JPH0144169B2 - - Google Patents

Info

Publication number
JPH0144169B2
JPH0144169B2 JP12572583A JP12572583A JPH0144169B2 JP H0144169 B2 JPH0144169 B2 JP H0144169B2 JP 12572583 A JP12572583 A JP 12572583A JP 12572583 A JP12572583 A JP 12572583A JP H0144169 B2 JPH0144169 B2 JP H0144169B2
Authority
JP
Japan
Prior art keywords
compound
lower alkyl
opioid
alkyl group
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12572583A
Other languages
Japanese (ja)
Other versions
JPS6016997A (en
Inventor
Norihiro Kakimoto
Takashi Katayama
Tadahiko Hasato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asai Germanium Research Institute Co Ltd
Original Assignee
Asai Germanium Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asai Germanium Research Institute Co Ltd filed Critical Asai Germanium Research Institute Co Ltd
Priority to JP12572583A priority Critical patent/JPS6016997A/en
Priority to DE3424107A priority patent/DE3424107A1/en
Priority to CH315384A priority patent/CH660192B/fr
Priority to FR8410392A priority patent/FR2548187B1/en
Priority to GB08416614A priority patent/GB2142635B/en
Priority to US06/626,787 priority patent/US4681960A/en
Publication of JPS6016997A publication Critical patent/JPS6016997A/en
Priority to US06/930,561 priority patent/US4748187A/en
Publication of JPH0144169B2 publication Critical patent/JPH0144169B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機ゲルマニウム化合物を主剤とする
強力なオピオイド分解酵素阻害剤に関するもので
ある。 炭素の同族体として知られるゲルマニウム
(Ge)は、シリコン(Si)と同様、半導体効果を
示すという特殊性から、長年に亙つてその側面か
らの研究対象になつている元素であるが、近年に
なつてその有機化合物に関する研究やその結果の
発表が活発に行なわれるようになるに従い、各方
面から注目されるようになつた。 例えば、ゲルマニウムのプロピオン酸誘導体で
あり、しかもゲルマニウム原子と酸素原子とが交
互に結合した12員環を単位構造とするシート状化
合物のカルボキシエチルゲルマニウムセスキオキ
サイド(GeCH2CH2COOH)2O3が極めて強力な
血圧降下作用、抗腫瘍作用等の優れた生理活性を
示す反面、全く毒性や副作用を示さない化合物で
あるということは、各種の研究会や文献発表等に
より周知の事実となりつつある。 又、例えば癌性疼痛等の痛みを訴えている患者
に前記有機ゲルマニウム化合物を投与すると、癌
の成長が抑制されると共に鎮痛に必要なモルヒネ
等麻薬様物質の投与量を減ずることができるとの
報告があるが、これに対しては次のような仮説が
ある。 即ち、モルヒネ等の薬理作用はその投与により
オピオイドと総称されるペプタイド類が生体内に
遊離し、該オピオイドが前記モルヒネ等とレセプ
ターを共用することにより体内の自動鎮痛を司ど
つていることによるものであり、前記有機ゲルマ
ニウムの投与によりモルヒネ等の投与量を減ずる
ことができるのは、当該有機ゲルマニウム化合物
が生体内にあつて前記オピオイドを分解して失活
させるオピオイド分解酵素の作用を阻害し、オピ
オイドの生体内での有効利用を図るからというの
である。 而して、前記有機ゲルマニウム化合物が示す生
理活性のメカニズムは明確に解明されておらず、
ただ抗腫瘍性については一部の研究者により、そ
の構成中のゲルマニウム−酸素結合に由来すると
の説が提唱されているので、その酸素原子を他の
近縁原子と置換した有機ゲルマニウム化合物につ
いては、前記有機ゲルマニウム化合物等の公知の
ものとは別の面での有用性が期待される。 本発明は上述した事情を背景とした研究の結果
完成されたもので、その構成は、一般式 (式中、R1乃至R3は、 R1が低級アルキル基であるとき、 R2及びR3は、一方が低級アルキル基、他方が
水素原子又は低級アルキル基、 R1がフエニル基であるとき、 R2及びR3は、水素原子又は低級アルキル基 を、又、Zは水酸基又はアミノ基をそれぞれ示
す) で表わされる有機ゲルマニウム化合物を主剤とす
ることを特徴とするものである。 以下、本発明を詳細に説明する。 まず、本発明剤に使用する有機ゲルマニウム化
合物について説明すると、これはゲルマニウム原
子にプロピオン酸(Z=OHの場合)又はそのア
ミド(Z=NH2の場合)が結合し、該プロピオ
ン酸骨格上でゲルマニウム原子のα位には置換基
R1及びR2、同じくβ位には置換基R3が結合した
ゲルミルプロピオン酸を基本骨格とし、その基本
骨格のゲルマニウム原子と、硫黄原子とが2:3
の割合で結合した、エチルゲルマニウムセスキス
ルフイドである。 而して、前記置換基R1乃至R3については、R1
がメチル基、エチル基、プロピル基等の低級アル
キル基であるとき、R2及びR3は、一方がR1と同
様の低級アルキル基、他方が水素原子又は低級ア
ルキル基を示し、又、R1が置換又は無置換のフ
エニル基であるとき、R2及びR3は水素原子又は
低級アルキル基を示しており、従つて、本発明剤
に使用する有機ゲルマニウム化合物を例示すれば
次のようなものがある(以下それぞれ化合物(1)の
ように表わす)。 尚、上記構造の有機ゲルマニウム化合物は前述
のとおり、ゲルミルプロピオン酸と硫黄原子とが
2:3の割合で結合したものであるから、その割
合を用いて上記のように表わしたが、本発明剤に
使用する有機ゲルマニウム化合物は 又は のように表わすこともできる。 このような構造の有機ゲルマニウム化合物は
種々の方法で製造することができる。 即ち、一般式()に於てZ=OHのもの
(′)は、下記反応式(1)に示すとおり、対応する
トリクロルゲルマニウム化合物()にピリジン
等の塩基の存在下、有機溶媒中で乾燥硫化水素
H2Sガスを作用させれば良く、 又、一般式()に於てZ=NH2のもの
(″)は、下記反応式(2)に示すとおり、前記と同
じトリクロルゲルマニウム化合物()を一旦対
応する酸クロライド()に変換後アンモニア
(NH3)を作用させてアミド体()とし、これ
に、前記と同様塩基の存在下で有機溶媒中、乾燥
塩化水素ガスを作用させれば良いのである。 尚、上記反応式(1)、(2)に於ては、硫化水素を作
用させた段階でトリメルカプト体
The present invention relates to a powerful opioid-degrading enzyme inhibitor containing an organic germanium compound as a main ingredient. Germanium (Ge), known as a homolog of carbon, has been the subject of research for many years due to its unique property of exhibiting a semiconductor effect, just like silicon (Si). As research into organic compounds and the presentation of their results became more active, they began to attract attention from all quarters. For example, carboxyethylgermanium sesquioxide (GeCH 2 CH 2 COOH) 2 O 3 is a propionic acid derivative of germanium and is a sheet-like compound whose unit structure is a 12-membered ring in which germanium atoms and oxygen atoms are alternately bonded. It is becoming a well-known fact through various study groups and literature publications that it is a compound that exhibits excellent physiological activities such as