JPH0142762B2 - - Google Patents

Info

Publication number
JPH0142762B2
JPH0142762B2 JP20805382A JP20805382A JPH0142762B2 JP H0142762 B2 JPH0142762 B2 JP H0142762B2 JP 20805382 A JP20805382 A JP 20805382A JP 20805382 A JP20805382 A JP 20805382A JP H0142762 B2 JPH0142762 B2 JP H0142762B2
Authority
JP
Japan
Prior art keywords
rolling
mill
roll
rolled
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20805382A
Other languages
Japanese (ja)
Other versions
JPS5997702A (en
Inventor
Yoshinori Miura
Teruaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20805382A priority Critical patent/JPS5997702A/en
Publication of JPS5997702A publication Critical patent/JPS5997702A/en
Publication of JPH0142762B2 publication Critical patent/JPH0142762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/035Rolls for bars, rods, rounds, tubes, wire or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/095U-or channel sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/028Variable-width rolls

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溝形鋼の圧延方法およびその方法
で用いるエツジヤロールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for rolling channel steel and an edger roll used in the method.

水平ロールと垂直ロールの両ロール軸が直交配
置をなし通常H形鋼などの圧延に使用されるユニ
バーサル・ミル(以下Uミルと呼ぶ)を用いて、
形鋼のうちとくに溝形鋼および類似形鋼の熱間圧
延をしようとする場合に、水平垂直ロールの隙部
において被圧延材の圧延自由面が過充満によつて
膨出するバリを生じ、このバリは次パスのエツジ
ング・ミル(以下Eミルと呼ぶ)で一たん圧潰変
形するが次回Uミルによるパスで再び復元生成す
る。
Using a universal mill (hereinafter referred to as U mill), in which the roll axes of the horizontal roll and vertical roll are orthogonally arranged, and which is usually used for rolling H-section steel, etc.
When attempting to hot-roll shaped steel, especially channel steel and similar shaped steel, the rolling free surface of the rolled material bulges out due to overfilling in the gaps between horizontal and vertical rolls, causing burrs. This burr is temporarily crushed and deformed in the next pass of the etching mill (hereinafter referred to as the E-mill), but is restored and generated again in the next pass of the U-mill.

これらUミル・Eミルを粗圧延機として、連続
リバース圧延を行うとき上記バリの生成―変形―
復元が繰返され、連続リバース圧延を経たあと、
仕上げUミル(以下UFで示す)に通して最終仕
上げをしたときの圧延形状は、その一例を第1図
aに示すように、ウエブwの両端外面にフランジ
fの延長の形でしばしばはみ出しpが残り、これ
については従来、第1図aに仮想線lで示すよう
な整形除去を不可欠とし、そのための手間と歩留
りの損失は、現今の合理化操業の要請の下に看過
され得ないのである。
When continuous reverse rolling is performed using these U mills and E mills as rough rolling mills, the above burrs are generated - deformation -
After repeated restoration and continuous reverse rolling,
When the final finish is applied through a finishing U mill (hereinafter referred to as U F ), the rolled shape often has flanges f protruding from the outer surface of both ends of the web w, as shown in Figure 1 a, for example. p remains, and for this conventionally, it has been necessary to carry out plastic removal as shown by the imaginary line l in Figure 1a, and the effort and yield loss involved cannot be overlooked under the current demands for rationalized operations. be.

上記のU―E及びUFの圧延機列を第2図に例
示し、1は均熱炉、2は分塊圧延機、3は加熱
炉、4はブレークダウン圧延機、5は粗Uミル、
6はEミル、7は仕上Uミルであるが、このよう
な設備によつて熱間圧延した溝形鋼は、単体で、
または第1図bに鎖線Cで示すようにフランジf
を向い合わせにして溶接組立てした角鋼管とし
て、構造物に広く利用されるからである。
The rolling mill rows of the above U-E and U F are illustrated in Fig. 2, where 1 is a soaking furnace, 2 is a blooming mill, 3 is a heating furnace, 4 is a breakdown rolling mill, and 5 is a roughing U mill. ,
6 is an E mill, 7 is a finishing U mill, and the channel steel hot rolled by such equipment is
Or the flange f as shown by the chain line C in Figure 1b.
This is because they are widely used in structures as square steel pipes that are assembled by welding facing each other.

(従来の技術) 溝形鋼を熱間圧延する場合従来法の孔型圧延で
は、とくに大断面の場合に孔型の数や孔型の深さ
などの点から圧延上の制約が多く、その製品化は
困難を極めていたが、近年上掲のようなUーEと
UFの圧延機列を使用し、分塊圧延機2とブレー
クダウン圧延機4ないしは、図には示さないが連
続鋳造によつて得られる溝形鋼用粗形素材を、ま
ず粗Uミル5とEミル6との連続圧延で複数回リ
バース圧延することによつて有利に大断面の溝形
鋼が製造できるようにはなかつた。
(Conventional technology) When hot rolling channel steel, the conventional method of groove rolling has many restrictions in terms of the number of grooves and the depth of the grooves, especially in the case of large cross sections. Commercialization was extremely difficult, but in recent years the UE and
Using a rolling mill row of U It has not been possible to advantageously produce a channel steel with a large cross section by performing reverse rolling multiple times in continuous rolling with E mill 6 and E mill 6.

