JPH0143128B2 - - Google Patents

Info

Publication number
JPH0143128B2
JPH0143128B2 JP57164578A JP16457882A JPH0143128B2 JP H0143128 B2 JPH0143128 B2 JP H0143128B2 JP 57164578 A JP57164578 A JP 57164578A JP 16457882 A JP16457882 A JP 16457882A JP H0143128 B2 JPH0143128 B2 JP H0143128B2
Authority
JP
Japan
Prior art keywords
hole
intake
exhaust
valve body
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57164578A
Other languages
Japanese (ja)
Other versions
JPS5954715A (en
Inventor
Noboru Ishida
Mitsuyoshi Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP16457882A priority Critical patent/JPS5954715A/en
Publication of JPS5954715A publication Critical patent/JPS5954715A/en
Publication of JPH0143128B2 publication Critical patent/JPH0143128B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/021Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with one rotary valve

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はロータリバルブを使用した多気筒内燃
機関に関する。 [従来の技術] ロータリバルブを使用した多気筒内燃機関にお
いては、理想的なバルブ開閉時期が得られるが、
反面機構の複雑化、バルブの気密性、摺動部の耐
久性などの問題点があつた。 たとえば、特開昭50−125115号公報(従来例
1)には、タイミング装置を備えたロータリバル
ブ内燃機関が、実開昭55−180040号明細書全文
(従来例2)には、内燃機関の吸気弁上流の吸気
ポートにロータリバルブを設けた考案が、実公昭
37−17407号公報(従来例3)には、エンジン回
転速度に応じて吸気弁体への開口面積を増減調節
する装置が、特開昭55−57646号公報(従来例4)
には、燃焼室の圧縮室にセラミツクを配設した構
造が、また、実開昭56−45105号公報(従来例5)
には、ロータリバルブの外周にセラミツクを突設
した考案がそれぞれ記載されている。 [発明が解決しようとする問題点] しかるに、各従来例は以下に述べる点がある。 従来例1は、構造上ロータリバルブのセラミツ
ク化の思想はなく、ロータリバルブの特性が十分
に発揮され難い。 従来例2は、排気ポートにロータリバルブが設
けられていなく、ロータリバルブの形状が特定さ
れていないため、エンジンの全回転数域および負
荷のかかる範囲全体にわたり、エンジンの安定し
た燃焼が得られない。 従来例3は、機関の吸気弁の通口面積をエンジ
ン回転速度に応じて増減調整させて各回転速度に
つき給気比がほぼ最大となることのみ着眼してお
り、またセラミツク化に関しては示唆すらされて
いない。 従来例4は、シリンダヘツドおよび弁体の一部
をセラミツク化しているにすぎず、構成要件にロ
ータリバルブを含んでいない。よつてその部分の
セラミツク化は不可能である。 従来例5は、耐熱性の向上にかかる考案であ
り、このような構造のロータリバルブをセラミツ
ク化しても本発明のような効果は得られない。 本発明の目的は、簡単な構造でセラミツク化し
やすく、車速、スロツトル開度など車両走行条件
に応じ理想的なバルブ開閉時期と開弁時間が調節
でき、バルブの気密性、摺動部の耐久性に優れ
た、多気筒内燃機関における弁体変位機構付きセ
ラミツク製ロータリバルブ方式多気筒内燃機関の
提供にある。 [問題点を解決するための手段] 上記目的達成のため、本発明の弁体変位機構付
きセラミツク製ロータリバルブ方式多気筒内燃機
関は、つぎの構成を採用した。 第1の発明は、(a)側壁に吸気孔および排気孔が
形成され、長手方向に前記吸気孔、排気孔および
燃焼室の全てに連通するとともに、円形断面を有
する一つの直孔が形成され、該直孔と前記吸排気
孔との連結面を直孔の中心軸に沿つて半径が漸変
する長円状に形成したセラミツク製シリンルダヘ
ツド本体と、(b)円柱状を呈し、吸排気用の各湾曲
孔を有するとともに、前記直孔に回転自在でかつ
軸方向に摺動自在に嵌め込まれ、吸気用の湾曲孔
は所定のクランク回転角度範囲で前記燃焼室と吸
気孔とを連絡し、排気用の湾曲孔は他の所定回転
角度範囲で前記排気孔と燃焼室とを連絡するセラ
ミツク製ロータリバルブ弁体と、(c)車速、スロツ
トル開度など車両走行条件に応じて、吸気孔、排
気孔の各湾曲孔への連通面積、および開弁時期と
を制御するように弁体を軸方向へ変位させる弁体
変位機構とからなる。 第2の発明は、(a1)側壁に形成される吸気孔
および排気孔と長手方向に形成され前記吸気孔と
燃焼室とを連通するとともに、円形断面を有する
第1の直孔と、長手方向に形成され前記排気孔と
燃焼室と連通する円形断面を有する第2の直孔と
が形成され、これら第1、第2の直孔と前記吸排
気孔との連結面を第1、第2の直孔の中心軸に沿
つて半径が漸変する長円状に形成したセラミツク
シリンダヘツド本体と、(b1)円柱状を呈し、吸
排気用の各湾曲孔を有するとともに、前記各直孔
に回転自在でかつ軸方向に摺動自在に嵌め込ま
れ、吸気用の湾曲孔は所定のクランク回転角度範
囲で前記燃焼室と吸気孔とを連絡し、排気用の湾
曲孔は他の所定回転角度範囲で前記排気孔と燃焼
室とを連絡するセラミツク製ロータリバルブ弁体
と、(c)車速、スロツトル開度など車両走行条件に
応じて、吸気孔、排気孔の各湾曲孔への連通面
積、および開弁時期とを制御するように弁体を軸
方向へ変位させる弁体変位機構とからなる。 [作用および発明の効果] 本発明の(特許請求の範囲第1項および第2項
にかかる)の弁体変位機構付きセラミツク製ロー
タリバルブ方式多気筒内燃機関は次の作用および
効果を奏する。 (イ) 弁体とシリンダヘツド本体とがともにセラミ
ツクであるため、熱膨張差による摺動面のシー
ル性の低下が防止でき耐久性に優れる。 (ロ) 摺動面がともにセラミツク面あるため一方の
摩耗が防止できる。即ち、吸排気孔を備えたシ
リンダヘツドの直孔と、この直孔に嵌め込んだ
弁体の一方が金属材で他方がセラミツク材で構
成された場合は、金属材の摩擦が大きく、耐久
性が著しく劣るのに対し、本発明は両者がセラ
ミツク材で構成されているため、耐摩耗性に優
れ、かかる不具合が解消できるものであり、吸
気圧、爆発圧において洩れがなく、機関の安定
した燃焼を得ることができるなど気密性におい
て格別の効果を奏する。 (ハ) 弁体が滑らかな回転運動を行うのみで、往復
運動を行う弁機構に比べ衝撃力が加わりにく
い。 シリンダヘツド、弁体は、応力集中を防止し
た形状を採用していることにより次の効果が生
じる。 (ニ) セラミツク材で焼成する場合に製造が容易で
あるとともに熱衝撃が加わつたときの応力集中
が防止できる。 弁体内の吸排気孔を湾曲させていることによ
り次の効果が生じる。 (ホ) 吸気多岐管および排気多岐管が機関の側方に
配置でき、機関の上下方向の寸法が低減できる
ので車両、小型船舶などへの搭載性が良いな
ど、簡単な構造でセラミツク化しやすい。 車速、スロツトル開度など車両走行条件に応
じて、吸気孔、排気孔の各湾曲孔への連通面
積、および開弁時期とを制御するように弁体を
軸方向へ変位させる弁体変位機構により次の効
果が生じる。 (ヘ) 車両走行条件に応じ理想的なバルブ開閉時期
と開弁時間が調節でき、これにより機関全回転
数域において出力馬力および出力トルクの増大
が図れるとともに燃焼節約の向上が可能とな
る。 一つの直孔、または第1、第2の直孔が形成
されたセラミツク製シリンダヘツド本体と、一
つの直孔、または第1、第2の直孔に回転自在
でかつ軸方向に摺動自在に嵌め込まるセラミツ
ク製ロータリバルブ弁体とを備えていることに
より次の効果が生じる。 (ト) 直孔と、吸気用、排気用の湾曲孔との、連通
面積および開弁時期とが滑らかに推移して制御
できる。 [実施例] つぎに本発明を第1図および第2図に示す一実
施例(特許請求の範囲第1項に対応)に基づき説
明する。 第1図は4サイクル、4気筒の機関を示し、S
1〜S4は各気筒、CSはクランクシヤフト、P
1〜P4はピストン、C1〜C4はコネクテイン
グロツドを示す。 1は窒化珪素など耐熱衝撃性に優れた窒化珪素
質セラミツクを主体とするセラミツク焼結体で形
成された機関のシリンダヘツド、21,23,2
5,27はシリンダヘツド1に設けられた各気筒
S1〜S4の吸気口である。2は、前記クランク
軸CSと平行してシリンダヘツド1に吸気孔21,
23,25,27および排気孔22,24,2
6,28と交差して連絡するように形成された円
形断面直孔を示す。3は、窒化珪素を主体とする
セラミツク焼結体製で直孔2の内周壁と緊密に嵌
合すると共に滑らかに回転および軸方向の摺動が
できるよう直孔2内に嵌め込まれた円柱状の弁体
である。 本実施例では各気筒S1,S2,S3,S4と
