JPH0142906B2 - - Google Patents

Info

Publication number
JPH0142906B2
JPH0142906B2 JP56197067A JP19706781A JPH0142906B2 JP H0142906 B2 JPH0142906 B2 JP H0142906B2 JP 56197067 A JP56197067 A JP 56197067A JP 19706781 A JP19706781 A JP 19706781A JP H0142906 B2 JPH0142906 B2 JP H0142906B2
Authority
JP
Japan
Prior art keywords
layer
coal
coal ash
granulated
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56197067A
Other languages
Japanese (ja)
Other versions
JPS5899160A (en
Inventor
Shigeo Itano
Kikuji Tsuneyoshi
Keizo Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19706781A priority Critical patent/JPS5899160A/en
Publication of JPS5899160A publication Critical patent/JPS5899160A/en
Publication of JPH0142906B2 publication Critical patent/JPH0142906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は主として石炭焚きボイラなどから発生
する石炭灰を主原料にして軽量骨材を製造する方
法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to an improvement in a method for producing lightweight aggregate using coal ash generated from coal-fired boilers as a main raw material.

従来石炭焚きボイラから発生する石炭灰は、炉
底にたまるクリンカ・アツシユ、エコノマイザ付
近にたまるシンダ・アツシユ、及び集塵機で捕集
されるフライ・アツシユに大別される。
Coal ash generated from conventional coal-fired boilers is broadly divided into clinker ash, which accumulates at the bottom of the furnace, cinder ash, which accumulates near the economizer, and fly ash, which is collected by a dust collector.

フライアツシユは更に粗粉と細粉に分級され、
細粉はフライアツシユセメント原料としてJIS規
格化されて利用の途が開かれているが、石炭灰の
大部分は埋立によつて処分されている。しかしな
がら近年埋立用地の確保は増々困難になつてお
り、そのために石炭火力の存立さえ危くなつてい
る。
Fly atsushi is further classified into coarse powder and fine powder.
The fine powder has been standardized by the JIS as a raw material for fly ash cement, opening the door to its use, but most of the coal ash is disposed of through landfill. However, in recent years it has become increasingly difficult to secure land for landfills, and as a result, even the survival of coal-fired power generation is in jeopardy.

このような背景の下に石炭灰の利用拡大をはか
るため種々の用途が提案されているが、本発明の
軽量骨材もその一環として石炭灰の利用拡大を図
ることを目的としたものである。
Against this background, various uses have been proposed to expand the use of coal ash, and the lightweight aggregate of the present invention is also intended to expand the use of coal ash as part of this. .

石炭灰から軽量骨材を製造する方法としては、
従来ローータリーキルン方式、シンターグレート
方式が公知であるが、最近では石炭灰に2〜5%
の微粉炭を混ぜて造粒し、焼結機のシンターグレ
ート上で乾燥後バーナを用いて着火させることに
より軽量骨材を得る方法が製造コスト及び品質の
点で優れているといわれている。この方式は第1
図に示す態様で実施されている。すなわち、第1
図において、エンドレスで移動しているグレート
020上に先ず床敷層としてのペレツトが床敷供
給フイーダ021より供給される。次いで造粒石
炭灰がこの床敷層の上に造粒石炭灰フイーダ02
2より供給されて移動充填層を形成する。この移
動充填層は次に予熱炉023内に入り、ここで乾
燥処理され、その後、点火炉024内で層上部に
着火される。点火炉024を出た後は、層上部か
ら空気027を吸引して、造粒石炭灰に混入して
ある石炭が燃焼し、層内温度が順次上昇してくる
ことにより焼結反応が生ずる。石炭が燃えつきる
と吸引空気027により順次冷却される。
As a method for producing lightweight aggregate from coal ash,
Conventionally, rotary kiln method and sinter grate method are well known, but recently coal ash has been mixed with 2 to 5%
It is said that the method of obtaining lightweight aggregate by mixing and granulating pulverized coal, drying it on the sintering plate of a sintering machine, and then igniting it using a burner is superior in terms of manufacturing cost and quality. This method is the first
This is implemented in the manner shown in the figure. That is, the first
In the figure, pellets as a bedding layer are first supplied from a bedding supply feeder 021 onto a grate 020 that is moving endlessly. Then, granulated coal ash is deposited onto this bedding layer through a granulated coal ash feeder 02.
2 to form a moving packed bed. This moving packed bed then enters a preheating furnace 023 where it is dried, and then the top of the bed is ignited in an ignition furnace 024. After exiting the ignition furnace 024, air 027 is sucked from the upper part of the bed, the coal mixed in the granulated coal ash is burned, and the temperature in the bed gradually increases, causing a sintering reaction. When the coal burns out, it is sequentially cooled by suction air 027.

