps、色相7であつた。この樹脂をさらに
実施例4と同じ条件で無水マレイン酸と反応させ
た。平均樹脂組成を表7に、また樹脂物性を表8
に示した。鎖状脂肪族系末端モノオレフイン成分
単位が25モル%を越えると軟化点が低く、分子量
分布が広くなることが明らかである。 比較例 4 スペントC5留分を常圧蒸留し沸点25〜35℃の
留分を分取した。この留分をH留分とし、表7に
その組成を示した。このH留分330g(重合成分
150g)を使用したほかは実施例4と同じように
重合と後処理を行い、樹脂58gを得た。軟化点
94.0℃、溶融粘度460cps、色相10であつた。この
樹脂を実施例4と同じように無水マレイン酸と反
応させ変性樹脂とした。平均樹脂組成を表7に、
また樹脂物性を表8に示した。
[Table] Example 6 The D fraction used in Example 1 and the C fraction prepared in Reference Example 3 were mixed in the proportions shown in Table 7, and the same conditions as Example 1 were used except for the catalyst and solvent conditions listed in Table 8. Polymerization and post-treatment were performed to obtain 77 g of resin. Softening point 92
℃, melt viscosity 135 cps, and hue 5. 0.3 parts by weight of maleic anhydride was added to 100 parts by weight of this resin, and the mixture was heated at 200°C for 2 hours with stirring to obtain a modified resin. The average resin composition of this product is shown in Table 7, and the resin physical properties are shown in Table 8. Example 7 The E fraction used in Example 2 and the C fraction prepared in Reference Example 3 were mixed in the proportions shown in Table 7, and polymerization was carried out in the same manner as in Example 1 except for the catalyst and solvent conditions listed in Table 8. After post-treatment, 68 g of resin was obtained. Softening point 95.0
℃, melt viscosity 125 cpg, and hue 4. The resin composition was determined in the same manner as in Example 1, and the results are shown in Table 7. 2.0 parts by weight of maleic anhydride was added to 100 parts by weight of this resin, and the mixture was heated and reacted at 200°C for 2 hours with stirring.
The average resin composition is shown in Table 7, and the resin physical properties are shown in Table 8. Example 8 The D fraction used in Example 1 and the C fraction prepared in Reference Example 3 were mixed in the proportions shown in Table 7, and polymerization was carried out in the same manner as in Example 1 except for the catalyst and solvent conditions listed in Table 8. After post-treatment, 75 g of resin was obtained. Softening point 94℃,
It had a melt viscosity of 200 cps and a hue of 6. This resin was reacted with maleic anhydride under the same conditions as in Example 1 to obtain a modified resin. The average resin composition is shown in Table 7, and the resin physical properties are shown in Table 8. Comparative Example 1 217g of the D fraction used in Example 1 (polymerization component
Polymerization and post-treatment were carried out in the same manner as in Example 1, except that 150 g) of the mixture was replaced with the mixed fraction of Example 1. Gel by-product was observed during polymerization. Resin has a softening point of 95.0
℃, melt viscosity 240 cps, and hue 6. This resin was further reacted with maleic anhydride under the same conditions as in Example 1. Table 7 shows the average resin composition of the modified resin.
Furthermore, the physical properties of the resin are shown in Table 8. It is clear that when the chain aliphatic 1.3 conjugated diene component unit in the resin exceeds 75 mol %, the melt viscosity is high, the molecular weight distribution is wide, and the compatibility is poor. Comparative Example 2 The E fraction and B fraction used in Example 4 were
30g (polymerization component 15g), 323g (polymerization component 135g)
Except for mixing, polymerization and post-treatment were carried out in the same manner as in Example 4 to obtain 41 g of resin. Softening point 65℃,
The melt viscosity was 72 cps and the hue was 8. This resin was reacted with maleic anhydride in the same manner as in Example 4 to obtain a modified resin. The average resin composition is shown in Table 7, and the resin physical properties are shown in Table 8. It is clear that when the aliphatic internal olefin component unit exceeds 65 mol %, the softening point is low. Comparative Example 2 Spent C 5 fractions were distilled under normal pressure to obtain a boiling point of 23°C to 35°C.
The fraction at ℃ was collected. This fraction was designated as the G fraction, and its composition is shown in Table 7. G fraction 342g (polymerization component
150 g) were averaged and post-treated in the same manner as in Example 4 to obtain 82 g of resin. It had a softening point of 77.5°C, a melt viscosity of 77 cps, and a hue of 7. This resin was further reacted with maleic anhydride under the same conditions as in Example 4. The average resin composition is shown in Table 7, and the resin physical properties are shown in Table 8.
It was shown to. It is clear that if the chain aliphatic terminal monoolefin component unit exceeds 25 mol %, the softening point will be low and the molecular weight distribution will be wide. Comparative Example 4 Five spent C fractions were distilled under normal pressure, and a fraction with a boiling point of 25 to 35°C was separated. This fraction was designated as the H fraction, and its composition is shown in Table 7. 330g of this H fraction (polymerization component
Polymerization and post-treatment were carried out in the same manner as in Example 4, except that 150 g of resin was used, and 58 g of resin was obtained. softening point
The temperature was 94.0°C, the melt viscosity was 460 cps, and the hue was 10. This resin was reacted with maleic anhydride in the same manner as in Example 4 to obtain a modified resin. The average resin composition is shown in Table 7.
Further, the physical properties of the resin are shown in Table 8.