しかし従来のH形鋼における作業手順に準拠す
ると、第3図aに示す粗Uミル5の水平ロール
8,8′と垂直ロール9,9′の隙部10における
過充満のためのバリp′に帰因して、製品溝形鋼に
第1図aの如きはみ出しpが出ることはすでに触
れたように不可避である。
However, according to the conventional work procedure for H-beam steel, the burr p' due to overfilling in the gap 10 between the horizontal rolls 8, 8' and the vertical rolls 9, 9' of the rough U mill 5 shown in FIG. As mentioned above, it is inevitable that a protrusion P as shown in FIG. 1a will appear in the product channel steel due to this.

すなわち第3図bに示すように若干のはみ出し
pを巳む得ないものとして許容するがそれが折れ
込み疵すなわち、バリp′がラツプして欠陥となる
のを防止し得るようにバリp′に対応する逃げ溝1
1をもつ受けロール12とフランジfの端を圧下
成形する押しロール12′とを用いるEミル6に
より、エツジング圧延を行なつていたので圧延製
品には第1図aに示したはみ出しpを残した溝形
鋼形状となる。そして、その使用時にはみ出しp
を整形除去する等の追加加工により溝形鋼の外角
部を直角のものにするという不利な方法をとらざ
るを得なかつたのである。
In other words, as shown in Fig. 3b, a slight protrusion p is allowed as it is unavoidable, but the burr p' is removed to prevent it from becoming a bending flaw, that is, a defect due to the burr p' wrapping. Relief groove 1 corresponding to
Etching rolling was carried out using an E mill 6 using a receiving roll 12 with a flange f and a push roll 12' for forming the end of the flange f, so that the rolled product was left with an overhang p shown in Fig. 1a. It becomes a channel steel shape. And when using it, protruding p
They had no choice but to take the disadvantageous method of making the outer corners of the channel steel square by additional processing such as shaping and removing.

なお第4図aに示すように別なEミル6として
は、バリp′を圧潰するロール傾斜面13をもつ受
けロール14を用い、バリp′を押えるエツジング
圧延をすることも考えられてはいるが、これによ
つても折込み疵を無くす事は困難であつて、この
ときバリp′を圧潰することによりその両側近傍の
隣接域に膨れ15,16が張り出し、引続くUミ
ルでの次パスにて第4図bに示すごとく膨れ1
5,16が水平垂直両ロール8,8′,9,9′の
隙部10に向け再び押出される幅戻りのために再
びバリp′が復元生成し易く、実効は期待し難い。
As shown in FIG. 4a, as another E-mill 6, it may be considered to use a receiving roll 14 having a roll slope 13 for crushing the burr p', and to carry out an edging rolling that suppresses the burr p'. However, even with this method, it is difficult to eliminate fold-in flaws, and at this time, by crushing the burr p', bulges 15 and 16 protrude in the adjacent areas on both sides of the burr, and the subsequent U mill process At the pass, bulge 1 as shown in Figure 4 b
5 and 16 are extruded again toward the gap 10 between the horizontal and vertical rolls 8, 8', 9, and 9', and the burr p' is likely to be restored and generated again, so that it is difficult to expect that it will be effective.

(発明が解決しようとする問題点) 上記の現象は、粗Uミル5ーEミル6にて、特
にEミル6の上、下ロールとしてはほぼ同じ形状
のロールを用いるリバース圧延により単に上・下
方向の圧下の累増を加えただけでは、Uミル5に
おけるバリp′がリバース圧延をする度ごとに変形
が単に反復されるのみで、製品におけるはみ出し
pの消去に至らせることは一般に至難であり、せ
いぜいはみ出しpが折込み疵となるのを防止する
程度に止めざるを得なかつたのである。
(Problems to be Solved by the Invention) The above-mentioned phenomenon can be solved simply by reverse rolling in the rough U mill 5-E mill 6, using rolls with almost the same shape as the upper and lower rolls of the E mill 6. If only the cumulative reduction in the downward direction is added, the deformation of the burr p' in the U mill 5 will simply be repeated every time reverse rolling is performed, and it is generally difficult to eliminate the protrusion p in the product. However, the protrusion P had to be kept at best to prevent it from becoming a fold-in flaw.

そこでこの発明は、かような溝形鋼の圧延につ
き上記Eミル6に関して、そのロール孔型溝部の
幅を可変ならしめ得る左右一組の段付ロールを新
たに開発し、これによりこの種の溝形鋼製品がサ
イズの異なる場合であつても同一のエツジヤロー
ルをもつて第1図bのようにはみ出しpを伴うこ
とのない溝形鋼の連続リバース圧延を可能にしよ
うとするものである。
Therefore, the present invention has newly developed a set of left and right stepped rolls that can make the width of the roll hole type groove variable with respect to the E-mill 6 for rolling such channel steel. The purpose of this invention is to enable continuous reverse rolling of channel steel products without protrusion P as shown in FIG. 1b using the same edger roll even when the channel steel products are of different sizes.