このような燃焼−焼結−冷却の一連の反応が層
底まで行われた時点で排出口028からコンベア
029上に排出される。その後、成品中継槽03
0を経て成品貯蔵ビン031に送られ、スクリー
ン032で篩分けされ粒度ごとに貯蔵される。
When the series of reactions of combustion, sintering, and cooling have been carried out to the bottom of the layer, the material is discharged from the discharge port 028 onto the conveyor 029. After that, the finished product relay tank 03
The particles are sent to a finished product storage bin 031 through a filter 0, where they are sieved by a screen 032 and stored according to particle size.

なお図中、025および026は点火炉024
に燃料および空気を供給するライン、033は予
熱炉023内に乾燥用予熱空気を供給するライ
ン、034は予熱炉023、点火炉024等から
排出された排ガスから塵を取り除く集塵機、35
は主排風機、36は煙突である。
In addition, in the figure, 025 and 026 are the ignition furnace 024
033 is a line that supplies preheated air for drying into the preheating furnace 023, 034 is a dust collector that removes dust from the exhaust gas discharged from the preheating furnace 023, the ignition furnace 024, etc., 35
is the main exhaust fan, and 36 is the chimney.

このような従来の造粒石炭灰の焼成法において
は、焼成機に供給される造粒石炭灰の石炭含有率
は、ほとんど同一であるために、造粒石炭灰フイ
ーダ022よりグレート020上(床敷層あり)
に供給されて層を形成した状態での層高方向の石
炭の濃度分布は第2図に示すようになる。すなわ
ち、第2図aにおいて、020はグレート、1は
床敷層、2は造粒石炭灰の層をそれぞれ示し、こ
の場合の層高方向の石炭濃度分布は第2図bに示
すように、層高方向で均一になつている。
In such a conventional granulated coal ash firing method, the coal content of the granulated coal ash supplied to the calcination machine is almost the same; With bed layer)
Figure 2 shows the concentration distribution of coal in the direction of the bed height when the coal is supplied to the coal and forms a bed. That is, in Fig. 2a, 020 indicates the grade, 1 indicates the bedding layer, and 2 indicates the granulated coal ash layer, and the coal concentration distribution in the layer height direction in this case is as shown in Fig. 2b. It is uniform in the layer height direction.

ところで、層内の石炭の燃焼は上層より下層に
向つて進行するので、上層から下層に向つて吸引
される空気は上層通過中に加熱されるので、下層
方向の燃焼帯での石炭の燃焼温度は次第に高くな
ることになる。すなわち、層高方向の各位置での
層内最高温度(石炭の燃焼温度)は第2図cに示
すようになる。この場合、造粒石炭灰への石炭混
合量として上層部の最高温度が燃成に適する温度
になるような混合量にすれば、下層部の最高温度
が適正値よりも高くなり過ぎ、下層部は溶融し
て、通気性が悪化し、生産性が低下する問題、溶
融が激しいと成品の軽量骨材になりにくい問題が
あり、また逆に造粒石炭灰への石炭混合量を、下
層部の最高温度が適正値になるような混合量とす
ると、上層部の最高温度が低くなり、未焼成の割
合が増し、成品としての歩留が低下するという欠
点を有している。
By the way, since the combustion of coal in a layer progresses from the upper layer to the lower layer, the air sucked from the upper layer to the lower layer is heated while passing through the upper layer, so the combustion temperature of coal in the combustion zone toward the lower layer increases. will gradually rise. That is, the maximum temperature in the bed (coal combustion temperature) at each position in the bed height direction is as shown in FIG. 2c. In this case, if the amount of coal mixed into the granulated coal ash is set so that the maximum temperature in the upper layer is a temperature suitable for combustion, the maximum temperature in the lower layer will be too high than the appropriate value, and the lower layer will There are problems such as melting, which deteriorates air permeability and reduces productivity, and severe melting that makes it difficult to produce lightweight aggregates for finished products. If the mixing amount is such that the maximum temperature of the upper layer becomes an appropriate value, the disadvantage is that the maximum temperature of the upper layer becomes low, the proportion of unfired products increases, and the yield as a finished product decreases.