シリンダヘツドの各吸気孔21,23,25,2
7および各排気孔22,24,26,28とは直
孔2と各気筒との間に形成された吸排気用の孔4
1,42,43,44を介してなされている。こ
れら吸排気用の孔41,42,43,44と直孔
2との連結面は、第2図に示す如く中心軸に沿つ
て半径が漸変する長円(卵形)状を呈するととも
に中心軸が直孔2の中心軸に対して傾斜し、各吸
気孔21,23,25,27および各排気孔2
2,24,26,28の直孔2との連結面は同一
半径の長円となつている。 弁体3は、それぞれ所定の回転角度範囲でシリ
ンダヘツドの各吸気口および各排気口と各燃焼室
とを連絡するほぼ真円の吸排気用孔31,33,
35,37が設けられている。この弁体3の一端
にはシリンダヘツドに回転自在に支持されたタイ
ミングギア4がスプライン嵌合され、さらに該タ
イミングギア4はタイミングベルト4Aを介して
前記クランクシヤフトCSの一端に固着されたド
ライブギア4Bに連結され、他端には弁体3を軸
方向へ変位させる駆動機構8に連絡されている。
このように吸排気用の孔41,42,43,44
と直孔2との連絡面の形状が連結面の中心軸に対
して傾斜していることにより、バルブの開く時期
が調整でき、また半径が中心軸に沿つて変化する
ことによりバルブの開く時間が増減する。 この弁体3の駆動機構8は、たとえば車速、ス
ロツトル開度、出力軸トルクなどの車両走行条件
を入力とし、弁体3に回転自在に支持された連結
部材を介して弁体3を軸方向に変位させる油圧サ
ーボと、該連結部材に当接し、車両走行条件に応
じて回転し弁体3を変位させるカムなどにより構
成される。 この機関は点火がS1→S3→S4→S2の順
序になされ、表の如くクランク角と吸気、圧
縮、爆発、排気の各工程がなされる。
[Industrial Application Field] The present invention relates to a multi-cylinder internal combustion engine using rotary valves. [Prior Art] In a multi-cylinder internal combustion engine using rotary valves, ideal valve opening/closing timing can be obtained.
On the other hand, there were problems such as the complexity of the mechanism, the airtightness of the valve, and the durability of the sliding parts. For example, JP-A-50-125115 (Conventional Example 1) describes a rotary valve internal combustion engine equipped with a timing device, and the full text of Utility Model Application Laid-Open No. 55-180040 (Conventional Example 2) describes an internal combustion engine equipped with a timing device. The idea of installing a rotary valve in the intake port upstream of the intake valve was developed by Jikosho.
No. 37-17407 (Conventional Example 3) discloses a device that adjusts the opening area to the intake valve body according to the engine speed, as disclosed in Japanese Patent Application Laid-Open No. 55-57646 (Conventional Example 4).
The structure in which ceramic is arranged in the compression chamber of the combustion chamber is also disclosed in Utility Model Application Publication No. 56-45105 (conventional example 5).
Each of these describes an idea in which ceramic is protruded from the outer periphery of a rotary valve. [Problems to be Solved by the Invention] However, each of the conventional examples has the following points. In Conventional Example 1, there is no concept of using ceramic for the rotary valve due to its structure, and it is difficult to fully exhibit the characteristics of the rotary valve. Conventional Example 2 does not have a rotary valve in the exhaust port, and the shape of the rotary valve is not specified, so stable engine combustion cannot be achieved over the entire engine speed range and load range. . Conventional Example 3 focuses only on increasing or decreasing the air intake area of the engine's intake valve according to the engine rotational speed so that the air supply ratio is almost the maximum at each rotational speed, and there is no suggestion regarding the use of ceramics. It has not been. In Conventional Example 4, only a portion of the cylinder head and the valve body are made of ceramic, and the rotary valve is not included in the constituent elements. Therefore, it is impossible to make that part into ceramic. Conventional Example 5 is an idea related to improving heat resistance, and even if a rotary valve with such a structure is made of ceramic, the effect similar to that of the present invention cannot be obtained. The purpose of the present invention is to have a simple structure and be easily made of ceramic, to be able to adjust ideal valve opening/closing timing and valve opening time according to vehicle running conditions such as vehicle speed and throttle opening, and to maintain valve airtightness and durability of sliding parts. To provide a ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism, which is excellent in performance. [Means for Solving the Problems] In order to achieve the above object, the ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism of the present invention employs the following configuration. The first invention provides (a) an intake hole and an exhaust hole formed in the side wall, communicating with all of the intake hole, exhaust hole, and combustion chamber in the longitudinal direction, and forming