JPH0142730B2 - - Google Patents

Info

Publication number
JPH0142730B2
JPH0142730B2 JP61253123A JP25312386A JPH0142730B2 JP H0142730 B2 JPH0142730 B2 JP H0142730B2 JP 61253123 A JP61253123 A JP 61253123A JP 25312386 A JP25312386 A JP 25312386A JP H0142730 B2 JPH0142730 B2 JP H0142730B2
Authority
JP
Japan
Prior art keywords
heat exchanger
gas
pipe
adsorber
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61253123A
Other languages
Japanese (ja)
Other versions
JPS63107721A (en
Inventor
Hiromi Ino
Katsumi Fujima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP61253123A priority Critical patent/JPS63107721A/en
Publication of JPS63107721A publication Critical patent/JPS63107721A/en
Publication of JPH0142730B2 publication Critical patent/JPH0142730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0077Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ヘリウム、水素、ネオン、アルゴン
等、常圧の下で−200℃以下の超低温で液化する
低沸点ガスを媒体とする極低温用液化冷凍装置に
おいて、低沸点ガス中に含有される不純ガスを装
置内から除去し、低沸点ガスの精製と不純ガス除
去後の装置の再生とを能率よく行うことのできる
装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to the use of low-boiling gases such as helium, hydrogen, neon, and argon that liquefy at an ultra-low temperature of −200°C or less under normal pressure. In cryogenic liquefaction refrigeration equipment used as a medium, impurity gas contained in low-boiling gas can be removed from the equipment, and purification of the low-boiling gas and regeneration of the equipment after removal of impurity gas can be efficiently performed. Regarding equipment.

(従来の技術) 第7図は低沸点ガスとしてヘリウムガスを用い
て極低温用液化冷凍装置の従来技術の一例であ
る。
(Prior Art) FIG. 7 is an example of a conventional technology of a cryogenic liquefaction refrigeration apparatus using helium gas as a low boiling point gas.

ヘリウムガスを用いる液化冷凍装置には油噴射
式のスクリユー圧縮機が広く使用されている。
Oil injection type screw compressors are widely used in liquefaction refrigeration systems that use helium gas.

スクリユー圧縮機1で昇圧されたヘリウムガス
はガス冷却器2、油分離器3、吸着器4を順次流
通することにより冷却され、油を分離し、不純ガ
スを除去された後、吐出管5、次に高圧ガス管1
5を経てコールドボツクス6に入る。コールドボ
ツクス6の内部は高真空に保たれ、対流によつて
外部から内部の低温機器への熱浸入を防止してい
る。コールドボツクス6内には6個の熱交換器7
ないし12が設置され、順次第1ないし第6の熱
交換器となつている。第1熱交換器7には流入口
13より液体窒素が流入しヘリウムガスと熱交換
した後、流出口14より流出するようになつてい
る。この液体窒素と低圧ガス管16を流れるスク
リユー圧縮機1への戻りガスとにより冷却され
て、高圧ガス管15を流れる高圧のヘリウムガス
は第1熱交換器7の出口でほぼ液体窒素の温度ま
で冷却される。第2熱交換器8を出たヘリウムガ
スの一部は、バイパス管17を流れて第一段目の
膨脹機18に流入し膨脹仕事をして低圧低温のヘ
リウムガスとなり、低圧ガス管16に流入し、第
3熱交換器9内で高圧ガス管15を流れる残りの
高圧ガスと熱交換してこれを冷却する。また第4
熱交換器10を出た高圧ガスの一部はバイパス管
19を流れて第二段目の膨脹機20に入り、膨脹
仕事をして低圧低温のヘリウムガスとなり、第5
熱交換器11で残りの高圧ガスと熱交換してこれ
を冷却する。第6熱交換器12で更に冷却された
高圧ガスは、ジユールトムソン弁21に入り、こ
こで等エンタルピー膨脹をしてその一部が液化
し、液留容器22内に溜る。この液は適宜の負荷
23のために使用される。
The helium gas pressurized by the screw compressor 1 is cooled by sequentially passing through a gas cooler 2, an oil separator 3, and an adsorber 4, and after oil is separated and impurity gas is removed, a discharge pipe 5, Next, high pressure gas pipe 1
After passing through 5, you will enter cold box 6. The inside of the cold box 6 is maintained at a high vacuum, and convection prevents heat from entering from the outside to the low-temperature equipment inside. There are six heat exchangers 7 in the cold box 6.
1 to 12 are installed, sequentially serving as the first to sixth heat exchangers. Liquid nitrogen flows into the first heat exchanger 7 through an inlet 13, exchanges heat with helium gas, and then flows out through an outlet 14. The high-pressure helium gas flowing through the high-pressure gas pipe 15 is cooled by this liquid nitrogen and the return gas flowing through the low-pressure gas pipe 16 to the screw compressor 1, and reaches almost the temperature of liquid nitrogen at the outlet of the first heat exchanger 7. cooled down. A part of the helium gas that has left the second heat exchanger 8 flows through the bypass pipe 17 and flows into the first-stage expander 18 where it performs expansion work and becomes low-pressure, low-temperature helium gas, which is then transferred to the low-pressure gas pipe 16. The high-pressure gas flows into the third heat exchanger 9 and exchanges heat with the remaining high-pressure gas flowing through the high-pressure gas pipe 15 to cool it. Also the fourth
A part of the high-pressure gas leaving the heat exchanger 10 flows through the bypass pipe 19 and enters the second-stage expander 20, where it performs expansion work and becomes low-pressure, low-temperature helium gas.
The heat exchanger 11 exchanges heat with the remaining high pressure gas to cool it. The high-pressure gas that has been further cooled in the sixth heat exchanger 12 enters the Joel-Thomson valve 21, where it undergoes isenthalpic expansion, a portion of which liquefies, and accumulates in the liquid distillation vessel 22. This liquid is used for the appropriate loading 23.