(問題点を解決するための手段) 発明者らは、Eミルによるエツジング圧延時に
おける素材の幅広がりが、とくに第4図にて代表
されるような膨れ15,16は引続くUミルでの
リバース圧延の際、水平、垂直両ロール8,8′,
9,9′の隙部10の両側であまりにもその近傍
に位置するために生じていたのを、被圧延材のウ
エブ部の外面の両端からできるだけその中央寄り
にまた、フランジ部の高さ中央寄りに向けて遠ざ
け、分散させ、Uミルの水平、垂直、両ロールの
ロール面での圧延によつて消去することができる
範囲にまでもつてゆき、それによつてUミルでの
延伸変形に転じさせれば、再びバリp′の復元生成
する不利が生じ難いことをあまた圧延実験により
知見した。
(Means for Solving the Problems) The inventors believe that the widening of the material during edge rolling with an E mill, especially the bulges 15 and 16 as represented in FIG. During reverse rolling, both horizontal and vertical rolls 8, 8',
9 and 9' due to being located too close to each other on both sides of the gap 10. The deformation is carried away to the side, dispersed, and even to the extent that it can be erased by rolling on the roll faces of both the horizontal and vertical rolls of the U mill, thereby converting it into a stretching deformation in the U mill. It has been found through Amata rolling experiments that if the burr p' is allowed to regenerate, the disadvantage that the burr p' will not be generated again is unlikely to occur.

すなわちこの発明は溝形鋼用粗形素材を粗ユニ
バーサル・ミルとエツジヤ・ミルとで連続リバー
ス圧延したのち、仕上ユニバーサル・ミルに通し
て、ウエブとその両側のフランジとを有する溝形
の最終形状に仕上げる、溝形鋼の圧延にあたり、 上記エツジヤ・ミルに、粗ユニバーサル・ミル
を通り抜けた被圧延材の断面形状と対応してその
フランジ部内面との接触下にフランジ端の成形を
行う押しロールと、これに対する受けロールには
上記被圧延材の断面両側の各コーナー部外面領域
に面する入隅コーナー部をそなえてこれら入隅コ
ーナー部の互いに向い合う面間間隔の調節可能
な、左右一組の段付ロールとを上下の対として用
い、 上記段付ロールの入隅コーナー部による被圧延
材の断面コーナー部外面領域に対する拘束圧延
を、上記リバース圧延の圧延単位パス又は複数パ
ス毎に、上記ロール隙及び面間間隔の調節の下で
繰返し行い、被圧延材の断面コーナー部にて粗ユ
ニバーサル・ミルによる圧延に伴なつてあらわれ
る過充満由来のバリを、該コーナー部からフラン
ジ部の高さ中央寄り及びウエブの幅中央寄りに向
けて分散した膨らみとして遠ざけることを特徴と
する、溝形鋼の圧延方法であり、また 押しロールと受けロールとのロール隙の調整可
能な上下の対よりなり、粗ユニバーサル・ミルを
通り抜けて溝形を成す被圧延材のフランジ端成形
を司るエツジヤ・ミルにおいて、 被圧延材のウエブ部の外面側に接する方の受け
ロールが、該被圧延材の断面両側の各コーナー部
外面領域に面してそれぞれ入隅コーナー部をそな
え、これら入隅コーナー部の互いに向い合う面間
間隔を拡縮調節可能とした、左右一組の段付ロー
ルより成ることを特徴とする、溝形鋼圧延用のエ
ツジヤロールである。
That is, in this invention, a rough material for channel steel is continuously reverse rolled in a rough universal mill and an edge mill, and then passed through a finishing universal mill to form a final channel shape having a web and flanges on both sides. In rolling the channel steel, the edge mill is equipped with a push roll that forms the flange end in contact with the inner surface of the flange portion, corresponding to the cross-sectional shape of the rolled material that has passed through the rough universal mill. The receiving roll for this is provided with an inside corner portion facing the outer surface area of each corner portion on both sides of the cross section of the material to be rolled, and a right and left side is provided with an adjustable distance between the facing surfaces of these inside corner portions. Using a set of corrugated rolls as an upper and lower pair, constraint rolling is performed on the outer surface area of the cross-sectional corner portion of the material to be rolled by the inside corner portion of the corrugated roll for each rolling unit pass or multiple passes of the reverse rolling, The process is repeated under the above-mentioned adjustment of the roll gap and inter-face distance to remove burrs caused by overfilling that appear during rolling with a rough universal mill at the cross-sectional corner of the material to be rolled, from the corner to the flange. A method of rolling channel steel characterized by rolling a bulge distributed toward the center of the web and toward the center of the width of the web. In the edge mill, which is responsible for forming the flange end of the rolled material that passes through the rough universal mill and forms a groove, the receiving roll that contacts the outer surface side of the web part of the rolled material has a cross section of the rolled material. It is characterized by a set of left and right stepped rolls each having an inside corner facing the outer surface area of each corner on both sides, and the distance between the facing surfaces of these inside corners can be expanded or contracted. This is an edger roll for rolling channel steel.