one straight hole having a circular cross section. , (b) a ceramic cylinder head main body in which the connection surface between the straight hole and the intake/exhaust hole is formed in an elliptical shape with a radius that gradually changes along the central axis of the straight hole; Each curved hole is fitted into the straight hole rotatably and slidably in the axial direction, and the intake curved hole communicates the combustion chamber and the intake hole within a predetermined crank rotation angle range, and the exhaust (c) The curved hole for the ceramic rotary valve body connects the exhaust hole and the combustion chamber in a predetermined rotation angle range, and It consists of a valve body displacement mechanism that displaces the valve body in the axial direction so as to control the communication area of the hole to each curved hole and the valve opening timing. A second invention provides (a1) a first straight hole that is formed in the longitudinal direction of an intake hole and an exhaust hole formed in the side wall and communicates the intake hole and the combustion chamber, and that has a circular cross section; A second straight hole having a circular cross section is formed and communicates with the exhaust hole and the combustion chamber. (b1) A ceramic cylinder head body formed in an elliptical shape with a radius that gradually changes along the central axis of the straight hole; The curved hole for intake communicates the combustion chamber and the intake hole within a predetermined range of crank rotation angles, and the curved hole for exhaust connects within other predetermined rotation angle ranges. (c) A ceramic rotary valve body that connects the exhaust hole and the combustion chamber, and (c) the communication area of the intake hole and the exhaust hole to each curved hole, and the opening area depending on vehicle running conditions such as vehicle speed and throttle opening. and a valve body displacement mechanism that displaces the valve body in the axial direction so as to control the valve timing. [Operations and Effects of the Invention] The ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism according to the present invention (according to claims 1 and 2) has the following operations and effects. (a) Since both the valve body and the cylinder head body are made of ceramic, the sealing performance of the sliding surfaces can be prevented from deteriorating due to differences in thermal expansion, resulting in excellent durability. (b) Since both sliding surfaces are ceramic surfaces, wear on one side can be prevented. In other words, if one of the straight hole in the cylinder head with the intake and exhaust holes and the valve body fitted into this straight hole are made of metal and the other is made of ceramic, the friction between the metal materials will be large and the durability will deteriorate. In contrast, in the present invention, since both parts are made of ceramic material, it has excellent wear resistance and can eliminate this problem.Therefore, there is no leakage at intake pressure or explosion pressure, and stable combustion of the engine is achieved. It is extremely effective in terms of airtightness. (c) Since the valve body only performs smooth rotational motion, impact force is less likely to be applied compared to a valve mechanism that performs reciprocating motion. The cylinder head and valve body have shapes that prevent stress concentration, resulting in the following effects. (d) When fired with ceramic material, manufacturing is easy and stress concentration can be prevented when thermal shock is applied. The following effects are produced by curving the intake and exhaust holes in the valve body. (E) The intake manifold and exhaust manifold can be placed on the side of the engine, reducing the vertical dimension of the engine, making it easy to mount on vehicles, small ships, etc., and the structure is simple and can be easily made of ceramic. A valve body displacement mechanism that displaces the valve body in the axial direction so as to control the communication area of the intake hole and exhaust hole to each curved hole and the valve opening timing according to vehicle running conditions such as