本発明は、上記のような従来の焼成法の欠点を
解決する目的で提案するもので、微粉炭混合量の
異なる造粒石炭灰を予じめ作成し、微粉炭混合量
の少ない造粒石炭灰を下方に、微炭混合量の多い
造粒石炭灰を上方にそれぞれ配置して移動するグ
レート上に層を形成したのち、乾燥、着火、焼
成、冷却等の焼成に必要な各処理を順次施こすこ
とを特徴とする軽量骨材の製造方法を提供する。
The present invention is proposed for the purpose of solving the drawbacks of the conventional calcination method as described above, and involves preparing granulated coal ash with different amounts of pulverized coal in advance, and producing granulated coal with a small amount of pulverized coal mixed in. Ash is placed at the bottom and granulated coal ash containing a large amount of fine coal is placed at the top to form a layer on the moving grate, and then various processes necessary for firing such as drying, ignition, firing, and cooling are sequentially performed. Provided is a method for producing lightweight aggregate, which is characterized by applying.

本発明方法においては、微粉炭混合量の少ない
造粒石炭灰ほど下層に配置してグレート上に造粒
石炭灰の層を形成するため、焼成時に層高全体を
通じてほぼ均一な燃焼及び赤熱温度とすることが
でき、これによつて高品質の軽量骨材を高歩留、
高生産率で製造することができるとともに、焼成
に要する時間を著く短縮できる。
In the method of the present invention, the granulated coal ash with a smaller amount of pulverized coal mixed is placed in the lower layer to form a layer of granulated coal ash on the grate. This allows for high yields of high quality lightweight aggregates,
It can be manufactured at a high production rate and the time required for firing can be significantly shortened.

以下本発明方法を実施するための装置の一例を
第3図および第4図a,b,cにより詳しく説明
する。
An example of an apparatus for carrying out the method of the present invention will be explained in detail below with reference to FIG. 3 and FIGS. 4a, b, and c.

第3図において、22a,22b,以外の記号
は全て第1図中の記号と同一であり、同一の部材
を示す。無端軌道を移動するグレート20上に先
ず床敷供給フイーダ21より床敷層材が供給され
る。次いで、微粉炭混合量の少ない造粒石炭灰
が、フイーダ22aより床敷層上に供給される。
この微粉炭混合量の少ない造粒石炭灰の層上に、
フイーダ22bから微粉炭混合量の多い造粒石炭
灰が供給され最終的な層を形成する。
In FIG. 3, all symbols other than 22a and 22b are the same as those in FIG. 1, and indicate the same members. Bedding layer material is first supplied from a bedding supply feeder 21 onto the grate 20 moving on an endless track. Next, granulated coal ash containing a small amount of pulverized coal is supplied onto the bedding layer from the feeder 22a.
On this layer of granulated coal ash with a small amount of pulverized coal,
Granulated coal ash containing a large amount of pulverized coal is supplied from the feeder 22b to form the final layer.

