JPH0144118B2 - - Google Patents

Info

Publication number
JPH0144118B2
JPH0144118B2 JP27217884A JP27217884A JPH0144118B2 JP H0144118 B2 JPH0144118 B2 JP H0144118B2 JP 27217884 A JP27217884 A JP 27217884A JP 27217884 A JP27217884 A JP 27217884A JP H0144118 B2 JPH0144118 B2 JP H0144118B2
Authority
JP
Japan
Prior art keywords
oxidizing agent
wastewater
concentration
reaction
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27217884A
Other languages
Japanese (ja)
Other versions
JPS61149292A (en
Inventor
Tadafusa Uchida
Chiaki Niwa
Mitsuo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP27217884A priority Critical patent/JPS61149292A/en
Publication of JPS61149292A publication Critical patent/JPS61149292A/en
Publication of JPH0144118B2 publication Critical patent/JPH0144118B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば土木・建築工事に伴つて排
出され、鉄(Fe)、マンガン(Mn)などの重金
属が含まれる排水中の上記重金属を酸化処理する
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is intended to remove heavy metals from wastewater discharged from, for example, civil engineering and construction work, which contains heavy metals such as iron (Fe) and manganese (Mn). This invention relates to a method of oxidation treatment.

〔従来技術とその問題点〕[Prior art and its problems]

土木・建築工事に伴つて排出される地下水は、
これに含まれるFe、Mnなどによつて着色してい
る場合が多く、そのまま外部に排出できないこと
があり、これら重金属を除去する必要がある。と
ころで、地下水中のこれら重金属は、中性でかつ
嫌気性状態であるので還元状態で存在しており、
鉄はFe2+、マンガンはMn2+として存在している。
このため、これら重金属の除去には、これら金属
イオンを酸化し、水酸化物あるいは酸化物として
沈澱させ、これを濾別することにより重金属を除
去することができる。
Groundwater discharged from civil engineering and construction works is
It is often colored by the Fe, Mn, etc. contained in it, and cannot be discharged to the outside as is, so these heavy metals must be removed. By the way, these heavy metals in groundwater are neutral and anaerobic, so they exist in a reduced state.
Iron exists as Fe 2+ and manganese exists as Mn 2+ .
Therefore, these heavy metals can be removed by oxidizing these metal ions, precipitating them as hydroxides or oxides, and filtering the precipitates.

従来、このような酸化処理方法の1つに、排水
に次亜塩素酸ナトリウム(NaOCl)などの塩素
系酸化剤を添加して金属イオンを酸化し、排水の
残留塩素濃度あるいは酸化還元電位(ORP)を
測定して酸化反応の終了を知り、酸化剤の添加を
停止し、処理水を次工程に送るようにしたものが
ある。
Conventionally, one such oxidation treatment method involves adding a chlorine-based oxidizing agent such as sodium hypochlorite (NaOCl) to wastewater to oxidize metal ions, increasing the residual chlorine concentration or oxidation-reduction potential (ORP) of wastewater. ) to determine when the oxidation reaction has finished, stop adding the oxidizing agent, and send the treated water to the next process.