(作用) 従来のU―EとUFの圧延機列での、リバース
方式粗圧延に供されたEミル6は、それによる圧
延中、ロールの旋削加工によつて定まつた溝形状
について変更することはできず、上・下方向のコ
ール隙間の調整のみにより、Uミル5の圧延で発
生したバリp′の圧潰変形の度合にわずかな調節を
加えるにすぎなかつたのに対し、この発明では、
Eミルの上下に対をなすロールのうち、被圧延材
のフランジ端縁に面する押しロールとは反対にウ
エブwの外面と向い合つ方の受けロールにつき、
第5図aのように左右一組の分割構造をなす段付
ロール17,17′としてもお各々が、被圧延材
の断面両側の各コーナー部外面領域に面してそれ
ぞれ入隅コーナー部19,19′をそなえ、これ
ら入隅コーナー部19,19′の互いに向い合う
面間間隔bの調節が可能なように、こうしてEミ
ル6のロール孔型は、第3図aに示したUミル5
の水平ロール8,8′による上下方向圧下ならび
に垂直ロール9,9′での左右圧下によつて定ま
る過充満の度合に応じて発生するバリp′の大きさ
の如何でEミル6の上下のロール隙gと、受けロ
ール左右の入隅コーナー部17,17′の面間間
隔bとを適切に設定できる。
(Function) During rolling, E Mill 6, which was used for reverse rough rolling in the conventional U-E and U F rolling mill rows, changed the groove shape determined by the turning process of the rolls. However, the degree of crushing deformation of the burr p' generated during rolling by the U mill 5 was only slightly adjusted by adjusting the upper and lower coal gaps. So,
Among the upper and lower pairs of rolls of the E mill, the receiving roll that faces the outer surface of the web w, as opposed to the push roll that faces the flange edge of the material to be rolled,
As shown in FIG. 5a, the stepped rolls 17 and 17' are divided into a pair of left and right parts, each with an inner corner part 19 facing the outer surface area of each corner part on both sides of the cross section of the material to be rolled. , 19', and the distance b between the facing surfaces of these inside corner portions 19, 19' can be adjusted.In this way, the roll hole type of the E mill 6 is similar to that of the U mill shown in FIG. 3a. 5
The size of the burr p' generated in accordance with the degree of overfill determined by the vertical rolling by the horizontal rolls 8, 8' and the horizontal rolling by the vertical rolls 9, 9' is determined. It is possible to appropriately set the roll gap g and the distance b between the inner corner portions 17 and 17' of the left and right receiving rolls.

この設定の変更調節によつてUミル5での圧延
パスにて発生したバリp′を適切に被圧延材のウエ
ブ部両側外端のコーナー部からウエブ部の幅中央
寄りと、フランジ部高さ中央寄りに、たとえば第
5図aに15′,16′で示すように、分散させで
きるだけ遠ざけられた膨みとなるようにエツジン
グする。
By changing and adjusting these settings, the burr p' generated during the rolling pass of U mill 5 can be properly moved from the corners of both outer ends of the web part of the material to be rolled to the center of the width of the web part and the height of the flange part. Edging is performed so that the bulges are dispersed and separated as much as possible toward the center, for example, as shown at 15' and 16' in FIG. 5a.

このエツジング時におけるコーナー部から遠ざ
けられた膨み15′,16′は、第4図aに示した
従来の傾斜面つきの受けロール14によるエツジ
ングで圧下したコーナー部のすぐ近傍で生成した
膨み15,16とは性状が全く異なる。
The bulges 15' and 16' that are moved away from the corners during this etching are the bulges 15' generated in the immediate vicinity of the corner parts rolled down by the conventional receiving roll 14 with an inclined surface shown in FIG. 4A. , 16 have completely different properties.

すなわち膨み15,16が次パスUミル5での
圧延において第4図bにつき説明したようにすぐ
にまた、バリp′に復元する変形のくり返しにより
ときとして折り込みの疵になるといつた問題点が
あつたのに反し、この発明に従うEミル6で生じ
る膨み15′,16′は、Uミル5での次パス圧延
の際、第5図bのように、その水平ロール8,
8′と垂直ロール9,9′の隙部10から離れた位
置に遠ざけられているためもはた幅戻りを生せず
して圧延方向の延伸となる。
In other words, the problem is that the bulges 15 and 16 sometimes become folding defects due to repeated deformation which immediately restores the burr p' as explained with reference to FIG. 4b during rolling in the next pass U mill 5. However, the bulges 15' and 16' generated in the E mill 6 according to the present invention are caused by the horizontal rolls 8 and 16', as shown in FIG. 5b, during the next pass rolling in the U mill 5.
8' and the gap 10 between the vertical rolls 9 and 9', the width does not return and the stretching occurs in the rolling direction.

すなわち前のEミルパスでの膨み15′,1
6′が再びバリpに戻るということが無く、Eミ
ルによるエツジング圧延が効果的に行われるよう
になる。
That is, the bulge in the previous E mill pass is 15', 1
There is no possibility that the burr 6' returns to the burr point again, and the etching rolling by the E mill can be performed effectively.

(実施例) 次にこの発明の実施例を第2図のU―EとUF
の圧延機列を使用し、大形の溝形鋼の製造に適用
した場合について以下に説明を加える。
(Example) Next, an example of the present invention will be described with U-E and U F in Fig. 2.
A description will be given below of the case in which this method is applied to the manufacture of large channel steel using a rolling mill train.