extremely strong blood pressure lowering effects and antitumor effects, but exhibits no toxicity or side effects at all. Furthermore, it has been reported that when the organogermanium compound is administered to patients complaining of pain such as cancer pain, it is possible to suppress the growth of cancer and reduce the dose of narcotic substances such as morphine required for analgesia. There have been reports of this, but there are some hypotheses as follows. In other words, the pharmacological effects of morphine, etc. are due to the fact that peptides, collectively called opioids, are liberated in the body upon administration, and these opioids control automatic analgesia in the body by sharing receptors with the above-mentioned morphine, etc. The reason why the dose of morphine etc. can be reduced by administering the organic germanium is that the organic germanium compound inhibits the action of the opioid degrading enzyme that decomposes and deactivates the opioid in the living body, This is because it aims to effectively utilize opioids in the body. However, the mechanism of physiological activity exhibited by the organic germanium compounds has not been clearly elucidated.
However, some researchers have proposed that its antitumor properties originate from the germanium-oxygen bond in its composition, so organic germanium compounds in which the oxygen atom is replaced with other closely related atoms are , is expected to be useful in a different aspect from the known organic germanium compounds. The present invention was completed as a result of research against the background of the above-mentioned circumstances, and its structure is based on the general formula (In the formula, R 1 to R 3 are: when R 1 is a lower alkyl group, one of R 2 and R 3 is a lower alkyl group, the other is a hydrogen atom or a lower alkyl group, and R 1 is a phenyl group. R 2 and R 3 each represent a hydrogen atom or a lower alkyl group, and Z represents a hydroxyl group or an amino group, respectively. The present invention will be explained in detail below. First, to explain the organic germanium compound used in the present invention agent, propionic acid (in the case of Z=OH) or its amide (in the case of Z=NH 2 ) is bonded to the germanium atom, and on the propionic acid skeleton. Substituent at α position of germanium atom
R 1 and R 2 have a basic skeleton of germylpropionic acid with a substituent R 3 bonded to the β position, and the germanium atom of the basic skeleton and the sulfur atom are in a ratio of 2:3.
It is ethylgermanium sesquisulfide combined in a ratio of . As for the substituents R 1 to R 3 , R 1
is a lower alkyl group such as a methyl group, ethyl group, or propyl group, one of R 2 and R 3 is the same lower alkyl group as R 1 , and the other is a hydrogen atom or a lower alkyl group, and R When 1 is a substituted or unsubstituted phenyl group, R 2 and R 3 represent a hydrogen atom or a lower alkyl group. Therefore, examples of the organic germanium compounds used in the present agent include the following. (hereinafter referred to as compound (1)). As mentioned above, the organic germanium compound having the above structure is a compound in which germylpropionic acid and sulfur atoms are bonded in a ratio of 2:3, and therefore, it is expressed as above using that ratio, but the present invention The organic germanium compound used in the agent is or It can also be expressed as Organic germanium compounds having such a structure can be produced by various methods. That is, in the general formula (), Z=OH (') is obtained by drying the corresponding trichlorogermanium compound () in an organic solvent in the presence of a base such as pyridine, as shown in the following reaction formula (1). hydrogen sulfide
All you have to do is apply H 2 S gas, In addition, in the general formula (), Z=NH 2 ('') is, as shown in the reaction formula (2) below, ammonia after once converting the same trichlorogermanium compound () as above into the corresponding acid chloride (). (NH 3 ) to form an amide compound ( ), and then dry hydrogen chloride gas is allowed to act on this in an organic solvent in the presence of a base as described above. In addition, in the above reaction formulas (1) and (2), the trimercapto compound is formed at the stage of acting with hydrogen sulfide.

