JPH0143513B2 - - Google Patents

Info

Publication number
JPH0143513B2
JPH0143513B2 JP21423984A JP21423984A JPH0143513B2 JP H0143513 B2 JPH0143513 B2 JP H0143513B2 JP 21423984 A JP21423984 A JP 21423984A JP 21423984 A JP21423984 A JP 21423984A JP H0143513 B2 JPH0143513 B2 JP H0143513B2
Authority
JP
Japan
Prior art keywords
interpolation
image
signal
image signal
interpolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21423984A
Other languages
Japanese (ja)
Other versions
JPS6193786A (en
Inventor
Hirohisa Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP21423984A priority Critical patent/JPS6193786A/en
Publication of JPS6193786A publication Critical patent/JPS6193786A/en
Publication of JPH0143513B2 publication Critical patent/JPH0143513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/12Systems in which the television signal is transmitted via one channel or a plurality of parallel channels, the bandwidth of each channel being less than the bandwidth of the television signal
    • H04N7/122Systems in which the television signal is transmitted via one channel or a plurality of parallel channels, the bandwidth of each channel being less than the bandwidth of the television signal involving expansion and subsequent compression of a signal segment, e.g. a frame, a line

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、テレビジヨン信号等の動画像信号を
サブサンプリングして記録、符号化/伝送/復号
化する場合に、間引きされた動画像信号より、元
の基本標本化周波数で標本化された動画像信号を
高い精度で復元するために、内挿処理を行う際、
動画像信号の動き量を考慮した適応処理を行う方
式に関し、例えばテレビジヨン信号の高能率符号
化等に適用することができる。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for subsampling and recording, encoding/transmitting/decoding a moving image signal such as a television signal. Therefore, when performing interpolation processing to restore the video signal sampled at the original fundamental sampling frequency with high accuracy,
The present invention relates to a method for performing adaptive processing that takes into account the amount of motion of a moving image signal, and can be applied to, for example, high-efficiency encoding of television signals.

(従来の技術) テレビジヨン信号等のビデオ信号は3次元的信
号(空間+時間)であり、基本標本化周波数で標
本化された信号は莫大な情報量を有している。こ
のため、その信号を記録あるいは符号化/伝送/
復号化する際、簡単にその情報量を1/2、1/3、…
に減少させる事のできる方法として従来からサブ
サンプリングが広く用いられている。
(Prior Art) A video signal such as a television signal is a three-dimensional signal (space+time), and the signal sampled at the fundamental sampling frequency has a huge amount of information. Therefore, the signal can be recorded, encoded, transmitted,
When decoding, you can easily reduce the amount of information by 1/2, 1/3,...
Conventionally, subsampling has been widely used as a method that can reduce the amount of noise.

このサブサンプリングの方式、すなわちサブサ
ンプリングのパターンには多種のものが提案され
ている。
Various types of subsampling methods, ie, subsampling patterns, have been proposed.

ところで、画像信号は連続した静止画信号(フ
レーム信号)であり、各フレームは一定数の走査
線で構成されている。一般にこの走査は、画像を
上部より順次走査するのではなく、まず奇数の走
査線を走査し、その後、偶数の走査線を走査す
る。即ち1画像を2回に分けて走査後、画像信号
(2フイールド信号)とし、これによりCRT上の
フリツカ(ちらつき)を減少させる効果をもたら
している。
Incidentally, the image signal is a continuous still image signal (frame signal), and each frame is composed of a fixed number of scanning lines. Generally, this scanning does not sequentially scan the image from the top, but first scans the odd scan lines and then scans the even scan lines. That is, one image is divided into two scans and then converted into an image signal (two-field signal), which has the effect of reducing flicker on a CRT.