しかしながら、残留塩素濃度あるいはORTで
酸化反応の終点を知る方法は、正確な終点を知る
ことが困難であり、このため、終点のあいまいさ
を補う必要から過剰の酸化剤を添加することにな
り、酸化剤のロスが大きくなる欠点があつた。第
2図および第3図は、同一の採取地からの地下水
について、2回にわたりNaOCl溶液を加え、含
まれるFe2+イオンをFe3+イオンに酸化したとき
のORP、pH、Fe2+イオン濃度および残留塩素濃
度の変化を示したものである。第2図の排水は
Fe2+イオン濃度が約34mg/、第3図のものは
Fe2+イオン濃度が約27mg/とFe2+イオン濃度が
少し異なるものであるが、酸化反応終点での
ORPは第2図では約550mV、第3図では約
410mVとその絶対値に大きな差が表われる。よ
つて、ORP絶対値による酸化剤添加制御では、
ORP設定値が大きくとれば完全酸化を期するこ
とが出来るが、酸化剤を過剰に添加せねばならな
い。
However, using the method of determining the end point of the oxidation reaction based on the residual chlorine concentration or ORT, it is difficult to know the exact end point, and therefore, an excessive amount of oxidizing agent is added to compensate for the ambiguity of the end point. The disadvantage was that the loss of oxidizing agent was large. Figures 2 and 3 show ORP, pH, and Fe 2+ ions when NaOCl solution was added twice to groundwater from the same sampling site to oxidize Fe 2+ ions to Fe 3+ ions. It shows changes in concentration and residual chlorine concentration. The drainage shown in Figure 2 is
The one in Figure 3 has a Fe 2+ ion concentration of about 34 mg/
The Fe 2+ ion concentration is approximately 27 mg/, which is slightly different, but the Fe 2+ ion concentration at the end point of the oxidation reaction is
ORP is approximately 550mV in Figure 2 and approximately 550mV in Figure 3.
A large difference appears between 410mV and its absolute value. Therefore, in controlling oxidizing agent addition using ORP absolute value,
If the ORP setting value is large, complete oxidation can be expected, but an excessive amount of oxidizing agent must be added.

一方、残留塩素濃度については、第2図では酸
化終了前まではほとんど0に近く、酸化終了後は
酸化剤添加量に比例して上昇しているが、第3図
では終了点前でも酸化剤添加量に比例して残留塩
素濃度が徐々に増加している。よつて、残留塩素
濃度によつて終了点を知る方法も同様の問題点が
あつた。
On the other hand, as for the residual chlorine concentration, in Figure 2, it is almost 0 before the end of oxidation, and after the end of oxidation, it increases in proportion to the amount of oxidizing agent added. The residual chlorine concentration gradually increases in proportion to the amount added. Therefore, the method of determining the end point based on the residual chlorine concentration has similar problems.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明にあつては、ORPや残留塩
素量に代えてpHを酸化反応の指標とし、反応進
行にともなうpHの増減を測定し、pHの微分値の
符号の変化の時点を反応終了点とすることによ
り、正確な反応終了点を検知し、よつて酸化剤注
入量を正確に制御できるようにした。
Therefore, in the present invention, pH is used as an indicator of the oxidation reaction instead of ORP or the amount of residual chlorine, and the increase and decrease in pH as the reaction progresses is measured, and the point at which the sign of the differential value of pH changes is the point at which the reaction ends. By doing so, it was possible to accurately detect the end point of the reaction and thereby accurately control the amount of oxidizing agent injected.

第2図および第3図に示されるように、排水の
pH値の変化が低下から上昇に変る変曲点は、
Fe2+イオン濃度に影響されず、常に反応終了点
と一致している。この発明は、この事実に基づい
てなされたものである。
As shown in Figures 2 and 3, the drainage
The inflection point where the change in pH value changes from decreasing to increasing is
It is not affected by the Fe 2+ ion concentration and always coincides with the end point of the reaction. This invention was made based on this fact.

以下、詳しく説明する。 This will be explained in detail below.

第1図はこの発明の重金属含有排水の処理方法
で使用する排水処理装置の一例を示すもので、図
中符号1は重金属を含む排水が流入し酸化処理を
受ける酸化反応槽(槽)1である。この酸化反応
槽1には、内部に貯えられた排水のpHを測定す
るpHメータ(pH測定部)2と、排水を撹拌混合
する撹拌機3が取り付けられている。また、符号
4は酸化剤を貯留する酸化剤タンクであり、この
タンク4から酸化剤が供給ポンプ5により反応槽
1に送給されるようになつている。この酸化剤タ
ンク4と供給ポンプ5とから酸化剤供給部が構成
される。また、pHメータ2からの信号は、制御
部6に送られるようになつている。この制御部6
は入力したpH信号を微分し、この微分値の符号
の反転を検知し、この反転に基づいて供給ポンプ
5の運転を制御するものである。
Figure 1 shows an example of a wastewater treatment device used in the method for treating wastewater containing heavy metals according to the present invention, and reference numeral 1 in the figure indicates an oxidation reaction tank (tank) 1 into which wastewater containing heavy metals flows and undergoes oxidation treatment. be. This oxidation reaction tank 1 is equipped with a pH meter (pH measuring section) 2 that measures the pH of the waste water stored inside, and a stirrer 3 that stirs and mixes the waste water. Further, reference numeral 4 is an oxidizing agent tank for storing an oxidizing agent, and the oxidizing agent is supplied from this tank 4 to the reaction tank 1 by a supply pump 5. The oxidizing agent tank 4 and the supply pump 5 constitute an oxidizing agent supply section. Further, a signal from the pH meter 2 is sent to a control section 6. This control section 6
differentiates the input pH signal, detects the inversion of the sign of this differential value, and controls the operation of the supply pump 5 based on this inversion.