液化しなかつたヘリウムガスは飽和蒸気の状態
で第6熱交換器12へ戻り、膨脹機20の出口ガ
スと合流し、低圧ガス管16中を流れて順次、高
圧ガス管15を流れる高圧ガスと熱交換器内で熱
交換した後、吸込管24を経てスクリユー圧縮機
1へ戻る。
The helium gas that has not been liquefied returns to the sixth heat exchanger 12 in the state of saturated vapor, merges with the outlet gas of the expander 20, flows through the low pressure gas pipe 16, and is sequentially combined with the high pressure gas flowing through the high pressure gas pipe 15. After exchanging heat within the heat exchanger, it returns to the screw compressor 1 via the suction pipe 24.

以上のように高圧ガスと低圧ガスとは対向流で
熱交換し、また高圧ガスを液化するために必要な
寒冷熱は第1熱交換器7の液体窒素及び第1、第
2の膨張機18,20で与えられる。
As described above, the high-pressure gas and the low-pressure gas exchange heat in countercurrent flow, and the cold heat necessary to liquefy the high-pressure gas is transferred to the liquid nitrogen in the first heat exchanger 7 and the first and second expanders 18. ,20.

ヘリウムガスの場合は1気圧4.2〓で液化する。
このような極低温下の作動においては、装置は外
部より熱的に十分に断熱する必要がある。このた
めコールドボツクス6内を10-3〜10-6mmHg以下
の超真空状態に維持し、外部(常温部)から空気
の対流による熱伝達を防止している。また、コー
ルドボツクス6内と外部とは300℃位の温度差が
存在し輻射による熱侵入も大きいので、これを防
止するために、熱交換器、配管、弁、膨張器等の
総ての部材にアルミ箔などの輻射断熱材を何層に
も巻きつけている。
In the case of helium gas, it liquefies at 1 atm 4.2〓.
When operating at such extremely low temperatures, the device must be sufficiently thermally insulated from the outside. For this reason, the inside of the cold box 6 is maintained in an ultra-vacuum state of 10 -3 to 10 -6 mmHg or less to prevent heat transfer from the outside (normal temperature area) due to air convection. In addition, there is a temperature difference of about 300℃ between the inside and outside of the cold box 6, and there is a large amount of heat intrusion due to radiation, so in order to prevent this, all parts such as heat exchangers, piping, valves, expanders, etc. It is wrapped in several layers of radiant insulation material such as aluminum foil.

コールドボツクス製作時の最重要技術の一つに
前記の真空断熱技術がある。この真空断熱には高
度の技術とノウハウを必要とし、施工には数週間
から数ケ月もの長時間を要する。このため一度仕
上つたコールドボツクスは通常は開放することは
ない。開放した後に原状に復帰させるには相当な
費用と時間とを必要とするからである。
One of the most important technologies when manufacturing cold boxes is the vacuum insulation technology mentioned above. This vacuum insulation requires advanced technology and know-how, and construction can take anywhere from several weeks to several months. For this reason, once a cold box is finished, it is usually never opened. This is because it requires considerable cost and time to restore the original state after opening.