このため、上述したサブサンプリングパターン
もフレーム単位で繰り返すか、あるいは交替する
かの違いにより分類されているが、ここではフレ
ーム毎にサブサンプリングパターンを交替させる
1ラインPASS形サブサンプリングパターンに着
目し、このサブサンプリングパターンを適用して
得られた画像信号より、サブサンプリングを行わ
ない画像信号の画質とほぼ同等の画質を得るため
の方式に関し述べる事とする。
For this reason, the above-mentioned sub-sampling patterns are also classified based on whether they repeat or alternate on a frame-by-frame basis, but here we will focus on the 1-line PASS type sub-sampling pattern in which the sub-sampling pattern is alternated on a frame-by-frame basis. We will now discuss a method for obtaining an image quality almost equivalent to that of an image signal without subsampling from an image signal obtained by applying this subsampling pattern.

図2はこの1ラインPASS形サブサンプリング
パターンを示す図であり、あるフレームにおいて
は1画素おきにサブサンプルを行い、1走査線ご
とにサブサンプルする画素を交替させる。さらに
奇数フレームと偶数フレームでもサブサンプルす
る画素を交替させるサブサンプリングパターンで
あり以下の3点の特徴を有する。
FIG. 2 is a diagram showing this 1-line PASS type subsampling pattern, in which subsampling is performed every other pixel in a certain frame, and the pixels to be subsampled are alternated every scanning line. Furthermore, it is a subsampling pattern in which pixels to be subsampled are alternated in odd frames and even frames, and has the following three characteristics.

(1) 図3に示すように垂直方向の補間処理で元の
画像信号を復元する際、同一フイールド内の画
素を用いることにより行える。撮像管の積分効
果により画像が移動する方向にボケを生ずる
が、この場合は垂直方向の動きに対して良い補
間画像が得られる。一方、水平方向の動きに対
して補間による画質劣化が生ずる。
(1) As shown in FIG. 3, when restoring the original image signal by vertical interpolation processing, this can be done by using pixels within the same field. Although the image is blurred in the direction of movement due to the integral effect of the image pickup tube, in this case a good interpolated image can be obtained for vertical movement. On the other hand, image quality deterioration occurs due to interpolation for horizontal movement.

(2) 図4に示すように、水平方向の補間処理で元
の画像信号を復元する際、同一フイールド内の
画素を用いることにより行える。撮像管の積分
効果により画像が移動する方向にボケを生ずる
が、この場合は水平方向の動きに対して良い補
間画像が得られる。一方、垂直方向の動きに対
しては補間による画質劣化が生ずる。
(2) As shown in FIG. 4, when restoring the original image signal by horizontal interpolation processing, this can be done by using pixels within the same field. Although the image is blurred in the direction of movement due to the integral effect of the image pickup tube, in this case a good interpolated image can be obtained for horizontal movement. On the other hand, for vertical motion, image quality deterioration occurs due to interpolation.

(3) サブサンプリングパターンがフレーム交替形
であるため、図5に示すように時間軸方向の補
間処理で元の画像信号を復元できる。この場
合、画像の動き量が0に近いときは原画像が忠
実に再生される。一方、画像の量が大きいとき
は特有の補間による画質劣化が生ずる。
(3) Since the subsampling pattern is a frame alternation type, the original image signal can be restored by interpolation processing in the time axis direction, as shown in FIG. In this case, when the amount of image movement is close to 0, the original image is faithfully reproduced. On the other hand, when the amount of images is large, image quality deterioration occurs due to specific interpolation.

(発明が解決しようとする問題点) 以上述べたように、従来から行われていた補間
方式においては、特定の動きの画像信号に対して
は、良い画質を復元できる特性を有するものの、
一般の動画像は垂直及び水平方向にさまざまな動
きを示しまた動き量が大きい場合もあるため、こ
の一般の動画像に対して広く従来の補間方式を適
用する場合に特有の劣化が発生し、画像品質が著
しく劣化するという欠点を有している。
(Problems to be Solved by the Invention) As mentioned above, although the conventional interpolation methods have the characteristic of restoring good image quality to image signals of specific motion,
General moving images exhibit various movements in the vertical and horizontal directions, and the amount of movement may be large, so when conventional interpolation methods are widely applied to these general moving images, specific deterioration occurs. It has the disadvantage that image quality is significantly degraded.