vehicle speed and throttle opening degree. The following effects occur. (F) The ideal valve opening/closing timing and valve opening time can be adjusted according to the vehicle running conditions, thereby making it possible to increase output horsepower and output torque over the entire engine speed range, and to improve combustion savings. A ceramic cylinder head body in which one straight hole or a first and second straight hole is formed, and a cylinder head that is rotatable and slidable in the axial direction through the one straight hole or the first and second straight holes. By having a ceramic rotary valve body that fits into the valve body, the following effects are produced. (g) The communication area and valve opening timing between the straight hole and the curved holes for intake and exhaust can be controlled in a smooth manner. [Example] Next, the present invention will be described based on an example (corresponding to claim 1) shown in FIGS. 1 and 2. Figure 1 shows a 4-stroke, 4-cylinder engine.
1 to S4 are each cylinder, CS is the crankshaft, P
1 to P4 are pistons, and C1 to C4 are connecting rods. 1 is an engine cylinder head formed of a ceramic sintered body mainly made of silicon nitride ceramic having excellent thermal shock resistance such as silicon nitride; 21, 23, 2;
Reference numerals 5 and 27 indicate intake ports for each of the cylinders S1 to S4 provided in the cylinder head 1. 2 is an intake hole 21 in the cylinder head 1 parallel to the crankshaft CS;
23, 25, 27 and exhaust holes 22, 24, 2
6 and 28 are shown to intersect and communicate with each other. 3 is a cylindrical column made of ceramic sintered body mainly made of silicon nitride and fitted into the straight hole 2 so as to tightly fit with the inner circumferential wall of the straight hole 2 and to allow smooth rotation and axial sliding. This is the valve body. In this embodiment, each cylinder S1, S2, S3, S4 and each intake hole 21, 23, 25, 2 of the cylinder head.
7 and each exhaust hole 22, 24, 26, 28 are intake and exhaust holes 4 formed between the straight hole 2 and each cylinder.
1, 42, 43, and 44. The connecting surface between these air intake and exhaust holes 41, 42, 43, 44 and the straight hole 2 has an oval (ovoid) shape with a radius that gradually changes along the central axis, as shown in FIG. The axis is inclined with respect to the central axis of the straight hole 2, and each intake hole 21, 23, 25, 27 and each exhaust hole 2
The connecting surfaces of the holes 2, 24, 26, and 28 with the straight hole 2 are ellipses with the same radius. The valve body 3 has substantially perfect circular intake/exhaust holes 31, 33, which connect each intake port and each exhaust port of the cylinder head with each combustion chamber within a predetermined rotational angle range, respectively.
35 and 37 are provided. A timing gear 4 rotatably supported by the cylinder head is spline-fitted to one end of the valve body 3, and the timing gear 4 is a drive gear fixed to one end of the crankshaft CS via a timing belt 4A. 4B, and the other end is connected to a drive mechanism 8 that displaces the valve body 3 in the axial direction.
In this way, the holes 41, 42, 43, 44 for intake and exhaust
Since the shape of the connecting surface between the connecting surface and the straight hole 2 is inclined with respect to the central axis of the connecting surface, the opening timing of the valve can be adjusted, and the opening time of the valve can be adjusted by changing the radius along the central axis. increases or decreases. The drive mechanism 8 for the valve body 3 receives vehicle running conditions such as vehicle speed, throttle opening, and output shaft torque as input, and drives the valve body 3 in the axial direction via a connecting member rotatably supported by the valve body 3. It is composed of a hydraulic servo that displaces the valve body 3, a cam that comes into contact with the connecting member, rotates according to vehicle running conditions, and displaces the valve body 3, and the like. In this engine, ignition is performed in the order of S1 → S3 → S4 → S2, and the crank angle and intake, compression, explosion, and exhaust processes are performed as shown in the table.