次に、この装置によつて排水を処理する方法を
説明する。まず、処理すべき排水が一定量酸化反
応槽1に流入すると、酸化剤タンク4から酸化剤
が供給ポンプ5の動作により槽1に供給される。
ここで使われる酸化剤としては、次亜塩素酸ナト
リウム、次亜塩素酸カリウム、次亜塩素酸カルシ
ウム、次亜塩素酸バリウムなどのアルカリ性を呈
する塩素系の酸化剤が使用される。これの濃度
は、特に限定されないが対象排水のFe2+、Mn2+
などの濃度、処理時間などによつて適宜決めら
れ、通常は0.1〜10%水溶液が用いられる。酸化
剤の供給は通常定量供給であるが、プログラム制
御を行い、処理時間の短縮を計ることもできる。
Next, a method for treating wastewater using this device will be explained. First, when a certain amount of wastewater to be treated flows into the oxidation reaction tank 1, the oxidizing agent is supplied from the oxidizing agent tank 4 to the tank 1 by the operation of the supply pump 5.
The oxidizing agent used here is an alkaline chlorine-based oxidizing agent such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, or barium hypochlorite. Although the concentration is not particularly limited, Fe 2+ and Mn 2+ in the target wastewater
It is determined appropriately depending on the concentration, processing time, etc., and usually a 0.1 to 10% aqueous solution is used. The oxidizing agent is normally supplied in a fixed quantity, but it is also possible to perform program control to shorten the processing time.

添加された酸化剤は、撹拌機3により排水と撹
拌、混合され、排水中のFe2+、Mn2+などが酸化
される。この酸化反応は、次式のように第1鉄 Fe2+→Fe3+→Fe(OH)↓ イオンが第2鉄イオンに変化し、さらに水酸化鉄
に変化するものであるのが、酸化反応の進行に伴
つて系内の水酸基が消費され、第2〜3図のよう
にpHが徐々に低下してゆく。このとき、制御部
6でのpH微分値は負である。やがて、当量点に
達すると上記式の反応は停止し、pH値の低下も
止まり、pH微分値は一旦ゼロになり、ついで酸
化剤の添加が続くのでpHが上昇し、微分値は正
となる。この時点で、制御部6はただちにポンプ
停止信号を発して供給ポンプ5の運転を停止させ
る。ついで、若干の時間撹拌をつづけ、水酸化鉄
の沈澱の生成を促したのち、反応槽1から処理水
を排出して次工程に送給する。以上により1回の
酸化処理が終了する。
The added oxidizing agent is stirred and mixed with the wastewater by the stirrer 3, and Fe 2+ , Mn 2+ , etc. in the wastewater are oxidized. In this oxidation reaction, ferrous Fe 2+ →Fe 3+ →Fe(OH)↓ ions change to ferric ions, and then to iron hydroxide, as shown in the following equation. As the reaction progresses, the hydroxyl groups in the system are consumed, and the pH gradually decreases as shown in Figures 2 and 3. At this time, the pH differential value in the control unit 6 is negative. Eventually, when the equivalence point is reached, the reaction in the above equation stops, the pH value stops decreasing, and the pH differential value once becomes zero.Then, as the oxidizing agent continues to be added, the pH increases and the differential value becomes positive. . At this point, the control section 6 immediately issues a pump stop signal to stop the operation of the supply pump 5. Next, stirring is continued for some time to promote the formation of iron hydroxide precipitate, and then the treated water is discharged from the reaction tank 1 and sent to the next step. With the above steps, one oxidation treatment is completed.