そのときの層の様相を示すのが第4図であり、
図中20はグレート、1は床敷層、2aは微粉炭
混合量の少ない造粒石炭灰から成る下部層を、2
bは石炭混合量の多い造粒石炭灰から成る上部層
をそれぞれ示し、第4図bは、このときの層高方
向の層内石炭濃度分布を示す。すなわち、上層部
の石炭濃度は大で下層部の石炭濃度は小なる層を
形成するのである。この層が予熱炉23で乾燥処
理されたのち、点火炉24に入つて層上部に着火
される。点火炉24を出た後は層上部から空気2
7を吸引して造粒石炭灰に混入してある石炭が燃
焼し、層内温度が層頂から層底に向つて順次上昇
してくることにより、層内で順次焼結反応が生ず
る。このときの層内各部の最高到達温度は、前記
の層内石炭濃度の影響を受けて第4図cに示すよ
うに、層高方向で、ほぼ均一な赤熱温度が得られ
る。すなわち、層上部の石炭濃度を燃焼により適
正温度になるように設定してあり、かつ層下部の
石炭濃度を減少させてあるので、層下部で熱量が
過剰になることがなく、層高を通じてほぼ均一な
燃焼ならびに赤熱温度を得ることができるので、
一定品質の軽量骨材を高歩留、高生産率の条件の
下で焼成することができ。
Figure 4 shows the appearance of the layers at that time.
In the figure, 20 is the grade, 1 is the bedding layer, 2a is the lower layer consisting of granulated coal ash with a small amount of pulverized coal mixed, 2
4b shows the upper layer consisting of granulated coal ash with a large amount of coal mixed, and FIG. 4b shows the coal concentration distribution in the layer in the layer height direction at this time. In other words, a layer is formed in which the coal concentration in the upper layer is high and the coal concentration in the lower layer is low. After this layer is dried in a preheating furnace 23, it enters an ignition furnace 24 where the upper part of the layer is ignited. After leaving the ignition furnace 24, air 2 flows from the top of the layer.
The coal mixed in the granulated coal ash is combusted by suctioning 7, and the temperature in the bed increases sequentially from the top of the bed to the bottom, so that a sintering reaction occurs sequentially within the bed. At this time, the maximum temperature reached in each part of the layer is influenced by the coal concentration in the layer, and as shown in FIG. 4c, a substantially uniform red-hot temperature is obtained in the layer height direction. In other words, the coal concentration in the upper part of the bed is set to reach the appropriate temperature through combustion, and the coal concentration in the lower part of the bed is reduced, so there is no excess heat in the lower part of the bed, and almost all of the temperature is maintained throughout the height of the bed. Uniform combustion and glowing temperature can be obtained, so
Lightweight aggregate of constant quality can be fired under conditions of high yield and high production rate.

なお、層高方向での石炭濃度分布の与え方とし
ては、前述の2段にこだわることなく、3段以上
に濃度変化ををつけてもよい。
In addition, as for how to give the coal concentration distribution in the bed height direction, concentration changes may be provided in three or more stages, without being limited to the two stages described above.

次に本発明方法の実施例について説明する。 Next, examples of the method of the present invention will be described.

実施例 1 直経300mmの試験用焼成ポツトのグレート上に
先ず、床敷層として粒径6〜15mmの既焼成の軽量
骨材ペレツトを層厚約20mmになるごとく装入し
た。
Example 1 First, pre-fired lightweight aggregate pellets with a grain size of 6 to 15 mm were charged as a bedding layer onto the grate of a testing firing pot with a diameter of 300 mm so that the layer thickness was approximately 20 mm.

次いで微粉炭を3%混合した粒径5〜25mmの造
粒石炭灰を層厚100mmになるごとく装入し、最後
に微粉炭を5%混合した粒径5〜25mmの造粒石炭
灰を層厚100mm(全層高は床敷層20mm+石炭3%
混合層100mm+石炭5%混合層100mm=220mm)に
なるごとく装入し、層を形成したのち、約270℃
熱風により約8分間乾燥し、次いでプロパンバー
ナにより層の表面に2分間着火した。このときの
バーナのフレーム温度は1270℃であつた。
Next, granulated coal ash with a particle size of 5 to 25 mm mixed with 3% pulverized coal was charged to a layer thickness of 100 mm, and finally granulated coal ash with a particle size of 5 to 25 mm mixed with 5% pulverized coal was charged. Thickness 100mm (total height is bedding layer 20mm + coal 3%
100mm mixed layer + 100mm mixed layer of 5% coal = 220mm), and after forming the layer, heat it to about 270℃.
It was dried with hot air for about 8 minutes and then the surface of the layer was ignited with a propane burner for 2 minutes. The flame temperature of the burner at this time was 1270°C.