本発明は上記従来技術の欠点に鑑みなされたも
ので、以上の補間方式固有の特長を生かしなが
ら、これらの補間方式のいずれかを固定的に用い
る場合に発生する画質劣化を防止する事を目的と
する。
The present invention was devised in view of the above-mentioned drawbacks of the prior art, and aims to prevent image quality deterioration that occurs when any of these interpolation methods is used fixedly, while taking advantage of the unique features of the above-mentioned interpolation methods. shall be.

(問題点を解決するための手段) 本発明の特徴は、上記の各種補間方式により得
られる補間値に対し、補間画素の周囲における画
像信号の動きに関する情報を用いて前記補間値
に、適当に重みを付して平均値をとりこれを補間
画素の画素値とすることにより、さまざまな広い
範囲の動き量を有する画像信号に対しても、補間
に伴う画像品質の劣化を防止することにある。
(Means for Solving the Problems) A feature of the present invention is that the interpolated values obtained by the above-mentioned various interpolation methods are appropriately adjusted to the interpolated values using information regarding the movement of the image signal around the interpolated pixel. By adding a weight and taking an average value and using this as the pixel value of the interpolated pixel, the purpose is to prevent deterioration of image quality due to interpolation even for image signals with a wide variety of motion amounts. .

(作用) 本発明による適応補間により、画像がさまざま
の方向に動いた場合にも画質劣化の生じない補間
が可能となる。すなわち水平方向の動きが大きい
場合には、自動的に図4の補間が実行され、垂直
方向の動きが大きい場合には自動的に図3の補
間、また静止画に対しては自動的に図5の補間
が、それぞれ実行されサブサンプリングを行う前
の原画像信号と比較しても画像品質、すなわち解
像度の劣化する事のない方式が実現される。
(Operation) The adaptive interpolation according to the present invention enables interpolation that does not cause image quality deterioration even when the image moves in various directions. In other words, if the movement in the horizontal direction is large, the interpolation shown in Figure 4 is automatically performed, and if the movement in the vertical direction is large, the interpolation shown in Figure 3 is automatically performed, and for still images, the interpolation shown in Figure 4 is automatically performed. A method is realized in which the image quality, that is, the resolution does not deteriorate even when the 5 interpolations are performed and compared with the original image signal before subsampling.

(実施例) 以下、本発明を詳細に説明する。図6に示すよ
うに補間に用いる画素はA〜Fの6画素とする。
この6画素以外の画素をも考慮すると更に良い補
間画質が得られるが、説明を簡略化するため、以
下ではこれらの6画素を用いた補間方式について
説明する。
(Example) The present invention will be described in detail below. As shown in FIG. 6, six pixels A to F are used for interpolation.
Even better interpolation image quality can be obtained by considering pixels other than these six pixels, but in order to simplify the explanation, an interpolation method using these six pixels will be described below.

前述したように、撮像管の積分特性によつて画
像が水平方向に移動する場合には、画素値の差分
値の絶対値|A−B|、|C−D|、|E−F|の
うち|A−B|が最小となる。一方、画像が垂直
方向に移動する場合には|C−D|が最小とな
り、また静止画の場合には|E−F|が最小とな
る。すなわち、このことから|A−B|、|C−
D|、|E−F|の大小関係より、画像信号の動
き方向に関する情報を得る事ができることとな
る。
As mentioned above, when the image moves horizontally due to the integral characteristics of the image pickup tube, the absolute value of the difference value of pixel values |A-B|, |C-D|, |E-F| Of these, |A−B| is the minimum. On the other hand, when the image moves in the vertical direction, |C-D| becomes the minimum, and when the image is a still image, |E-F| becomes the minimum. That is, from this, |A-B|, |C-
Information regarding the moving direction of the image signal can be obtained from the magnitude relationship of D| and |EF|.

一方、簡単な画像信号モデルより以下の関係式
が得られる。
On the other hand, the following relational expression can be obtained from a simple image signal model.