【表】 弁体3の駆動機構8は、たとえば機関回転数に
応じて弁体3を変位させ、回転数が大きいとき第
3図に示す如く弁体3の吸排気用孔31,32,
33,34がシリンダヘツドの吸排気孔41,4
2,43,44の径が大きく且つ点火時期の速い
方に傾斜した側に連通させ、回転数が小さいとき
は第4図に示す如く径が小さく且つ点火時期の遅
い方に傾斜した側に連通させる。これにより、弁
体3が車速、スロツトル開度など車両走行条件に
応じて、吸気用の湾曲孔と吸気用の湾曲孔との連
通面積と、開弁時期とが制御される。 第5図および第6図は他の実施例(特許請求の
範囲第1項に対応)を示す。 本実施例の機関は、吸気孔21,23,25,
27と排気孔22,24,26,28とがシリン
ダヘツド1の同一側に設けられており、これら吸
気孔および排気孔と連絡するようシリンダヘツド
1に形成された直孔2に回転自在且つ軸方向に摺
動自在に嵌め込まれた弁体5には所定の回転角度
で前記吸気孔21,23,25,27または排気
孔22,24,26,28に連絡する吸気孔5
1,53,55,57および排気孔52,54,
56,58が設けられている。 本実施例においても第6図に示す如く直孔2と
各気筒S1〜S4との間に形成され吸気孔および
排気孔との連結面21a,23a,25a,27
a、および22a,24a,26a,28aは中
心軸に沿つて半径が漸変する長円状に形成され、
さらに吸気孔21,23,25,27および排気
孔22,24,26,28の直孔2との連結面2
1b,23b,25b,27b、および22b,
24b,26b,28bは中心軸に沿つて半径が
同一の長円状に形成されている。 第7図および第8図はさらに他の実施例(特許
請求の範囲第2項に対応)を示す。 本実施例ではシリンダヘツド1に吸気側と排気
側の2つの直孔6および7を設けられ、それぞれ
の直孔に吸気側弁体60および排気側弁体70を
回転自在および軸方向への摺動自在に嵌め込んで
ロータリバルブを形成されている。それぞれの直
孔と燃焼室とを連絡する吸気孔および排気孔の直
孔との連結面21c,23c,25c,27c、
および22c,24c,26c,28cは第8図
に示す如く、中心軸に沿つて半径が漸変する長円
状に形成されるとともに直孔6および7と吸気孔
21,23,25,27と排気孔22,24,2
6,28との連結面は中心軸に沿つて半径が同一
の長円状に形成されている。 この弁体変位機構付きセラミツク製ロータリバ
ルブ方式多気筒内燃機関では、駆動機構80によ
り吸気側弁体60と排気側弁体70をそれぞれ独
立して軸方向に変位でき、吸気弁および排気弁の
開く時期および開いている時間を自由に設定でき
機関の出力向上に一層有利となる。 なおシリンダヘツドに設けた吸気孔、排気孔ま
たは吸排気孔と直孔との連結面を中心軸に沿つて
半径の漸変する長円状に形成する位置は気筒側以
外に第2図、第6図、第8図に2点鎖線で示す如
く、吸気管または排気管側であつても良く、さら
には弁体の吸気孔、排気孔または吸排気孔側であ
つても良い。
[Table] The drive mechanism 8 for the valve body 3 displaces the valve body 3 according to the engine rotation speed, and when the rotation speed is large, the intake and exhaust holes 31, 32,
33 and 34 are intake and exhaust holes 41 and 4 of the cylinder head.
2, 43, and 44 are connected to the side that has a larger diameter and is inclined toward the faster ignition timing, and when the rotation speed is low, it is communicated to the side that is smaller in diameter and inclined toward the later ignition timing as shown in Fig. 4. let Thereby, the communication area between the intake curved hole and the intake curved hole and the valve opening timing of the valve body 3 are controlled according to vehicle running conditions such as vehicle speed and throttle opening. 5 and 6 show another embodiment (corresponding to claim 1). The engine of this embodiment has intake holes 21, 23, 25,
27 and exhaust holes 22, 24, 26, and 28 are provided on the same side of the cylinder head 1. The valve body 5 fitted so as to be slidable in the direction has an intake hole 5 that communicates with the intake holes 21, 23, 25, 27 or the exhaust holes 22, 24, 26, 28 at a predetermined rotation angle.
1, 53, 55, 57 and exhaust holes 52, 54,
56 and 58 are provided. Also in this embodiment, as shown in FIG. 6, connecting surfaces 21a, 23a, 25a, 27 are formed between the straight hole 2 and each cylinder S1 to S4 and connect with the intake hole and the exhaust hole.
a, and 22a, 24a, 26a, and 28a are formed in an elliptical shape with a radius that gradually changes along the central axis,
Furthermore, the connection surface 2 with the straight hole 2 of the intake holes 21, 23, 25, 27 and the exhaust holes 22, 24, 26, 28
1b, 23b, 25b, 27b, and 22b,