【式】若しくは[Formula] or

【式】 が生成するが、このトリメルカプト体は単離して
も単離しなくても良く、単離した場合には分子間
で脱硫化水素反応が起つて一般式()の構造に
なり易い。 又、上記反応に用いるトリクロルゲルマニウム
化合物()は、例えば特公昭46−2964号に開示
されている方法に準じ、 のようにして製造しても良いが、直接にアクリル
酸誘導体と反応させて のようにして得ることもできる。 このようにして製造した有機ゲルマニウム化合
物は、例示した(1)〜(6)を含め、全般的に200℃以
上の融点(又は分解点)を有する無色透明の結晶
であり、元素分析の実験値はそれぞれの分子式よ
り算出される計算値と誤差範囲内で合致し、又、
赤外線吸収(IR)スペクトルや核磁気共鳴吸収
(NMR)スペクトルは、いずれもそれら化合物
が前記一般式()で表わされるものであること
をよく支持している。 又、前記カルボキシエチルゲルマニウムセスキ
オキサイドが水にわずかに溶け有機溶媒には全く
溶けないのに対し、本発明剤に使用する有機ゲル
マニウム化合物は水にもわずかに溶け、例えばア
セトン、アルコール等水と混和する有機溶媒に溶
解する、即ち脂溶性がある点に特徴がある。 而して、上記有機ゲルマニウム化合物は公知化
合物であるカルボキシエチルゲルマニウムセスキ
オキサイドのゲルマニウム−酸素結合に類似する
ゲルマニウム−硫黄結合を有しているので、これ
を生体に投与すれば、それ同様に抗腫瘍性等を発
揮する可能性は大であるが、これら有機ゲルマニ
ウム化合物の有用性は、前述したオピオイド分解
酵素のオピオイド分解作用を強力に阻害する点に
見出されたのである。 即ち、すでに述べたように、生体内のペプタイ
ド類であるオピオイドと総称される物質は、生体
の自動鎮痛を司どる極めて重要な化合物であつ
て、これには1975年に英国のHughesらが豚や牛
の脳から単離し構造を決定したエンケフアリン H2N−Tyr−Gly−Gly−Phe−Met−OH をはじめとして数種のものがあり、一方このエン
ケフアリン等のオピオイドを分解する酵素として
は種々の生体組織から単離精製されるジペプチジ
ルアミノペプチデースやアミノペプチデース等多
数種のものが発見されているが、上記有機ゲルマ
ニウム化合物の存在下に前記オピオイド又はその
モデル化合物に対して前記酵素を作用させたとこ
ろ、上記有機ゲルマニウム化合物が当該酵素の作
用を強く阻害することが判明したのである。 上記作用は極めて強力で、例えば化合物(1)はオ
ピオイドの一種である前記エンケフアリンに対す
る牛縦走筋由来のアミノペプチデースの分解作用
を97.0%も抑制するものであり、従つて、これら
有機ゲルマニウム化合物を主剤とし、錠剤、散
剤、顆粒剤、カプセル剤等適宜の固型剤や注射剤
等の水剤等に調製した本発明オピオイド分解酵素
阻害剤は、これを生体に投与すれば、前記オピオ
イド分解酵素の作用が強く阻害され、オピオイド
の有効利用率が向上するから、モルヒネ等の麻薬
様物質の投与による薬効が顕著化すると共に同一
の薬効を得るために使用する麻薬様物質の量を減
ずることができ、連用による習慣性や耽溺性とい
つた副作用を軽減することができるのである。 尚、オピオイド分解酵素の一種であるジペプチ
ジルカルボキシペプチデースは、極めて強い昇圧
作用を示す酵素アンジオテンシンの前駆体であ
るアンジオテンシンに作用するアンジオテンシ
ン変換酵素でもあるので、この作用を阻害すると
いうことは、同時にレニン−アンジオテンシン−
アルドステロン系に働いて、この方面からも生
体、特に血圧維持機構に好ましい影響を与えるこ
とも期待できる。 次に有機ゲルマニウム化合物の合成例及び本発
明の実施例について述べる。 合成例 1 化合物(′)の製造 まず(E)−2−メチル−2−ブテン酸20.02g
(0.2モル)を乾燥エチルエーテル100mlに溶解し、
氷冷下トリクロルゲルマン36.0g(0.2モル)を
加えて2時間かくはん後、析出する結晶をn−ヘ
キサンより再結晶して2−メチル−3−(トリク
ロルゲルミル)ブタン酸(無色板状結晶、収量
42.86g、得収率76.5%)を製造する。 次いで、上記のようにして製造した2−メチル
−3−(トリクロルゲルミル)ブタン酸5.6g
(0.02モル)を無水ベンゼン100mlに溶解し、無水
ピリジン5.2g(0.066モル)を加えてかくはん
後、乾燥硫化水素ガスを60分間通じた。析出する
化合物を分離し、これを含水アセトンから再結晶
するか或いはSephadex LH−20(商品名)等の
分子ふるいでメタノールを展開溶媒として用いて
単離精製することにより、化合物(1)を3.2g得た。
収率は72.1%であつた。 化合物(1)
[Formula] is produced, but this trimercapto compound may or may not be isolated; if isolated, an intermolecular desulfurization reaction tends to occur, resulting in the structure of the general formula (). In addition, the trichlorogermanium compound () used in the above reaction can be prepared, for example, according to the method disclosed in Japanese Patent Publication No. 46-2964, It can be produced as follows, but it can also be produced by directly reacting with an acrylic acid derivative. You can also get it like this. The organic germanium compounds produced in this way, including the examples (1) to (6), are generally colorless and transparent crystals with a melting point (or decomposition point) of 200°C or higher, and experimental values of elemental analysis matches the calculated value calculated from each molecular formula within the error range, and
Infrared absorption (IR) spectra and nuclear magnetic resonance absorption (NMR) spectra both strongly support the fact that these compounds are represented by the above general formula (). In addition, while the carboxyethyl germanium sesquioxide is slightly soluble in water and completely insoluble in organic solvents, the organic germanium compound used in the present agent is slightly soluble in water and is miscible with water, such as acetone and alcohol. It is characterized by being soluble in organic solvents, that is, being fat-soluble. Since the above-mentioned organic germanium compound has a