〔作用〕[Effect]

このような処理方法にあつては、酸化反応終点
を、排水中のFe2+イオンなどの濃度等に影響を
受けないpH値の微分値の符号の変化によつて検
知しているので、どのような排水でも正確に終点
を知ることができ、酸化剤を過剰に添加すること
がなくなる。
In this type of treatment method, the end point of the oxidation reaction is detected by a change in the sign of the differential value of the pH value, which is not affected by the concentration of Fe 2+ ions in the wastewater. Even with such wastewater, the end point can be accurately determined, eliminating the need to add excessive oxidizing agent.

なお、制御部6が供給ポンプ5の停止信号を発
するタイミングは、pH値の微分値がゼロもしく
はゼロに極めて接近した時点でもよく、この方
が、ポンプ5の慣性運転による酸化剤の過剰添加
が防止できて好ましい。
Note that the timing at which the control unit 6 issues the stop signal for the supply pump 5 may be when the differential value of the pH value is zero or very close to zero, and this prevents excessive addition of oxidizing agent due to inertial operation of the pump 5. It's nice to be able to do it.

実験例 1 200c.c.のガラスビーカーにpHメータのガラス電
極を取り付け、このpHメータと、微分回路、比
較回路、停止信号発生回路を有する制御装置とを
接続した。また、ビーカーには自動ビユーレツト
を取り付け、これの駆動ポンプが制御装置からの
停止信号により停止するように接続した。
Experimental Example 1 A glass electrode of a pH meter was attached to a 200 c.c. glass beaker, and the pH meter was connected to a control device having a differential circuit, a comparison circuit, and a stop signal generation circuit. Further, an automatic brewet was attached to the beaker, and its driving pump was connected so as to be stopped by a stop signal from the control device.

このビーカーに、Fe2+イオン濃度が25mg/、
pH6.4の排水を100ml入れ、自動ビユーレツトか
ら0.1%NaOCl水溶液を0.5ml/分の速度で流入せ
しめ、マグネツトスターラで撹拌した。NaOCl
水溶液の流入につれ、pHが低下し、pHが6.2で
pHの変化が一旦停止し、すぐに上昇しはじめた。
この時点でビユーレツトの動作が停止し、
NaOCl水溶液の流入が停止した。
In this beaker, Fe 2+ ion concentration is 25mg/,
100 ml of pH 6.4 wastewater was added, and a 0.1% NaOCl aqueous solution was flowed in from an automatic burette at a rate of 0.5 ml/min, followed by stirring with a magnetic stirrer. NaOCl
As the aqueous solution flows in, the pH decreases and reaches a pH of 6.2.
The pH stopped changing for a while and then immediately started rising.
At this point, Viewlet stops working and
The flow of NaOCl aqueous solution was stopped.

反応後、処理水中のFe2+イオン濃度を測定し
たところ、0.08mg/であり、かつ残留塩素濃度
は0.05mg/であつた。これより、Fe2+イオンは
ほぼ全量が酸化され、かつ残留塩素量もわずかで
あり、余分のNaOCl溶液を添加することなく、
Fe2+を完全に酸化できることがわかつた。
After the reaction, the Fe 2+ ion concentration in the treated water was measured and found to be 0.08 mg/, and the residual chlorine concentration was 0.05 mg/. From this, almost all of the Fe 2+ ions are oxidized, and the amount of residual chlorine is small, so it can be oxidized without adding extra NaOCl solution.
It was found that Fe 2+ can be completely oxidized.

実験例 2 実験例1における装置を用いて、Fe2+イオン
濃度40mg/、pH6.8の排水について同様の試験
を行なつたところ、pHが5.8まで低下し、上昇に
転じた。この時点でNaOCl水溶液の流入は停止
した。反応後の処理水中のFe2+イオン濃度、残
留塩素濃度は同様に微かであつた。
Experimental Example 2 Using the apparatus in Experimental Example 1, a similar test was conducted on wastewater with a Fe 2+ ion concentration of 40 mg/ and a pH of 6.8, and the pH decreased to 5.8 and then began to rise. At this point, the inflow of the NaOCl aqueous solution was stopped. The Fe 2+ ion concentration and residual chlorine concentration in the treated water after the reaction were also very small.