24b, 26b, and 28b are formed into oval shapes having the same radius along the central axis. 7 and 8 show still another embodiment (corresponding to claim 2). In this embodiment, the cylinder head 1 is provided with two straight holes 6 and 7 on the intake side and the exhaust side, and the intake side valve body 60 and the exhaust side valve body 70 are rotatably and slidably slidable in the axial direction into the respective straight holes. It is movably fitted to form a rotary valve. connection surfaces 21c, 23c, 25c, 27c of the intake and exhaust holes that communicate the respective straight holes and the combustion chamber;
8, 22c, 24c, 26c, and 28c are formed in an elliptical shape with a radius that gradually changes along the central axis, and the straight holes 6 and 7 and the intake holes 21, 23, 25, and 27. Exhaust holes 22, 24, 2
The connecting surfaces with 6 and 28 are formed in an elliptical shape with the same radius along the central axis. In this ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism, the drive mechanism 80 can independently displace the intake side valve body 60 and the exhaust side valve body 70 in the axial direction, thereby opening the intake valve and the exhaust valve. The period and opening hours can be set freely, which is more advantageous in improving the output of the engine. Note that the position where the intake hole, exhaust hole, or connecting surface between the intake and exhaust hole and the straight hole provided in the cylinder head is formed into an oval shape with a radius that gradually changes along the central axis is located at a location other than the cylinder side, as shown in Figures 2 and 6. As shown by the two-dot chain line in FIG. 8, it may be on the intake pipe or exhaust pipe side, or furthermore, it may be on the intake hole, exhaust hole, or intake/exhaust hole side of the valve body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる弁体変位機
構付きセラミツク製ロータリバルブ方式多気筒内
燃機関の概略斜視図、第2図はシリンダヘツドの
部分拡大斜視図、第3図および第4図は弁体の軸
方向への変位とバルブの開く時期および時間の関
係の説明図、第5図は他の実施例の概略斜視図、
第6図はそのシリンダヘツドの部分拡大断面斜視
図、第7図はさらに他の実施例の概略斜視図、第
8図はそのシリンダヘツドの部分拡大断面斜視図
である。 図中、1…シリンダヘツド、2,6,7…直
孔、3,5,60,70…円柱状窒化珪素質セラ
ミツク製ロータリバルブ弁体、8,80…弁体の
駆動機構、21,23,25,27…吸気孔、2
2,24,26,28…排気孔、31,33,3
5,37…吸排気孔、41,42,43…吸排気
用の孔、51,53,55,57…吸気孔、5
2,54,56,58…排気孔。
FIG. 1 is a schematic perspective view of a ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism according to an embodiment of the present invention, FIG. 2 is a partially enlarged perspective view of a cylinder head, and FIGS. 3 and 4. is an explanatory diagram of the relationship between the displacement of the valve body in the axial direction and the opening timing and time of the valve, and FIG. 5 is a schematic perspective view of another embodiment.
FIG. 6 is a partially enlarged sectional perspective view of the cylinder head, FIG. 7 is a schematic perspective view of still another embodiment, and FIG. 8 is a partially enlarged sectional perspective view of the cylinder head. In the figure, 1... Cylinder head, 2, 6, 7... Straight hole, 3, 5, 60, 70... Cylindrical silicon nitride ceramic rotary valve disc, 8, 80... Valve disc drive mechanism, 21, 23 , 25, 27...Intake hole, 2
2, 24, 26, 28...exhaust hole, 31, 33, 3
5, 37... Intake and exhaust holes, 41, 42, 43... Intake and exhaust holes, 51, 53, 55, 57... Intake holes, 5
2, 54, 56, 58...Exhaust hole.