着火後直ちにバーナの燃焼を止め、冷空気を層
上より吸引した。この操作により層内の各位置で
の最高温度はほゞ1240℃になつた。層底まで完全
に冷却されたのち、焼成ポツトより排出したとこ
ろ、層高方向各位置のペレツトとも軽いシヨツク
で離れる程度に、ほゞ均一に焼成されていた。
Immediately after ignition, combustion in the burner was stopped, and cold air was sucked in from above the layer. This operation resulted in a maximum temperature of approximately 1240°C at each location within the layer. When the pellets were completely cooled to the bottom of the bed and discharged from the firing pot, they were found to have been fired almost uniformly to the extent that the pellets at various positions in the bed height were separated by a light shock.

成品となつたものは全体の約75%であつた。 Approximately 75% of the total was made into finished products.

比較例 1 実施例1と同一の試験用焼成ポツト内に、実施
例1と同じく、先ず既焼成の軽量骨材ペレツトを
層厚20mmになるように装入し、次いで微粉炭を4
%混合した粒径5〜25mmの造粒石炭灰を全層厚が
220mmになるごとく装入して層を形成した。
Comparative Example 1 In the same test firing pot as in Example 1, pre-fired lightweight aggregate pellets were first charged to a layer thickness of 20 mm, and then pulverized coal was charged into the same pot as in Example 1.
% mixed granulated coal ash with a particle size of 5 to 25 mm, with a total layer thickness of
A layer of 220 mm was charged to form a layer.

この層に実施例1と同一条件の乾燥、着火、冷
却の操作を施こしたところ、上層部の温度は約
1160℃にしか上昇せず、逆に下層部は1300℃以上
にもなり溶融部を生じ、冷却時間が実施例1の場
合の約4倍となつた。冷却後ポツトより焼成物を
排出したところ、上層部は未焼成気味で強度は弱
く、逆に下層部は、粒子同志が融合して、一つの
塊となつていた。従つて成品となつたものは僅か
約40%であつた。
When this layer was subjected to drying, ignition, and cooling operations under the same conditions as in Example 1, the temperature of the upper layer was approximately
The temperature rose only to 1,160°C, while the lower layer reached 1,300°C or higher, creating a melting zone, and the cooling time was about four times that of Example 1. When the fired material was discharged from the pot after cooling, it was found that the upper layer was unfired and had weak strength, while the lower layer had particles fused together to form a single lump. Therefore, only about 40% of the products were made into finished products.