実験例 3 実験例1における装置を用いて、Fe2+イオン
濃度35mg/、Mn2+イオン濃度4mg/、pH6.7
の排水について同様の試験を行つたところ、pH
が6.0まで低下し、上昇に転じた。この時点で
NaOCl水溶液の流入は停止した。反応後の処理
水中のFe2+イオン濃度、残留塩素濃度は同様に
微かであり、Mn2+イオンは、初期濃度の約50%
に低下していた。
Experimental Example 3 Using the apparatus in Experimental Example 1, Fe 2+ ion concentration 35 mg/, Mn 2+ ion concentration 4 mg/, pH 6.7
When similar tests were conducted on wastewater from
decreased to 6.0 and started to rise. at this point
The flow of NaOCl aqueous solution was stopped. The Fe 2+ ion concentration and residual chlorine concentration in the treated water after the reaction are similarly slight, and the Mn 2+ ion concentration is approximately 50% of the initial concentration.
It had declined to .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の重金属含有排
水の処理方法は、排水中のFe2+やMn2+などの金
属イオンをNaOClなどのアルカリ性塩素系酸化
剤を加えて酸化する際、pHを測定し、このpHの
微分値の符号の変化を検知し、これによつて酸化
剤の添加を停止するようにしたものであるので、
排水中の金属イオン濃度やその他の外部要因によ
つて影響を受けることなく、常に正確な反応終点
を知ることができ、従来のORPや残留塩素濃度
を反応の指標とする方法に比べて、酸化剤を過剰
に加える必要がなく、経済的であり、かつ処理水
の水質も安定する。また、pHメータは安価であ
り、その較正等も容易で、メンテナンスの点でも
従来法に比べて有利となる。
As explained above, the method for treating wastewater containing heavy metals of the present invention involves measuring the pH when oxidizing metal ions such as Fe 2+ and Mn 2+ in the wastewater by adding an alkaline chlorine oxidizing agent such as NaOCl. However, the change in the sign of this pH differential value is detected and the addition of the oxidizing agent is stopped based on this.
The end point of the reaction can always be known accurately without being affected by the metal ion concentration in the wastewater or other external factors, and compared to conventional methods that use ORP or residual chlorine concentration as a reaction indicator, the oxidation It is not necessary to add excessive amount of agent, it is economical, and the quality of treated water is stabilized. Additionally, pH meters are inexpensive and easy to calibrate, making them easier to maintain than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の重金属含有排水の処理方法
で使用する排水処理装置の一例を示す概略構成
図、第2図および第3図は、いずれもFe2+イオ
ンを含む排水をNaOCl溶液で酸化処理したとき
のORP、pH、残留塩素濃度およびFe2+濃度の変
化を示すグラフである。 1…酸化反応槽、2…pHメータ、4…酸化剤
タンク、5…供給ポンプ、6…制御部。
Figure 1 is a schematic configuration diagram showing an example of a wastewater treatment device used in the method for treating wastewater containing heavy metals of the present invention, and Figures 2 and 3 both show wastewater containing Fe 2+ ions being oxidized with a NaOCl solution. It is a graph showing changes in ORP, pH, residual chlorine concentration, and Fe 2+ concentration during treatment. DESCRIPTION OF SYMBOLS 1... Oxidation reaction tank, 2... pH meter, 4... Oxidizing agent tank, 5... Supply pump, 6... Control part.