Claims (1)

【特許請求の範囲】 1 (a) 側壁に吸気孔および排気孔が形成され、
長手方向に前記吸気孔、排気孔および燃焼室の
全てに連通するとともに、円形断面を有する一
つの直孔が形成され、 該直孔と前記吸排気孔との連結面を直孔の中
心軸に沿つて半径が漸変する長円状に形成した
セラミツク製シリンダヘツド本体と、 (b) 円柱状を呈し、吸排気用の各湾曲孔を有する
とともに、前記直孔に回転自在でかつ軸方向に
摺動自在に嵌め込まれ、 吸気用の湾曲孔は所定のクランク回転角度範
囲で前記燃焼室と吸気孔とを連絡し、 排気用の湾曲孔は他の所定回転角度範囲で前
記排気孔と燃焼室とを連絡する セラミツク製ロータリバルブ弁体と、 (c) 車速、スロツトル開度など車両走行条件に応
じて、吸気孔、排気孔の各湾曲孔への連通面
積、および開弁時期とを制御するように弁体を
軸方向に変位させる弁体変位機構と からなる弁体変位機構付きセラミツク製ロータリ
バルブ方式多気筒内燃機関。 2 (a1) 側壁に形成される吸気孔および排
気孔と、長手方向に形成され前記吸気孔と燃焼
室とを連通するとともに、円形断面を有する第
1の直孔と、長手方向に形成され前記排気孔と
燃焼室と連通する円形断面を有する第2の直孔
とが形成され、 これら第1、第2の直孔と前記吸排気孔との
連結面を第1、第2の直孔の中心軸に沿つて半
径が漸変する長円状に形成したセラミツクシリ
ンダヘツド本体と、 (b1) 円柱状を呈し、吸排気用の各湾曲孔を
有するとともに、前記各直孔に回転自在でかつ
軸方向に摺動自在に嵌め込まれ、 吸気用の湾曲孔は所定のクランク回転角度範
囲で前記燃焼室と吸気孔とを連絡し、 排気用の湾曲孔は他の所定回転角度範囲で前
記排気孔と燃焼室とを連絡する セラミツク製ロータリバルブ弁体と、 (c) 車速、スロツトル開度など車両走行条件に応
じて、吸気孔、排気孔の各湾曲孔への連通面
積、および開弁時期とを制御するように弁体を
軸方向へ変位させる弁体変位機構と からなる弁体変位機構付きセラミツク製ロータリ
バルブ方式多気筒内燃機関。
[Claims] 1 (a) An intake hole and an exhaust hole are formed in the side wall,
One straight hole is formed that communicates with all of the intake hole, exhaust hole, and combustion chamber in the longitudinal direction and has a circular cross section, and the connection surface between the straight hole and the intake and exhaust hole is aligned along the central axis of the straight hole. (b) A ceramic cylinder head body formed into an elliptical shape with a radius that gradually changes; The curved hole for intake connects the combustion chamber and the intake hole within a predetermined crank rotation angle range, and the exhaust curved hole connects the exhaust hole and the combustion chamber within another predetermined rotation angle range. (c) A ceramic rotary valve disc that controls the communication area of the intake and exhaust holes to each curved hole and the valve opening timing according to vehicle running conditions such as vehicle speed and throttle opening. A ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism that displaces the valve body in the axial direction. 2 (a1) An intake hole and an exhaust hole formed in the side wall, a first straight hole formed in the longitudinal direction that communicates the intake hole and the combustion chamber, and has a circular cross section; A second straight hole having a circular cross section communicating with the exhaust hole and the combustion chamber is formed, and the connecting surface between the first and second straight holes and the intake/exhaust hole is the center of the first and second straight hole. (b1) A ceramic cylinder head body formed in an elliptical shape with a radius that gradually changes along the axis; The curved hole for intake communicates with the combustion chamber and the intake hole within a predetermined crank rotation angle range, and the curved exhaust hole communicates with the exhaust hole within another predetermined rotation angle range. (c) A ceramic rotary valve body that communicates with the combustion chamber; (c) The communication area of the intake hole and the exhaust hole to each curved hole, and the valve opening timing are determined according to vehicle running conditions such as vehicle speed and throttle opening. A ceramic rotary valve type multi-cylinder internal combustion engine with a valve body displacement mechanism that displaces the valve body in the axial direction in a controlled manner.
JP16457882A 1982-09-20 1982-09-20 Internal-combustion engine associated with rotary valve Granted JPS5954715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16457882A JPS5954715A (en) 1982-09-20 1982-09-20 Internal-combustion engine associated with rotary valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16457882A JPS5954715A (en) 1982-09-20 1982-09-20 Internal-combustion engine associated with rotary valve