均熱炉1で連続鋳造スラブや、大断面ブルーム
または造塊材を1200℃〜1300℃に加熱均熱し、引
続き、分塊圧延機2で、第6図aに示すいわゆる
粗形鋼片37に分塊圧延をするか、あるいは連続
鋳造によつて得られる、同様な断面の鋳片につい
て何れも均熱下に同図bのように上下非対称の粗
溝形断面38に孔型圧延し、ついで加熱炉3で再
加熱したのち、ブレークダウン圧延機4で第7図
a,bのように溝形断面を39,40のように順
次に整える孔型圧延を施して溝形鋼用粗形素材に
加工した。
Continuously cast slabs, large cross-section blooms or agglomerates are heated and soaked to 1200°C to 1300°C in a soaking furnace 1, and then, in a blooming mill 2, they are turned into so-called rough-shaped steel slabs 37 as shown in FIG. 6a. Slabs of similar cross section obtained by blooming rolling or continuous casting are subjected to groove rolling under soaking to form a vertically asymmetric rough groove cross section 38 as shown in Figure b, and then After being reheated in the heating furnace 3, the groove rolling is performed in the breakdown rolling mill 4 to sequentially shape the groove cross section to 39 and 40 as shown in Fig. 7a and b to obtain a coarse material for groove steel. Processed into.

ついで粗Uミル5およびEミル6に送り、両ミ
ルのコンビネーシヨン圧延によつて第8図に破線
で示した溝形鋼用粗形素材40を、粗Uミルの最
終的な図示ロール隙に至る間に、順次ロール隙を
縮めて複数回にわたり連続リバース圧延を行な
う。
Next, it is sent to a rough U mill 5 and an E mill 6, and by combination rolling in both mills, the rough material 40 for channel steel shown by the broken line in FIG. During this process, the roll gap is sequentially reduced and continuous reverse rolling is performed multiple times.

最後に仕上Uミル7で所定の寸法形状に仕上げ
る。
Finally, it is finished into a predetermined size and shape using a finishing U mill 7.

ここで連続リバース圧延工程でEミル6は、す
でにのべたように粗Uミル5の水平ロール8,
8′および垂直ロール9,9′での圧下で第3図a
のように生成した過充満由来のバリp′の大きさに
応じて第5図aに示したように、ロール隙gと面
間間隔bとを適切に設定することが必要である。
Here, in the continuous reverse rolling process, the E mill 6, as already mentioned, the horizontal roll 8 of the rough U mill 5,
8' and vertical rolls 9, 9' under pressure in Figure 3a.
It is necessary to appropriately set the roll gap g and inter-plane distance b as shown in FIG.

面間間隔bの設定に関したとえば粗Uミル5で
の垂直ロール9,9′の動きに対して追従する電
気的な制御によつて段付ロール17,17′を軸
方向に移動して段付きロール17,17′の入り
隅コーナー部19,19′の互いに向い合う面間
間隔bを調整するのに好適な仕くみの1例を第9
図に示す。
Regarding the setting of the inter-face distance b, for example, the step rolls 17 and 17' are moved in the axial direction by electrical control that follows the movement of the vertical rolls 9 and 9' in the rough U mill 5, and the steps are An example of a mechanism suitable for adjusting the distance b between the facing surfaces of the entry corner portions 19 and 19' of the rolls 17 and 17' is shown in the ninth section.
As shown in the figure.

この例で上ロールとしての押しロール12′は
従来通りのものがそのまま使用でき、慣例とおり
駆動ロールとする。
In this example, a conventional push roll 12' serving as the upper roll can be used as is, and is used as a drive roll as is customary.

この例で下ロールとしての受けロールについて
は、溝形をなす被圧延材のウエブ部の外面に接し
て、フランジ部の外面と接するロール胴18,1
8′から立上る形のつばを有する左右一組の段付
ロール17,17′よりなるものとし、そしてロ
ールの駆動は特に行なう必要はなく、例えば図示
のように段付ロール17,17′は円錐ころ軸受
20を介して押そロール12′で駆動される被圧
延材の進行に応じて追従し自転する非駆動型とす
ることができる。段付ロール17,17′の上記
したつばというのは、図にあらわれている被圧延
材の断面両側の各コーナー部外面領域に面してい
るそれぞれの入隅コーナー部19,19′を形成
して、これらの互いに向い合う面間間隔b(第5
図a参照)の調節は、図示を略したが制御用モー
ターの回転を、ウオーム21、ウオーム歯車22
から、ねじスリーブ23に伝達し、このねじスリ
ーブ23は通常のロールチヨツクに替えて内周に
雌ねじを設けた固定箱24を、ハウジング25内
に納め、キーパープレート26でスラストを受け
固定箱24の軸方向の動きを固定することによ
り、ねじスリーブ23の回転を伴うロール軸方向
の前進又は後退運動に段付ロール17,17′の
移動を帯同させることによつて行われる。
In this example, the receiving roll as the lower roll is in contact with the outer surface of the groove-shaped web part of the rolled material and the roll cylinder 18,1 which is in contact with the outer surface of the flange part.
It consists of a pair of left and right stepped rolls 17, 17' having flanges rising from 8', and there is no need to drive the rolls; for example, as shown in the figure, the stepped rolls 17, 17' It can be of a non-driven type that follows and rotates in accordance with the progress of the rolled material driven by the pusher roll 12' via the tapered roller bearing 20. The above-mentioned collars of the stepped rolls 17, 17' form respective inside corner portions 19, 19' facing the outer surface area of each corner portion on both sides of the cross section of the rolled material shown in the figure. Then, the distance b (fifth
(see Figure a), the rotation of the control motor is controlled by the worm 21, the worm gear 22, although not shown.
This threaded sleeve 23 houses a fixing box 24 with a female thread on the inner periphery in place of a normal roll chock, and houses it in a housing 25, and receives the thrust with a keeper plate 26 so that the axis of the fixing box 24 is fixed. By fixing the directional movement, the movement of the stepped rolls 17, 17' is carried out in conjunction with the forward or backward movement in the roll axis direction accompanied by the rotation of the threaded sleeve 23.