germanium-sulfur bond similar to the germanium-oxygen bond of carboxyethylgermanium sesquioxide, which is a known compound, if it is administered to a living body, it has antitumor properties as well. However, the usefulness of these organic germanium compounds was found in that they strongly inhibited the opioid degrading action of the aforementioned opioid degrading enzyme. That is, as mentioned above, substances collectively called opioids, which are peptides in the body, are extremely important compounds that control automatic analgesia in the body, and in 1975, Hughes et al. There are several types of enkephalin, including H 2 N-Tyr-Gly-Gly-Phe-Met-OH, which was isolated from the brains of cows and cows, and whose structure was determined. On the other hand, there are various enzymes that degrade opioids such as enkephalin. A large number of dipeptidyl aminopeptides and aminopeptides isolated and purified from biological tissues have been discovered. When allowed to act on the enzyme, it was found that the organic germanium compound strongly inhibited the action of the enzyme. The above action is extremely strong; for example, compound (1) suppresses the degrading action of aminopeptidase derived from bovine longitudinal muscle on enkephalin, a type of opioid, by as much as 97.0%. The opioid-degrading enzyme inhibitor of the present invention, which is prepared as a base agent and is prepared into an appropriate solid form such as a tablet, powder, granule, or capsule, or a water solution such as an injection, can be administered to a living body to prevent the opioid-degrading enzyme As the effect of morphine is strongly inhibited and the effective utilization rate of opioids is improved, the medicinal effects of narcotic-like substances such as morphine become more pronounced, and the amount of narcotic-like substances used to obtain the same medicinal effect can be reduced. This makes it possible to reduce side effects such as habit-forming and addictive properties caused by prolonged use. Dipeptidylcarboxypeptidase, a type of opioid degrading enzyme, is also an angiotensin-converting enzyme that acts on angiotensin, a precursor of the enzyme angiotensin, which has an extremely strong pressor effect, so inhibiting this action means simultaneously renin-angiotensin
By acting on the aldosterone system, it can also be expected to have a favorable effect on living organisms, particularly on the blood pressure maintenance mechanism. Next, examples of synthesis of organic germanium compounds and examples of the present invention will be described. Synthesis Example 1 Production of compound (') First, 20.02 g of (E)-2-methyl-2-butenoic acid
(0.2 mol) in 100 ml of dry ethyl ether,
After adding 36.0 g (0.2 mol) of trichlorogermane under ice cooling and stirring for 2 hours, the precipitated crystals were recrystallized from n-hexane to obtain 2-methyl-3-(trichlorogermyl)butanoic acid (colorless plate-like crystals, yield
42.86g, yield 76.5%). Then, 5.6 g of 2-methyl-3-(trichlorogermyl)butanoic acid prepared as above.
(0.02 mol) was dissolved in 100 ml of anhydrous benzene, 5.2 g (0.066 mol) of anhydrous pyridine was added, and after stirring, dry hydrogen sulfide gas was passed through the solution for 60 minutes. By separating the precipitated compound and recrystallizing it from aqueous acetone or isolating and purifying it with a molecular sieve such as Sephadex LH-20 (trade name) using methanol as a developing solvent, compound (1) can be obtained in 3.2 I got g.
The yield was 72.1%. Compound (1)