Claims (1)

【特許請求の範囲】[Claims] 1 重金属を含有する排水にアルカリ性塩素系酸
化剤を加えて重金属を酸化処理する際に、排水の
pHを測定し、このpH値の微分値の符号の変化を
検知して酸化剤の添加を停止することを特徴とす
る重金属含有排水の処理方法。
1 When adding an alkaline chlorine oxidizer to wastewater containing heavy metals to oxidize the heavy metals,
A method for treating wastewater containing heavy metals, characterized by measuring pH, detecting a change in the sign of the differential value of this pH value, and stopping the addition of an oxidizing agent.
JP27217884A 1984-12-24 1984-12-24 Method and apparatus for treating waste water containing heavy metal Granted JPS61149292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27217884A JPS61149292A (en) 1984-12-24 1984-12-24 Method and apparatus for treating waste water containing heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27217884A JPS61149292A (en) 1984-12-24 1984-12-24 Method and apparatus for treating waste water containing heavy metal

Publications (2)

Publication Number Publication Date
JPS61149292A JPS61149292A (en) 1986-07-07
JPH0144118B2 true JPH0144118B2 (en) 1989-09-26

Family

ID=17510164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27217884A Granted JPS61149292A (en) 1984-12-24 1984-12-24 Method and apparatus for treating waste water containing heavy metal

Country Status (1)

Country Link
JP (1) JPS61149292A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111431A1 (en) * 2011-02-18 2012-08-23 水ing株式会社 Method and device for treating waste liquid
JP6657720B2 (en) * 2015-09-30 2020-03-04 栗田工業株式会社 Steam power plant wastewater recovery method and device
WO2017110288A1 (en) * 2015-12-22 2017-06-29 住友電気工業株式会社 Water treatment method and water treatment system
JP6961024B2 (en) * 2016-04-04 2021-11-05 清水建設株式会社 Groundwater recharge system
JP6675639B2 (en) * 2016-04-04 2020-04-01 清水建設株式会社 Groundwater recharge system
JP6675638B2 (en) * 2016-04-04 2020-04-01 清水建設株式会社 Groundwater recharge system
JP6907353B2 (en) * 2016-04-04 2021-07-21 清水建設株式会社 Groundwater recharge system
JP6698409B2 (en) * 2016-04-04 2020-05-27 清水建設株式会社 Groundwater treatment method
JP7481117B2 (en) * 2020-01-15 2024-05-10 三菱ケミカルアクア・ソリューションズ株式会社 Water Treatment Methods

Also Published As

Publication number Publication date
JPS61149292A (en) 1986-07-07

Similar Documents

Publication Publication Date Title
US4416786A (en) Process for the treatment of continuous waste water streams having changing contents of different oxidizable materials with hydrogen peroxide
US4268397A (en) Method of treating waste water
JPH0144118B2 (en)
AU2014405584B2 (en) Addition of aluminum reagents to oxoanion-containing water streams
JP3268127B2 (en) Method for controlling oxidation of sulfite
JPS5831994B2 (en) Automatically controllable detoxification method for wastewater containing nitrite ions
CN112158941A (en) Fenton optimization oxidation treatment method for wastewater
US5306431A (en) Process for automatically controllable reduction of the nitrite content of nitrite-containing aqueous solutions to values below 1 mg/1
US20100181236A1 (en) Wastewater Treatment System
JPH06102195B2 (en) Method for controlling phosphorus concentration in wastewater
US10071923B2 (en) Addition of aluminum reagents to oxoanion-containing water streams
JP2836838B2 (en) Control method of adding amount of oxidizing agent or reducing agent
JPH0675707B2 (en) Method and apparatus for treating liquid containing cyanide compound
JP6165898B1 (en) Method for treating water containing reducing sulfur component
JPS5925635B2 (en) How to treat wastewater
JPH0824910B2 (en) Metal-containing waste liquid treatment device
JP6428719B2 (en) Method for treating hexavalent chromium-containing waste liquid and apparatus for treating hexavalent chromium-containing waste liquid
KR830002447B1 (en) Treatment method of drainage
JPS563677A (en) Method and apparatus for controlling chemical treating fluid
JPH02277594A (en) Treatment of cement-containing water
JPH06304578A (en) Treatment of hexavalent chromium-containing waste liquid
JPS5987094A (en) Waste water disposal
JP2003063826A (en) Method for recovering chromic acid and bichromic acid
JPH06190372A (en) Treatment of fluorine in waste water
JP2000254665A (en) Treatment of hexavalent chromium-containing waste water