【表】【table】

【表】【table】

【表】【table】

【表】 比較例 5 実施例4と同じように重合と後処理を行い、未
変性の樹脂を得た。樹脂物性を表8に示した。 比較例 6 比較例5で得た未変性樹脂100重量部に窒素雰
囲気で無水マレイン酸6.2重量部加え、200℃で2
時間撹拌下に反応させた。樹脂物性を表8に示し
た。
[Table] Comparative Example 5 Polymerization and post-treatment were carried out in the same manner as in Example 4 to obtain an unmodified resin. Table 8 shows the resin physical properties. Comparative Example 6 6.2 parts by weight of maleic anhydride was added to 100 parts by weight of the unmodified resin obtained in Comparative Example 5 in a nitrogen atmosphere, and 2 parts by weight of maleic anhydride was added at 200°C.
The reaction was allowed to take place under stirring for an hour. Table 8 shows the resin physical properties.

【表】【table】

【表】【table】

〔トラフイツクペイント用組成物の性能評価〕[Performance evaluation of traffic paint composition]

実施例9〜16、比較例7〜12 以上のようにして合成された炭化水素樹脂を粘
着付与剤に用い、以下の配合割合で、200℃の油
浴中で500mlフラスコにて30分間混合することに
より、熱溶融型トラフイツクペイント用組成物を
調製した。 配合組成(重量部) 炭化水素樹脂 100 可塑性(商品名トクシノールTS110;徳島精油
製) 12 粗粉骨剤(寒水砂#30) 200 微粉骨剤(商品名ホワイトH:白石カルシウム
製) 200 白色顔料(商品名タイペークA−220:石原産
業性) 66 ガラスビーズ(商品名GB−153T:東芝バロテ
イーニ製) 100 この熱溶融型トラフイツクペイント用組成物に
ついて物性を測定した結果を表9に示した。
Examples 9 to 16, Comparative Examples 7 to 12 The hydrocarbon resin synthesized as above was used as a tackifier, and mixed in a 500 ml flask in an oil bath at 200°C for 30 minutes at the following blending ratio. In this way, a composition for hot-melt traffic paint was prepared. Blend composition (parts by weight) Hydrocarbon resin 100 Plasticity (trade name Toxinol TS110; manufactured by Tokushima Seiseiyu Co., Ltd.) 12 Coarse powder aggregate (kansui sand #30) 200 Fine powder aggregate (trade name White H: manufactured by Shiraishi Calcium) 200 White pigment ( 66 Glass Beads (Product Name GB-153T: manufactured by Toshiba Balloteini) 100 Table 9 shows the results of measuring the physical properties of this composition for hot-melting traffic paint.

【表】【table】

【表】 * 金属性の杓から配合物が流れ出なかつたことを示
す。
[Table] * Indicates that the compound did not flow out from the metal ladle.

Claims (1)