【表】 他の化合物も上記方法に準じて製造することが
でき、得られた化合物(′)の物性が表(1)に示
したとおりであつた。 合成例 2 本発明化合物(″)の製造 まず、2−メチル−3−(トリクロルゲルミル)
ブタン酸28.0g(0.1モル)を100mlのチオニルク
ロライドと扱つた後、減圧蒸留に付し、2−メチ
ル−3−(トリクロルゲルミル)ブタン酸クロラ
イドを沸点99−100℃/6mmHgの淡黄色留分とし
て得る(収量27.0g、収率90.4%)。 次いで、この酸クロライド5.8g(0.02モル)
を無水ベンゼン50mlに溶解し、氷冷下乾燥アンモ
ニアを1時間導入し、更に乾燥塩化水素ガスを1
時間導入した後、酢酸メチルエステル100mlを加
え、かくはんして濾過し、濾液を留去後残渣をア
セトン−ベンゼン混合液(1:2)より再結晶し
て、2−メチル−3−(トリクロルゲルミル)ブ
タン酸アミドとする(収量4.1g、収率76.0%)。 更に、上記のようにして製造した2−メチル−
3−(トリクロルゲルミル)ブタン酸アミド10.8
g(0.04モル)を無水ベンゼン200mlに溶解し、
無水ピリジン9.5g(0.12モル)を加えてかくは
ん後、乾燥硫化水素ガスを60分間通じた。析出す
る化合物を分離し、これを含水アセトンから再結
晶するか或いはSephadex LH−20(商品名)等
の分子ふるいでメタノールを展開溶媒として用い
て単離精製することにより、化合物(5)を7.8g得
た。収率は88.3%であつた。 化合物(5)
[Table] Other compounds could also be produced according to the above method, and the physical properties of the obtained compound (') were as shown in Table (1). Synthesis Example 2 Production of the compound of the present invention ('') First, 2-methyl-3-(trichlorogermyl)
After treating 28.0 g (0.1 mol) of butanoic acid with 100 ml of thionyl chloride, it was distilled under reduced pressure to obtain 2-methyl-3-(trichlorogermyl)butanoic acid chloride in a pale yellow distillate with a boiling point of 99-100°C/6 mmHg. (yield 27.0 g, yield 90.4%). Then, 5.8 g (0.02 mol) of this acid chloride
was dissolved in 50 ml of anhydrous benzene, and dried ammonia was introduced for 1 hour under ice-cooling, followed by 1 hour of dry hydrogen chloride gas.
After introducing 100 ml of acetic acid methyl ester, stirring and filtration, the filtrate was distilled off, and the residue was recrystallized from an acetone-benzene mixture (1:2) to form 2-methyl-3-(trichlorogel). mill) butanoic acid amide (yield: 4.1 g, yield: 76.0%). Furthermore, 2-methyl- produced as above
3-(Trichlorogermyl)butanoic acid amide 10.8
g (0.04 mol) in 200 ml of anhydrous benzene,
After adding 9.5 g (0.12 mol) of anhydrous pyridine and stirring, dry hydrogen sulfide gas was passed through the mixture for 60 minutes. By separating the precipitated compound and recrystallizing it from aqueous acetone, or by isolating and purifying it with a molecular sieve such as Sephadex LH-20 (trade name) using methanol as a developing solvent, compound (5) was obtained at 7.8%. I got g. The yield was 88.3%. Compound (5)