図中27は2つ割り連結リング、28は摺動ス
リーブ、29は心軸、そして36は心軸29の中
央部を支持するブラケツトである。
In the figure, 27 is a two-split connecting ring, 28 is a sliding sleeve, 29 is a mandrel, and 36 is a bracket that supports the center of the mandrel 29.

固定箱24の外面寸法形状は、従来のEミルの
チヨツクと同じにしてあるので、段付ロール1
7,17′の上下方向の移動については、圧上げ
用のスクリユー30によつて通常のH形鋼圧延の
ときと同じに実行できる。
The outer dimensions and shape of the fixing box 24 are the same as those of the conventional E-mill chock, so the stepped roll 1
7, 17' can be moved in the vertical direction using a screw 30 for rolling up in the same manner as in normal H-section steel rolling.

上記段付ロール17,17′のEミルへの適用
によつて、溝形鋼のコーナー部出隅に対する拘束
圧延の下に効果的な成形ができるため、第1図a
でしめしたようなはみ出しpをなくし、同図bの
ように出隅形状をきれいに整形でき、たとえば図
示のようにウエブwとフランジfの接合部外角が
直角でアールの小さい形で一様に整形することが
容易になつた。
By applying the stepped rolls 17, 17' to the E mill, effective forming can be performed under restraint rolling on the protruding corners of the channel steel, as shown in Fig. 1a.
The protrusion P shown in Figure 2 can be eliminated, and the protruding corner shape can be neatly shaped as shown in Figure b. For example, as shown in the figure, the outer angle of the joint between the web W and the flange F can be uniformly shaped with a right angle and a small radius. It became easier to do.

またかような整形効果は、被圧延材の大きさに
直接の影響はなく、同一の段付ロールのまま厚み
の異なる数種類の製品の圧延が可能である。また
押しロール12′のみ変更すればさらに異なる種
類の溝形鋼の圧延に適用可能である。
Moreover, such a shaping effect does not directly affect the size of the material to be rolled, and it is possible to roll several types of products with different thicknesses using the same stepped roll. Further, by changing only the push roll 12', the present invention can be applied to rolling different types of channel steel.

なお上例のEミル6は片側駆動の場合について
説明したが、たとえばU―E―UとUFの圧延機
配列の如きにあつては上・下ロールとも非駆動で
あつても同様の効果が得られる。
Although the E mill 6 in the above example is explained in the case where it is driven on one side, the same effect can be obtained even if both the upper and lower rolls are not driven, such as in the U-EU-U and U- F rolling mill arrangement. is obtained.

第10図にはEミルの受けロールすなわち左右
一組の段付ロール17,17′をスプライ軸31
とのスプライン結合で、軸方向に可動とした例を
示し、この場合右、左逆ねじスピンドル32の回
転によつて、段付ロール17,17′のつばを挟
むローラ対33を有するスライダ34でスプライ
ン軸31上における固定位置を設定することがで
きる。図中35は回軸止め案内棒である。このス
プライン軸31を駆動することによりEミル6の
上下両ロールを駆動型とすることができる。
In FIG. 10, the receiving rolls of the E mill, that is, a set of left and right stepped rolls 17, 17' are connected to the spry shaft 31.
An example is shown in which the slider 34 having a pair of rollers 33 that pinches the flanges of the stepped rolls 17 and 17' is moved by the rotation of the right and left counter threaded spindles 32. A fixed position on the spline shaft 31 can be set. In the figure, 35 is a rotation stopper guide rod. By driving this spline shaft 31, both the upper and lower rolls of the E mill 6 can be driven.

(発明の効果) 以上のべたようにこの発明によれば、U―Eと
UFからなる圧延機列方式による溝形材の圧延に
際して、U―E連続圧延で前段の粗Uミルの圧延
中に圧下が及ばないロール隙における圧延自由面
に生じる膨出バリにつき、次段Eミルにて拘束圧
延をし、その膨出バリ部を次のU圧延で圧下の及
ぶ範囲に移すように、粗U―E両ミルを通すリバ
ース圧延の圧延単位パス毎または複数パス毎に、
Eミルの段付きロールの間隔の調整裡に圧延し
て、被圧延材のコーナー部出隅域から、分散した
膨らみの形で遠ざけることにより、粗Uミルでの
次回パスで長手方向延伸に転じさせて、はみ出し
のない端麗な溝形鋼の仕上りが得られる。
(Effect of the invention) As described above, according to this invention, U-E and
When rolling a channel-shaped material using a rolling mill row system consisting of U- F , there is a problem with the bulging burrs that occur on the rolling free surface in the roll gaps where rolling is not achieved during the rolling of the rough U mill in the previous stage during U-E continuous rolling. Constrained rolling is performed in the E mill, and the bulging burr is transferred to the range that can be rolled in the next U rolling, so that each rolling unit pass or multiple passes of reverse rolling through both the rough U and E mills are carried out.
By adjusting the interval between the stepped rolls of the E mill and rolling the material away from the corner areas of the material to be rolled in the form of a dispersed bulge, the next pass in the rough U mill will be turned into longitudinal stretching. As a result, a beautiful channel steel finish with no protrusions can be obtained.