P{|A‐B|=min(|A‐B|、|C‐D|、|E‐F|)
}〜1/A−B/1/A−B+1/C−D+1/E−F
△=Ph……(1) P{|C‐D|=min(|A‐B|、|C‐D|、|E‐F|)
}〜1/C−D/1/A−B+1/C−D+1/E−F
△=Pv……(2) P{|E‐F|=min(|A‐B|、|C‐D|、|E‐F|)
}〜1/E−F/1/A−B+1/C−D+1/E−F
1/A−BPt……(3) 今、補間信号を前記6画素A〜Fの加重平均と
し、これに式(1)〜(3)によつて得られた確率を掛
け、平均をとつた値とする事により、画像信号の
動き量に対応した適応補間値を下記の式により求
めることができる。すなわち 補間信号=Ph×(水平方向補間信号)+Pv×(垂直方向
補間信号)+Pt×(時間軸方向補間信号) 1/1/A‐B+1/C‐D+1/E‐F{1/|A‐
B| △+B/2+1/|C‐D| C+D/2+1/|
E‐F| E+F/2……(4) となる。
P{|A-B|=min(|A-B|, |C-D|, |E-F|)
}~1/A-B/1/A-B+1/C-D+1/E-F
△=P h ……(1) P||C-D|=min (|A-B|, |C-D|, |E-F|)
}~1/C-D/1/A-B+1/C-D+1/E-F
△=P v ……(2) P{|E‐F|=min(|A‐B|, |C‐D|, |E‐F|)
}~1/E-F/1/A-B+1/C-D+1/E-F
1/A-BP t ...(3) Now, let the interpolation signal be the weighted average of the six pixels A to F, multiply this by the probabilities obtained by equations (1) to (3), and calculate the average. By using this value, an adaptive interpolation value corresponding to the amount of motion of the image signal can be obtained using the following equation. That is, interpolation signal = P h × (horizontal interpolation signal) + P v × (vertical interpolation signal) + P t × (time axis interpolation signal) 1/1/A-B+1/C-D+1/E-F{1/ |A-
B| △+B/2+1/|C-D| C+D/2+1/|
E-F|E+F/2...(4)

なお、上述説明に用いた、適応補間係数Ph
Pv、Ptの与え方は式(1)、(2)、(3)以外にも多く考え
られる。例えば Ph=1−|A−B|/|A−B|+|C−D|+|E−
F| Pv=1−|C−D|/|A−B|+|C−D|+|E−
F| Pt=1−|E−F|/|A−B|+|C−D|+|E−
F| ……(5) Ph=1|A−B|=min(|A−B|、|C−D|、|
E−F|) 0 その他 Pv=1|C−D|=min(|A−B|、|C−D|、|
E−F|) 0 その他 Pt=1|E−F|=min(|A−B|、|C−D|、|
E−F|) 0 その他 ……(6) が考えられる。これ等の適応補間係数を用いれば
(1)、(2)、(3)式を用いる場合よりハードウエア量の
軽減化を図る事が可能である。
Note that the adaptive interpolation coefficient P h used in the above explanation,
There are many possible ways to give P v and P t other than equations (1), (2), and (3). For example, P h =1-|A-B|/|A-B|+|C-D|+|E-
F|P v =1−|C−D|/|A−B|+|C−D|+|E−
F | P t = 1- | E-F | / | A-B | + | C-D | + | E-
F | ...(5) P h = 1 | A-B | = min ( | A- B |, | C- D |, |
E-F |) 0 Other P v = 1 | C-D | = min ( | A-B |, | C-D |, |
E-F |) 0 Other P t = 1 | E-F | = min ( | A-B |, | C-D |, |
E-F |) 0 Others ...(6) is possible. If these adaptive interpolation coefficients are used,
It is possible to reduce the amount of hardware compared to using equations (1), (2), and (3).