【特許請求の範囲】 1 炭素原子数4ないし5の鎖状脂肪族系1,3
−共役ジエンに基く構造単位(a)が30ないし70モル
%、 炭素原子数4ないし10の脂肪族系内部モノオレ
フインに基く構造単位(b)が20〜60モル%、 炭素原子数4ないし5の鎖状脂肪族系末端モノ
オレフインに基く構造単位(c)が0ないし20モル
%、 及び、 シクロペンタジエンに基く構造単位(d)が0ない
し2モル%、 である脂肪族炭化水素樹脂に、 炭素原子数10以下の不飽和カルボン酸、その無
水物またはそのエステルに基く構造単位(e)がグラ
フト結合している変性炭化水素樹脂であつて、構
造単位(e)の結合量が、変性炭化水素樹脂のケン化
価が2ないし15mgKOH/gとなるような量であ
り、 軟化点が85ないし115℃で、 且つ、 数平均分子量(n)が600ないし1500である
ことを特徴とする変性炭化水素樹脂。 2 炭素原子数4ないし5の鎖状脂肪族系1,3
−共役ジエンに基く構造単位(a)が30ないし70モル
%、 炭素原子数4ないし10の脂肪族系内部モノオレ
フインに基く構造単位(b)が20〜60モル%、 炭素原子数4ないし5の鎖状脂肪族系末端モノ
オレフインに基く構造単位(c)が0ないし20モル
%、 及び、 シクロペンタジエンに基く構造単位(d)が0ない
し2モル%、 である脂肪族炭化水素樹脂に、 炭素原子数10以下の不飽和カルボン酸、その無
水物またはそのエステルに基く構造単位(e)がグラ
フト結合している変性炭化水素樹脂であつて、構
造単位(e)の結合量が、変性炭化水素樹脂のケン化
価が2ないし15mgKOH/gとなるような量であ
り、 軟化点が85ないし115℃で、 且つ、 数平均分子量(n)が600ないし1500である
変性炭化水素樹脂からなる熱溶融型トラフイツク
ペイント用粘結付与剤。
[Claims] 1. Chain aliphatic system having 4 to 5 carbon atoms 1,3
- 30 to 70 mol% of structural units (a) based on conjugated dienes, 20 to 60 mol% of structural units (b) based on aliphatic internal monoolefins having 4 to 10 carbon atoms, 4 to 5 carbon atoms; An aliphatic hydrocarbon resin having 0 to 20 mol% of the structural unit (c) based on a chain aliphatic terminal monoolefin, and 0 to 2 mol% of the structural unit (d) based on cyclopentadiene, A modified hydrocarbon resin in which a structural unit (e) based on an unsaturated carboxylic acid having 10 carbon atoms or less, its anhydride, or its ester is graft-bonded, and the bonding amount of the structural unit (e) is a modified carbonized resin. Modified carbonization characterized by the amount of hydrogen resin having a saponification value of 2 to 15 mgKOH/g, a softening point of 85 to 115°C, and a number average molecular weight (n) of 600 to 1500. Hydrogen resin. 2 Chain aliphatic system having 4 to 5 carbon atoms 1,3
- 30 to 70 mol% of structural units (a) based on conjugated dienes, 20 to 60 mol% of structural units (b) based on aliphatic internal monoolefins having 4 to 10 carbon atoms, 4 to 5 carbon atoms; An aliphatic hydrocarbon resin having 0 to 20 mol% of the structural unit (c) based on a chain aliphatic terminal monoolefin, and 0 to 2 mol% of the structural unit (d) based on cyclopentadiene, A modified hydrocarbon resin in which a structural unit (e) based on an unsaturated carboxylic acid having 10 carbon atoms or less, its anhydride, or its ester is graft-bonded, and the bonding amount of the structural unit (e) is a modified carbonized resin. Hydrogen resin in an amount such that the saponification value of the hydrogen resin is 2 to 15 mgKOH/g, a softening point of 85 to 115°C, and a number average molecular weight (n) of 600 to 1500. Tackifying agent for melt type traffic paint.
JP8658582A 1982-05-24 1982-05-24 Modified hydrocarbon resin and its use Granted JPS58204003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8658582A JPS58204003A (en) 1982-05-24 1982-05-24 Modified hydrocarbon resin and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8658582A JPS58204003A (en) 1982-05-24 1982-05-24 Modified hydrocarbon resin and its use

Publications (2)

Publication Number Publication Date
JPS58204003A JPS58204003A (en) 1983-11-28
JPH0144726B2 true JPH0144726B2 (en) 1989-09-29

Family

ID=13891080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8658582A Granted JPS58204003A (en) 1982-05-24 1982-05-24 Modified hydrocarbon resin and its use

Country Status (1)

Country Link
JP (1) JPS58204003A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660293B2 (en) * 1986-03-14 1994-08-10 日本ゼオン株式会社 Heat-fusion type road marking line marking material
WO1996016091A1 (en) * 1994-11-21 1996-05-30 Asahi Kasei Kogyo Kabushiki Kaisha Curable resin and composition
JP6973474B2 (en) * 2017-03-30 2021-12-01 日本ゼオン株式会社 Modified hydrocarbon resin

Also Published As

Publication number Publication date
JPS58204003A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
EP0074273B1 (en) Hydrocarbon resin and modified hydrocarbon resin product thereof
JPH09507082A (en) Aromatic tackifier resin
CA2659018C (en) Styrenated terpene resin as well as methods of making and using the same
US4360628A (en) Copolymer tackifying resins containing dicyclopentadine, vinyl aromatic hydrocarbon and a substituted benzene (halogen, lower alkyl, or hydroxyl) and adhesives containing these resins
EP0192439B1 (en) Road marking compositions
US3985694A (en) Asphaltic compositions containing synthetic terpenic resin and an interpolymer of ethylene, vinyl acetate and an organic acid
JP4674546B2 (en) Acid-modified petroleum resin and heat-sealing type road surface marking material
US4370460A (en) Copolymers based on styrene and acrylic acid esters and/or methacrylic acid esters, and their use in gasoline-containing masonry paints or renders
JPH0144726B2 (en)
JPH10219214A (en) Binder composition for pavement
EP0807149A1 (en) Silane modified petroleum resins
JPH01268748A (en) Dyeable binder composition
JPH0221403B2 (en)
JP2002030245A (en) Resin composition for traffic paint
JPS62149769A (en) Hot-melt paint composition
JPS59164316A (en) Hydrocarbon resin
JPS6118584B2 (en)
JPH0822894B2 (en) Method for producing modified hydrocarbon resin
JPH08333425A (en) Modified hydrocarbon resin and its use
JPS6152186B2 (en)
JP2688447B2 (en) Binder composition for color pavement
JPS6214184B2 (en)
JP6228441B2 (en) Asphalt composition and use thereof
JPS5947689B2 (en) epoxy resin composition
JPH01308406A (en) Manufacture of modified dihydrodicyclopentadiene copolymer resin