またこのEミルによるエツジング圧延を有利に
進行させることができる。
Moreover, the etching rolling by this E mill can be advantageously carried out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、従来のU―EとUFからなる圧延
機列による溝形鋼の製品形状を示す断面図、同図
bはこの発明で得られる溝形鋼およびこれを角鋼
管に組あわせたときの断面図、第2図はU―Eと
UFからなる圧延機列の配置図、第3図a、bは
従来のUミルおよびEミル各圧延過程における被
圧延材の断面をあらわした、各ロールの要部正面
図、第4図a、bは、はみ出しの従来法による圧
潰要領と、その復元のありさまを図解したEミ
ル、Uミル各ロールの部分正面図であり、第5図
aは、この発明に従うエツジング要領を示すEミ
ルのロール要部正面図、同図bは同じくはみ出し
の長手方向延伸のありさまを示すUミルのロール
要部正面図であり、第6図a、bは分塊圧延形状
の断面図、第7図a、bはブレークダウン圧延形
状の断面図、第8図は、粗形素材と、粗Uミルロ
ール隙の関係図であつて、第9図、第10図はこ
の発明に従うEミルの各別実施例を示す部分断面
図である。 5…粗ユニバーサル・ミル(Uミル)、6…エ
ツジヤ・ミル(Eミル)、7…仕上ユニバーサ
ル・ミル(UFミル)、w…ウエブ、f…フラン
ジ、g…ロール隙、b…入隅コーナー部の互いに
向い合う面間間隔、p′…過充満由来のバリ、1
2′…押しロール、15′,16′…膨らみ、17,
17′…段付ロール、19,19′…入隅コーナー
部。
Figure 1a is a cross-sectional view showing the product shape of a channel steel produced by a conventional rolling mill train consisting of U-E and UF , and Figure 1b is a channel steel obtained by the present invention and its assembly into a square steel tube. The cross-sectional view when combined, Figure 2 is U-E.
A layout diagram of a rolling mill row consisting of U F , Fig. 3a and b is a front view of the main parts of each roll, showing a cross section of the rolled material in the conventional U mill and E mill rolling processes, Fig. 4 a , b are partial front views of the E mill and U mill rolls illustrating the conventional method of crushing extrusion and its restoration, and FIG. Fig. 6b is a front view of the main part of the roll of the U mill showing how the protrusion is stretched in the longitudinal direction; Figs. Figures a and b are cross-sectional views of the breakdown rolled shape, Figure 8 is a diagram showing the relationship between the rough material and the rough U mill roll gap, and Figures 9 and 10 are each section of the E mill according to the present invention. It is a partial sectional view showing an example. 5... Roughing universal mill (U mill), 6... Edge mill (E mill), 7... Finishing universal mill (U F mill), w... web, f... flange, g... roll gap, b... inside corner Distance between facing surfaces at the corner, p'...burr due to overfilling, 1
2'...Press roll, 15', 16'...Bulge, 17,
17'...Stepped roll, 19,19'...Inner corner portion.

Claims (1)