図1に適応補間の回路構成の実施例を示す。図
1において1,2はフレームメモリ、3は重み計
算部、4は補間値計算部、5,6,7は乗算器、
8,9は加算器である。
FIG. 1 shows an example of a circuit configuration for adaptive interpolation. In FIG. 1, 1 and 2 are frame memories, 3 is a weight calculation unit, 4 is an interpolation value calculation unit, 5, 6, and 7 are multipliers,
8 and 9 are adders.

以下、この実施例の動作を説明する。サブサンプ
リングされた入力画像信号はフレームメモリ1,
2に順次記憶され、適応補間に用いられる画素値
A、B、C、D、E、FのうちA、B、C、Dはフレー

メモリ1からEはフレームメモリ2から、Fはフ
レームメモリに記憶される事なく、読み出され、重
み計算部3、及び補間値計算部4へ入力される。重
み計算部3は公知の回路素子から容易に構成さ
れ、式(1)、(2)、(3)あるいは(5)、(6)に従つて、重みP
h
Pv、Ptを計算する。一方、このような計算結果を予
め全て求めておいてROMに記憶しておけば、高
速処理が可能である。補間値計算部4では入力画
素値A〜Fより1/2(A+B)、1/2(C+D)、1/2(E+
F)を計算する。この補間値計算部4の出力は乗算
器5,6,7において、それぞれ重みPh、Pv、Ptと掛
け合わされた後、加算器8,9で和をとられ、最終
的な適応補間出力となる。
The operation of this embodiment will be explained below. The subsampled input image signal is stored in frame memory 1,
Of the pixel values A, B, C, D, E, and F that are sequentially stored in frame memory 2 and used for adaptive interpolation, A, B, C, and D are stored in frame memory 1 to E from frame memory 2, and F is stored in frame memory It is read out without being stored and input to the weight calculation section 3 and the interpolation value calculation section 4. The weight calculation section 3 is easily constructed from known circuit elements, and calculates the weight P according to equations (1), (2), (3) or (5), (6).
h ,
Calculate Pv , Pt . On the other hand, if all such calculation results are obtained in advance and stored in the ROM, high-speed processing is possible. The interpolation value calculation unit 4 calculates 1/2(A+B), 1/2(C+D), 1/2(E+) from the input pixel values A to F.
F). The output of this interpolation value calculation unit 4 is multiplied by weights P h , P v , P t in multipliers 5, 6, and 7, respectively, and then summed in adders 8 and 9, resulting in the final adaptive interpolation. This becomes the output.

(発明の効果) 以上、詳述したごとく、本発明によつて、サブ
サンプリングされた画像信号に対して画像の動き
量に適応した補間を行うことにより、さまざまな
動きを示し、また動き量が大きい動画像信号にお
いても画像品質が、差程劣化させる事はなく、記
録、符号化/伝送/復号化する場合に情報量を1/
2、1/3、…に減少させる事ができ、テレビジヨン
信号の帯域圧縮デジタル伝送における、高能率符
号化に対して効果を有する。
(Effects of the Invention) As described in detail above, according to the present invention, by performing interpolation that is adapted to the amount of image motion on a subsampled image signal, various motions can be displayed, and the amount of motion can be reduced. The image quality does not deteriorate significantly even with large moving image signals, and the amount of information is reduced to 1/2 when recording, encoding, transmitting, and decoding.
It can be reduced to 2, 1/3, etc., and is effective for high-efficiency encoding in band compression digital transmission of television signals.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明による適応補間の回路構成の実施
例、図2は本発明の対象とするフレーム交替1ラ
インPASS形サブサンプリングパターンを示す
図、図3、図4及び図5は従来の固定補間法を示
す図、図6は補間に用いる画素の時空間配置を示
す図である。 1,2;フレームメモリ、3;重み計算部、
4;補間値計算部、5,6,7;乗算器、8,
9;加算器。
FIG. 1 is an example of a circuit configuration for adaptive interpolation according to the present invention, FIG. 2 is a diagram showing a frame alternating one-line PASS type subsampling pattern to which the present invention is applied, and FIGS. 3, 4, and 5 are for conventional fixed interpolation. FIG. 6 is a diagram showing the spatio-temporal arrangement of pixels used for interpolation. 1, 2; frame memory; 3; weight calculation unit;
4; Interpolated value calculation unit, 5, 6, 7; Multiplier, 8,
9; Adder.