Publications (2)

Publication Number Publication Date
JPS5954715A JPS5954715A (en) 1984-03-29
JPH0143128B2 true JPH0143128B2 (en) 1989-09-19

Family

ID=15795826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16457882A Granted JPS5954715A (en) 1982-09-20 1982-09-20 Internal-combustion engine associated with rotary valve

Country Status (1)

Country Link
JP (1) JPS5954715A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125712A (en) * 1983-12-12 1985-07-05 Yuki Tsukamoto Suction and exhaust valve unit of engine
JPS6316110A (en) * 1986-07-07 1988-01-23 Toshikazu Kinoshita 4 stroke cycle engine
KR101319952B1 (en) * 2012-12-26 2013-10-28 김동섭 Engine of vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125115A (en) * 1974-03-08 1975-10-01
JPS5557646A (en) * 1978-10-23 1980-04-28 Toyota Motor Corp Structure of heat insulating wall formed in compression chamber of internal combustion engine
JPS5645105B2 (en) * 1977-03-03 1981-10-23

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910357Y2 (en) * 1979-06-11 1984-04-02 日産自動車株式会社 Intake air amount control device
JPS5910332Y2 (en) * 1979-09-17 1984-04-02 本田技研工業株式会社 Internal combustion engine rotary valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125115A (en) * 1974-03-08 1975-10-01
JPS5645105B2 (en) * 1977-03-03 1981-10-23
JPS5557646A (en) * 1978-10-23 1980-04-28 Toyota Motor Corp Structure of heat insulating wall formed in compression chamber of internal combustion engine

Also Published As

Publication number Publication date
JPS5954715A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
JP4578520B2 (en) Rotary piston engine and vehicle with this type of engine
Hosaka et al. Development of the variable valve timing and lift (VTEC) engine for the Honda NSX
EP0413316B1 (en) Exhaust control valve system for parallel multi-cylinder two-cycle engine
JPH0355647B2 (en)
JPH086568B2 (en) Engine valve operation control device
US4949685A (en) Internal combustion engine with rotary valves
WO2002079613A2 (en) Rotary valve for piston engine
US4802452A (en) Engine intake system
WO2008036288A2 (en) Rotary valves and valve seal assemblies
US4354459A (en) Non-throttling control apparatus for spark ignition internal combustion engines
US5168772A (en) Camshaft arrangement and method for producing it
US10267225B2 (en) Internal combustion engine
US7219632B2 (en) Narrow angle V-type engine
JPH0143128B2 (en)
JPS598648B2 (en) Taikou Piston Gatadoriyokukikan
US6418900B2 (en) Air induction system for engine
JPS62261615A (en) Internal combustion engine
GB2117047A (en) Intake and exhaust flow control valves in two-stroke engines
JP2853270B2 (en) Engine intake and exhaust system
JPH01224407A (en) Variable valve operating angle device of twin cam engine
JP6365455B2 (en) Variable valve operating device for internal combustion engine
JPS6394023A (en) Intake-air control device for engine
JPS6359009B2 (en)
JPH0563606B2 (en)
JP2620129B2 (en) Engine valve gear