【特許請求の範囲】 1 溝形鋼用粗形素材を粗ユニバーサル・ミルU
とエツジヤ・ミルEとで連続リバース圧延したの
ち、仕上ユニバーサル・ミルUFに通して、ウエ
ブwとその両側のフランジfとを有する溝形の最
終形状に仕上げる、溝形鋼の圧延にあたり、 上記エツジヤ・ミルEに、粗ユニバーサル・ミ
ルUを通り抜けた被圧延材の断面形状と対応して
そのフランジ部内面との接触下にフランジ端の成
形を行う押しロール12′と、これに対する受け
ロールには上記被圧延材の断面両側の各コーナー
部外面領域に面する入隅コーナー部19,19′
をそなえてこれら入隅コーナー部19,19′の
互いに向い合う面間間隔bの調節可能な、左右一
組の段付ロール17,17′とを上下の対として
用い、 上記段付ロール17,17′の入隅コーナー部
19,19′による被圧延材の断面コーナー部外
面領域に対する拘束圧延を、上記リバース圧延の
圧延単位パス又は複数パス毎に、上記ロール隙g
及び面間間隔bの調節の下で繰返し行い、被圧延
材の断面コーナー部にて粗ユニバーサル・ミルU
による圧延に伴なつてあらわれる過充満由来のバ
リp′を、該コーナー部からフランジ部の高さ中央
寄り及びウエブの幅中央寄りに向けて分散した膨
らみ15′,16′として遠ざけることを特徴とす
る、溝形鋼の圧延方法。 2 押しロール12′と受けロールとのロール隙
gの調整可能な上下の対よりなり、粗ユニバーサ
ル・ミルUを通り抜けて溝形を成す被圧延材のフ
ランジ端成形を司るエツジヤ・ミルEにおいて、 被圧延材のウエブ部の外面側に接する方の受け
ロールが、該被圧延材の断面両側の各コーナー部
外面領域に面してそれぞれ入隅コーナー部19,
19′をそなえ、これら入隅コーナー部19,1
9′の互いに向い合う面間間隔bを拡縮調節可能
とした、左右一組の段付ロール17,17′より
成ることを特徴とする、溝形鋼圧延用のエツジヤ
ロール。
[Claims] 1. A rough material for channel steel is processed by a rough universal mill U.
In rolling the channel steel, it is subjected to continuous reverse rolling with Etsuya Mill E and then passed through finishing universal mill U F to finish it into a final channel shape having a web w and flanges f on both sides. A push roll 12' that forms a flange end in contact with the inner surface of the flange part corresponding to the cross-sectional shape of the material to be rolled that has passed through the rough universal mill U, and a receiving roll for this. are the inside corner portions 19, 19' facing the outer surface area of each corner portion on both sides of the cross section of the rolled material.
A pair of left and right stepped rolls 17, 17' are used as an upper and lower pair, and the distance b between the facing surfaces of these inside corner portions 19, 19' can be adjusted. The restraint rolling of the outer surface area of the cross-sectional corner portion of the material to be rolled by the inside corner portions 19, 19' of 17' is carried out by the roll gap g for each rolling unit pass or multiple passes of the reverse rolling.
The rough universal mill U is applied at the corner of the cross section of the material to be rolled.
The feature is that the burr p' caused by overfilling that appears due to rolling is kept away from the corner part as bulges 15' and 16' distributed toward the center of the height of the flange part and the center of the width of the web. A method of rolling channel steel. 2. In the Edger Mill E, which consists of an upper and lower pair of push rolls 12' and receiving rolls with an adjustable roll gap g, and is responsible for forming the flange end of the rolled material that passes through the rough universal mill U and forms a groove, The receiving roll that is in contact with the outer surface side of the web portion of the material to be rolled faces the outer surface area of each corner portion on both sides of the cross section of the material to be rolled, and has an inner corner portion 19,
19', and these inside corner parts 19,1
An edger roll for rolling channel steel, characterized in that it consists of a pair of left and right stepped rolls 17, 17', in which the distance b between mutually facing surfaces of 9' can be expanded or contracted.
JP20805382A 1982-11-27 1982-11-27 Hot rolling method of channel steel and edger roll used therein Granted JPS5997702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20805382A JPS5997702A (en) 1982-11-27 1982-11-27 Hot rolling method of channel steel and edger roll used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20805382A JPS5997702A (en) 1982-11-27 1982-11-27 Hot rolling method of channel steel and edger roll used therein

Publications (2)

Publication Number Publication Date
JPS5997702A JPS5997702A (en) 1984-06-05
JPH0142762B2 true JPH0142762B2 (en) 1989-09-14

Family

ID=16549858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20805382A Granted JPS5997702A (en) 1982-11-27 1982-11-27 Hot rolling method of channel steel and edger roll used therein

Country Status (1)

Country Link
JP (1) JPS5997702A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117205U (en) * 1984-06-29 1986-01-31 新日本製鐵株式会社 Low-load rolling roll for section steel rolling
JPS63260610A (en) * 1986-12-29 1988-10-27 Nippon Steel Corp Edging rolling roll for shape having flange
JP2560112B2 (en) * 1989-06-05 1996-12-04 富士写真フイルム株式会社 Bonding device for strip metal plates
TW207967B (en) * 1990-07-13 1993-06-21 Ube Industries

Also Published As

Publication number Publication date
JPS5997702A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
US4086801A (en) H-shape metallic material rolling process
US4334419A (en) Method for rolling steel sections having flanges or flange-like portions
JPH0142762B2 (en)
US4187710A (en) Method and apparatus for simultaneously rolling and slitting metal strip
US4958509A (en) Rolling method for parallel-flange steel shapes
JP6589755B2 (en) Intermediate universal rolling method for section steel with flange
JP2908456B2 (en) Rolling method for section steel
JP2626330B2 (en) Edger rolling mill for H-section steel rolling
JP2692543B2 (en) Chamfering rolling mill and corner chamfering method of continuously cast slab
JP4445113B2 (en) Rolling method of Ralsen type steel sheet pile
GB2115732A (en) Method and apparatus for controlling width and thickness of strip
JP2861831B2 (en) Rolling method of constant parallel flange channel steel with external method
JP2681536B2 (en) Channel rolling mill row
JP3582253B2 (en) Rolling method and rolling roll of crude billet for section steel
JP2000102801A (en) Manufacture of rolling channel
RU2277021C1 (en) Sheet rolling method and apparatus for performing the same
JP2861829B2 (en) Rolling method of asymmetric U-shaped sheet pile
JP4016733B2 (en) Rolling method for narrow flange width H-section steel
JP4277640B2 (en) Method for producing shaped steel with protrusion and rolling equipment for shaped steel
JPH0596304A (en) Method for rolling angle steel having unequal side and unequal thickness
JPS6322881B2 (en)
JPH08215713A (en) Rolling method for seamless steel tube and rolling equipment
JP2522059B2 (en) Method for hot rolling profile with flange
RU2277022C1 (en) Sheet rolling method and apparatus for performing the same
JPH0832331B2 (en) Rolling equipment train for profile with flange