Claims (1)

【特許請求の範囲】[Claims] 1 標本化された画像信号にサブサンプリングを
行つて情報量を減少させた信号から、補間により
元の標本化画像信号を復元する画像信号の補間方
式において、被補間画素の周囲の画素値より、水
平方向、垂直方向、及び時間軸方向の適応補間係
数と、水平方向、垂直方向、及び時間軸方向の補
間値とを求め、それぞれの方向の適応補間係数と
補間値との積の総和を求め、これを被補間画素値
とする事を特徴とする画像信号の適応補間方式。
1. In an image signal interpolation method that restores the original sampled image signal by interpolation from a signal whose information content has been reduced by subsampling the sampled image signal, the pixel values surrounding the interpolated pixel are Find the adaptive interpolation coefficients in the horizontal, vertical, and time axis directions, and the interpolated values in the horizontal, vertical, and time axis directions, and find the sum of the products of the adaptive interpolation coefficients and the interpolated values in each direction. , an adaptive interpolation method for image signals characterized by using this as the interpolated pixel value.
JP21423984A 1984-10-15 1984-10-15 Adaptive interpolation system of picture signal Granted JPS6193786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21423984A JPS6193786A (en) 1984-10-15 1984-10-15 Adaptive interpolation system of picture signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21423984A JPS6193786A (en) 1984-10-15 1984-10-15 Adaptive interpolation system of picture signal

Publications (2)

Publication Number Publication Date
JPS6193786A JPS6193786A (en) 1986-05-12
JPH0143513B2 true JPH0143513B2 (en) 1989-09-21

Family

ID=16652483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21423984A Granted JPS6193786A (en) 1984-10-15 1984-10-15 Adaptive interpolation system of picture signal

Country Status (1)

Country Link
JP (1) JPS6193786A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816913A (en) * 1987-11-16 1989-03-28 Technology, Inc., 64 Pixel interpolation circuitry as for a video signal processor
FR2627046A1 (en) * 1988-02-05 1989-08-11 Labo Electronique Physique Image transmission system, transmitter device and receiver device suitable for such a system

Also Published As

Publication number Publication date
JPS6193786A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
US5055927A (en) Dual channel video signal transmission system
US5134480A (en) Time-recursive deinterlace processing for television-type signals
US5237413A (en) Motion filter for digital television system
US5028995A (en) Picture signal processor, picture signal coder and picture signal interpolator
US4636857A (en) Scanning line interpolation circuit for television signal
US5371549A (en) Decoding method and system for providing digital television receivers with multipicture display by way of zero masking transform coefficients
JPH01500236A (en) Bandwidth compressed video signal reception and playback device
JP3436367B2 (en) Digital video signal processor device
KR20020001951A (en) Apparatus and Method for Progressive Scanning Image Converting, and Apparatus for Vertical Scanning Rate Converting Using the same
JP3946781B2 (en) Image information conversion apparatus and method
JPH0846934A (en) Processor for digital picture signal
JPH0143513B2 (en)
JPH06209456A (en) Decoding system to be used for small-sized high quality television receiver
JPS6027287A (en) Motion detecting circuit
JPH0363275B2 (en)
JPH0851622A (en) Processor for digital picture signal
JP3271109B2 (en) Digital image signal processing apparatus and processing method
JP2550532B2 (en) High-efficiency encoder for color video signal
JP3480015B2 (en) Apparatus and method for generating image data
JP3480461B2 (en) Digital image signal processing apparatus and processing method
JP3158802B2 (en) Video device with interpolation function
JP3653287B2 (en) Image information conversion apparatus and image information conversion method
JP2998388B2 (en) Image processing method
JP3470380B2 (en) Apparatus and method for processing digital image signal
JP2832949B2 (en) High-efficiency code decoding device