【表】 他の化合物も上記方法に準じて製造することが
でき、得られた化合物(″)の物性は表(2)に示
したとおりであつた。 このようにして合成された有機ゲルマニウム化
合物の毒性は低く、それらのLD50値を調べてみ
ると、例えば化合物(3)については、p.o.で400
mg/Kg以上、s.cでは700mg/Kg以上であり、又、
化合物(7)については、p.o.でもs.cでも2500mg/Kg
以上であつた。
[Table] Other compounds could also be produced according to the above method, and the physical properties of the obtained compound ('') were as shown in Table (2). Organic germanium compounds synthesized in this way The toxicity of compounds is low, and when we examine their LD 50 values, for example, compound (3) has a low toxicity of 400 at po.
mg/Kg or more, SC is 700 mg/Kg or more, and
For compound (7), 2500mg/Kg for both po and sc
That's all.

【表】【table】

【表】【table】

【表】 実施例 本発明剤の薬理作用 前述のとおり、本発明剤はオピオイド分解酵素
の作用を強く阻害するのであるが、疾病の治療に
麻薬用物質を使用している例は比較的少なく、し
かもその症状は重篤である場合が多いため、通常
の薬剤と同程度に本発明剤の効果を確認するには
様々な問題があり、一方、そのような麻薬様物質
の投与により生体内に遊離するオピオイド及び該
オピオイドを分解する酵素が判明しているので、
本発明剤の効果は、これをオピオイドに分解酵素
をin Vitroで作用させた場合の阻害率をもつて判
定するものとした。 即ち、本発明剤を例えばエンケフアリン等のオ
ピオイド若しくはそのモデル化合物に加え、一定
時間インキユベートした後にオピオイド分解酵素
に対する本発明剤の阻害率を、種々のオピオイド
について行つたところ、表(3)に示すとおり全般的
に高い阻害作用を示したのである。
[Table] Examples Pharmacological action of the agent of the present invention As mentioned above, the agent of the present invention strongly inhibits the action of opioid-degrading enzymes, but there are relatively few cases in which narcotic substances are used to treat diseases. Moreover, the symptoms are often severe, so there are various problems in confirming the effectiveness of the present drug to the same extent as regular drugs. Since the opioids that are liberated and the enzymes that degrade them have been identified,
The effect of the agent of the present invention was determined by the inhibition rate when a degrading enzyme was allowed to act on the opioid in vitro. That is, the present invention agent was added to an opioid such as enkephalin or its model compound, and after incubation for a certain period of time, the inhibition rate of the present invention agent against opioid degrading enzymes was determined for various opioids, as shown in Table (3). It showed a high overall inhibitory effect.

【表】 更に、本発明剤の阻害効果を確認するため、50
%阻止率(IC50)を測定したところ、表(4)に示
すとおりの結果が得られ、本発明剤の効果がより
明瞭となつた。
[Table] Furthermore, in order to confirm the inhibitory effect of the present agent, 50
When the percent inhibition rate (IC50) was measured, the results shown in Table (4) were obtained, making the effect of the present agent more clear.