以上のように、本発明方法は、従来法に比し焼
成歩留及び焼成時間の短縮等の点で著しく優れて
いることがわかる。
As described above, it can be seen that the method of the present invention is significantly superior to the conventional method in terms of firing yield and shortening of firing time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の軽量骨材製造方法を示す工程
図、第2図aは従来法におけるグレート上の造粒
石炭灰層を示す断面図、第2図b及びcは同層内
の石炭濃度分布及び焼成時の層高方向の最高到達
温度分布を示す線図、第3図は本発明方法を実施
するための装置の一例を示す工程図、第4図a
は、本発明方法におけるグレート上の造粒石炭灰
層を示す断面図、第4図b及びcは同層内の石炭
濃度分布及び焼成時の層高方向の最高到達温度分
布を示す線図である。 1:床敷層、2,:2a,2b:造粒石炭灰層、
020,20:グレート、021,21:床敷供
給フイーダ、022:造粒石炭灰供給フイーダ、
22a:石炭低配合の造粒石炭灰供給フイーダ、
22b:石炭高配合の造粒石炭灰供給フイーダ、
023,23:予熱炉、024,24:点火炉、
027,27:供給空気、028,28:成品排
出口、030,30:成品中継槽、031,3
1:成品貯蔵、034,34:集塵機、035,
35:主排風機。
Figure 1 is a process diagram showing the conventional lightweight aggregate manufacturing method, Figure 2 a is a cross-sectional view showing a granulated coal ash layer on a grate in the conventional method, and Figures 2 b and c are the coal concentration in the layer. A diagram showing the distribution and the maximum temperature distribution in the layer height direction during firing, FIG. 3 is a process diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 4 a
is a cross-sectional view showing the granulated coal ash layer on the grate in the method of the present invention, and Figures 4b and 4c are diagrams showing the coal concentration distribution in the layer and the maximum temperature distribution in the layer height direction during firing. be. 1: bedding layer, 2,: 2a, 2b: granulated coal ash layer,
020,20: Great, 021,21: Bedding supply feeder, 022: Granulated coal ash supply feeder,
22a: Granulated coal ash supply feeder with low coal content;
22b: Granulated coal ash supply feeder with high coal content;
023, 23: Preheating furnace, 024, 24: Ignition furnace,
027, 27: Supply air, 028, 28: Product discharge port, 030, 30: Product relay tank, 031, 3
1: Product storage, 034, 34: Dust collector, 035,
35: Main exhaust fan.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭を混合して造粒した石炭灰を移動する
グレート上に層状に敷きグレートを加熱領域を移
動させる間に石炭灰を焼成して軽量骨材を製造す
る方法において、微粉炭混合量の異なる造粒石炭
灰を2種類以上予じめ作成し、微粉炭混合量の少
ない造粒石炭灰ほど下層になるごとく前記グレー
ト上に石炭灰の層を形成することを特長とする軽
量骨材の製造方法。
1 In a method of producing lightweight aggregate by laying coal ash granulated by mixing pulverized coal in a layer on a moving grate and burning the coal ash while moving the heating area of the grate, the amount of pulverized coal mixed is A lightweight aggregate characterized in that two or more different types of granulated coal ash are prepared in advance, and a layer of coal ash is formed on the grate so that the granulated coal ash with a smaller amount of pulverized coal is placed in the lower layer. Production method.
JP19706781A 1981-12-08 1981-12-08 Manufacture of lightweight aggregate Granted JPS5899160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19706781A JPS5899160A (en) 1981-12-08 1981-12-08 Manufacture of lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19706781A JPS5899160A (en) 1981-12-08 1981-12-08 Manufacture of lightweight aggregate

Publications (2)

Publication Number Publication Date
JPS5899160A JPS5899160A (en) 1983-06-13
JPH0142906B2 true JPH0142906B2 (en) 1989-09-18

Family

ID=16368159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19706781A Granted JPS5899160A (en) 1981-12-08 1981-12-08 Manufacture of lightweight aggregate

Country Status (1)

Country Link
JP (1) JPS5899160A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711866A (en) * 1980-06-20 1982-01-21 Kobe Steel Ltd Manufacture of lightweight aggregate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711866A (en) * 1980-06-20 1982-01-21 Kobe Steel Ltd Manufacture of lightweight aggregate

Also Published As

Publication number Publication date
JPS5899160A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US3374101A (en) Lightweight aggregate from fly ash pellets
JP7328537B2 (en) Method for producing sintered ore
JPH0142906B2 (en)
JP7095561B2 (en) Sintered ore manufacturing method
US3328187A (en) Manufacture of expanded shale
JPH06212293A (en) Manufacture of sintered ore
JPS6242873B2 (en)
JP7348516B2 (en) Method for manufacturing sintered ore
JPS5918344B2 (en) Sintering method of fly ash granules
JP7311783B2 (en) Method for producing sintered ore
JPS6218505B2 (en)
RU2049749C1 (en) Method for production of cement clinker on conveyor grating
JPS62256746A (en) Manufacture of lightweight aggregate
RU1836457C (en) Method of chromitite lumping
JPS63213624A (en) Method and device for sintering feedstock for blast furnace
JPH0819489B2 (en) Sintered ore manufacturing method
SU1414824A1 (en) Method of producing ash-agglomerated porous gravel
JPH0433751B2 (en)
JP2020029603A (en) Production method of sinter using dwight lloyd sintering machine
JPH09279262A (en) Production of sintered ore
JPH0232225B2 (en)
JPH0742149B2 (en) Method of firing artificial fine aggregate
JPH03247541A (en) Method and device for burning fly ash granulated material
JPH01282137A (en) Operating method of moving grate-type calcining machine for artificial lightweight aggregate
JPS60169528A (en) Production of sintered ore