【表】 特に化合物(3)を主剤とする本発明剤の、牛縦走
筋由来のアミノペプチデースのエンケフアリンに
対する作用の阻害はIC50=19μg/mlと極めて高
く、これは同剤が当該酵素に関する試薬として使
用することも可能とするものである。 而して、本発明剤を実際に人体に投与する場合
は、例えば、前記有機ゲルマニウム化合物の100
乃至300mgと、公知の製剤用担体からなるカプセ
ル剤を調製し、これを経口的に投与すれば良い。 又、有効投与量は、上述したように本発明剤の
作用機序が体内のオピオイドの有効利用を図ると
いう点にあり、従つて生体の状態や併用する薬剤
の内容等によつて変化するためあまり意味をもた
ない。 尚、上記実施例に於ける牛縦走筋からの各種オ
ピオイド分解酵素の調整はGoreustein and
Snyder S.H.らの方法(Life Sci.25、2065
[1979])の方法に準じて部分精製し、又、本発明
剤のオピオイド分解酵素に対する阻害効果の測定
は、例えばジペプチジルアミノペプチデースは
T.Hazato、M.Shimamura、T.Katayama and
T.Yamamotoらの方法(B.B.R.C.vol105 470〜
475[1982])、又、アミノペプチデースについては
M.Shimamura、T.Hazato and T.Katayamaら
の方法(B.B.A.vol756 223〜229[1983])又はこ
れらに準ずる方法により行なつた。
[Table] In particular, the inhibition of the action of the aminopeptidase derived from bovine longitudinal muscle on enkephalin by the agent of the present invention, which has compound (3) as the main agent, is extremely high at IC50 = 19 μg/ml, which is because the agent is a reagent for the enzyme. It can also be used as a Therefore, when actually administering the agent of the present invention to the human body, for example, 100% of the organic germanium compound
Capsules containing 300 mg to 300 mg of the drug and a known pharmaceutical carrier may be prepared and administered orally. In addition, as mentioned above, the mechanism of action of the present agent is to effectively utilize opioids in the body, and therefore, the effective dose varies depending on the condition of the living body, the content of the concomitant drugs, etc. It doesn't make much sense. In addition, the preparation of various opioid-degrading enzymes from bovine longitudinal muscle in the above example was described by Goreustein and
The method of Snyder SH et al. (Life Sci.25, 2065
[1979]), and the inhibitory effect of the present agent on opioid degrading enzymes was measured using, for example, dipeptidyl aminopeptidase.
T. Hazato, M. Shimamura, T. Katayama and
The method of T. Yamamoto et al. (BBRCvol105 470~
475 [1982]), and regarding aminopeptides.
This was carried out by the method of M. Shimamura, T. Hazato and T. Katayama et al. (BBAvol 756 223-229 [1983]) or a method similar thereto.

Claims (1)

【特許請求の範囲】 1 一般式 (式中、R1乃至R3は、 R1が低級アルキル基であるとき、 R2及びR3は、一方が低級アルキル基、他方が
水素原子又は低級アルキル基、 R1がフエニル基であるとき、 R2及びR3は、水素原子又は低級アルキル基 を、又、Zは水酸基又はアミノ基をそれぞれ示
す) で表わされる有機ゲルマニウム化合物を主剤とす
ることを特徴とするオピオイド分解酵素阻害剤。
[Claims] 1. General formula (In the formula, R 1 to R 3 are: when R 1 is a lower alkyl group, one of R 2 and R 3 is a lower alkyl group, the other is a hydrogen atom or a lower alkyl group, and R 1 is a phenyl group. An opioid degrading enzyme inhibitor characterized in that the main ingredient thereof is an organic germanium compound represented by the following formula: where R 2 and R 3 represent a hydrogen atom or a lower alkyl group, and Z represents a hydroxyl group or an amino group, respectively.
JP12572583A 1983-07-01 1983-07-11 Organogermanium compound and inhibitor having inhibitory actions on enzyme capable of decomposing opioide comprising it as main agent Granted JPS6016997A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP12572583A JPS6016997A (en) 1983-07-11 1983-07-11 Organogermanium compound and inhibitor having inhibitory actions on enzyme capable of decomposing opioide comprising it as main agent
DE3424107A DE3424107A1 (en) 1983-07-01 1984-06-29 ORGANOGERMANIUM COMPOUND AND THIS ACTIVE INGREDIENT OPIOID PEPTIDAS INHIBITOR
CH315384A CH660192B (en) 1983-07-01 1984-06-29
FR8410392A FR2548187B1 (en) 1983-07-01 1984-06-29 ORGANO-GERMANIUM COMPOUNDS AND THEIR THERAPEUTIC USES AS INHIBITORS OF ENZYMES THAT DEGRADE OPIOID PEPTIDES
GB08416614A GB2142635B (en) 1983-07-01 1984-06-29 Organogermanium compound and an opioid peptide-degrading enzyme inhibitor containing the same
US06/626,787 US4681960A (en) 1983-07-01 1984-07-02 Organogermanium compound
US06/930,561 US4748187A (en) 1983-07-01 1986-11-14 Opioid peptide-degrading enzyme inhibitor with a germanium compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12572583A JPS6016997A (en) 1983-07-11 1983-07-11 Organogermanium compound and inhibitor having inhibitory actions on enzyme capable of decomposing opioide comprising it as main agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61296117A Division JPS62142189A (en) 1986-12-12 1986-12-12 Organogermanium compound

Publications (2)

Publication Number Publication Date
JPS6016997A JPS6016997A (en) 1985-01-28
JPH0144169B2 true JPH0144169B2 (en) 1989-09-26

Family

ID=14917224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12572583A Granted JPS6016997A (en) 1983-07-01 1983-07-11 Organogermanium compound and inhibitor having inhibitory actions on enzyme capable of decomposing opioide comprising it as main agent

Country Status (1)

Country Link
JP (1) JPS6016997A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254631A (en) * 1985-05-04 1986-11-12 Nippon Zeon Co Ltd Bonding of photo-sensitive flexographic printing plate and rubber backing material
JPS6293293A (en) * 1985-10-18 1987-04-28 Asai Gerumaniumu Kenkyusho:Kk Organogermanium compound and analgesic comprising same as main agent
JP2009114028A (en) * 2007-11-07 2009-05-28 Olympus Corp Manufacturing method of glass cell and glass cell molding apparatus

Also Published As

Publication number Publication date
JPS6016997A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
EP0082088B1 (en) Derivatives of amino acids and their therapeutic use
EP0274453A2 (en) Collagenase inhibitor derivatives, their preparation and pharmaceutical compositions containing them
CA1183140A (en) Process for preparing carboxylic azo-bicyclo-octane acids
FR2501199A1 (en) NOVEL POLYPEPTIDES, THEIR PREPARATION AND THEIR APPLICATION AS MEDICINES
SU1604158A3 (en) Method of producing derivatives of griseolic acid
JPS6229566A (en) Novel guanidinomthylbenzoic acid derivative
DK173952B1 (en) Use of spergualin derivatives for the preparation of drugs with immunosuppressive effect
EP0005658A1 (en) Peptide derivatives analogue to encephalines, process for their preparation and their therapeutical application
FR2488253A1 (en) NEW PEPTIDES AND THEIR THERAPEUTIC APPLICATION
JPH03112933A (en) Antitumor agent
US4748187A (en) Opioid peptide-degrading enzyme inhibitor with a germanium compound
EP0282374A1 (en) Peptide derivatives with a polycyclic nitrogen structure, process for their preparation and pharmaceutical compositions containing them
JPH0144169B2 (en)
CH661661A5 (en) ANTINEOPLASTIC AGENT.
FR2483929A1 (en) NOVEL N6-SUBSTITUTED ADENOSINS USEFUL AS ANTIHYPERTENSIVE DRUGS, THERAPEUTIC COMPOSITIONS AND PHARMACEUTICAL FORMS CONTAINING THEM, AND PROCESS FOR THE PREPARATION THEREOF
EP0772630B1 (en) Streptogramine derivatives, preparation of same and pharmaceutical compositions containing same
JPH0348200B2 (en)
JP2569060B2 (en) Glutamylcysteine derivative, method for producing the same, and tissue glutathione level enhancer containing the same as an active ingredient
JPH031319B2 (en)
JPH05331063A (en) Antagonist for endothelin receptor
JPH04264092A (en) N,o-spirocyclic derivative of cyclotriphosphazene and preparation and use thereof
US5475028A (en) 2-aminoethanesulfonic acid zinc complex
BE839405A (en) NEW POLYPEPTIDES, THEIR PREPARATION AND THEIR APPLICATION AS MEDICINAL PRODUCTS
CA1338831C (en) 4-thiazolidine-carboxylic acid derivatives
FR2593813A1 (en) Derivatives of N- alpha -arylsulphonylaminoacyl-p-amidinophenylalanine amides, process for their preparation, their application as medicaments and the compositions which contain them