一方、本装置のスクリユー圧縮機1は油噴射式
であるため、該圧縮機内には多量の潤滑油が噴射
され、この油を高圧ガスと分離するためには油分
離器3が必要であるのは当然であるが、更に本装
置は、−200℃以下の極低温で液化が生ずるのであ
るから、微細な油が系内に侵入すると、熱交換器
の壁面に凝縮固化し、最悪の場合には熱交換器の
通路を閉塞してしまい、装置を運転不可能の状態
に追込んでしまうことになる。したがつて、コー
ルドボツクス内への油の侵入は極度に嫌われ、高
粘度の油による熱交換器の閉塞という緊急事態の
防止策がとられている。前記緊急事態を防止する
ために油分離器3を4段ないし5段設置し更に最
終段には活性炭やモレキユラーシーブス等の吸着
材を入れた吸着器4を設置する。
On the other hand, since the screw compressor 1 of this device is an oil injection type, a large amount of lubricating oil is injected into the compressor, and an oil separator 3 is required to separate this oil from high pressure gas. Of course, this equipment liquefies at extremely low temperatures below -200°C, so if fine oil enters the system, it will condense and solidify on the walls of the heat exchanger, causing damage in the worst case. This will block the passage of the heat exchanger, making the device inoperable. Therefore, the intrusion of oil into the cold box is extremely discouraged, and measures are taken to prevent the emergency situation of blockage of the heat exchanger due to high viscosity oil. In order to prevent the above-mentioned emergency situation, four or five stages of oil separators 3 are installed, and an adsorber 4 containing an adsorbent such as activated carbon or molecular sieves is installed at the final stage.

また、前記の油以外に、空気、水蒸気、メタ
ン、エタン等のガス状の不純物も結果的には油と
同じような不都合状態を生じさせるので、前記の
吸着器4は油はもとよりこれらの不純ガスをも捕
捉させるように構成されている。
In addition to the above-mentioned oil, gaseous impurities such as air, water vapor, methane, and ethane also result in the same disadvantageous conditions as oil, so the absorber 4 is designed to absorb not only oil but also these impurities. It is also configured to trap gas.

前記のように第7図の従来技術においては、一
応、油分離器及び吸着器が設けられてはいるもの
の、吸着器4の吸着材は常温状態にあることと、
吸着材として活性炭やモレキユラーシーブス等の
数種類の吸着材しか充填できないため、微量の不
純ガスを十分には吸着できない。常温であると吸
着能が不足し、しかも不純ガスの種類が多くなる
と、吸着材の種類に応じた特定のガスしか吸着で
きないためである。
As mentioned above, in the prior art shown in FIG. 7, although an oil separator and an adsorber are provided, the adsorbent in the adsorber 4 is at room temperature.
Since only a few types of adsorbents such as activated carbon and molecular sieves can be filled as adsorbents, trace amounts of impure gas cannot be sufficiently adsorbed. This is because adsorption capacity is insufficient at room temperature, and when there are many types of impure gases, only specific gases depending on the type of adsorbent can be adsorbed.

このような従来技術の改良として、第8図のよ
うな装置が考えられる。この装置は、4を第1の
吸着器とし、第2の吸着器31を精製器30内
に、また第3の吸着器32をコールドボツクス6
内の第1熱交換器7の高圧ガスの出口側に設けた
点が第7図の装置と異なつている。この装置の精
製器30によれば、吸着器31内には冷凍サイク
ルの蒸発器33が設置される。冷凍サイクルは圧
縮機34、凝縮器35、膨脹弁36と前記の蒸発
器33から構成される。通常のフロン冷凍機によ
れば吸着器31内の吸着材は−40℃位まで冷却さ
れ、これにより吸着材の吸着能力が向上せしめら
れることになる。37は冷却剤通路である。また
第3の吸着器32には、第1熱交換器7へ流入す
る液体窒素の入口温度に近い高圧ガスが流入す
る。第7図と同一符号の部分は同一の機能を有す
る部分であるのでその説明を省略する。
As an improvement over such conventional technology, a device as shown in FIG. 8 can be considered. This device has a first adsorber 4, a second adsorber 31 in a purifier 30, and a third adsorber 32 in a cold box 6.
This device is different from the device shown in FIG. 7 in that the first heat exchanger 7 is provided on the high-pressure gas outlet side. According to the purifier 30 of this device, an evaporator 33 of a refrigeration cycle is installed in the adsorber 31. The refrigeration cycle is composed of a compressor 34, a condenser 35, an expansion valve 36, and the evaporator 33 mentioned above. According to a normal fluorocarbon refrigerator, the adsorbent in the adsorber 31 is cooled to about -40°C, thereby improving the adsorption capacity of the adsorbent. 37 is a coolant passage. Further, high-pressure gas that is close to the inlet temperature of the liquid nitrogen flowing into the first heat exchanger 7 flows into the third adsorber 32 . Portions with the same reference numerals as in FIG. 7 have the same functions, so their explanation will be omitted.

従来技術の経験によれば、ヘリウムガスを用い
る極低温用液化冷凍装置における不純ガスとして
は、(イ)圧縮機中の油蒸気(メタン、エタン、プロ
パンなどの炭化水素系化合物)、(ロ)装置内に残留
する空気、水分、(ハ)構造物(プラスチツク、Oリ
ング、ガスケツト、マグネツト)から発生する異
物ガス、(ニ)外部より侵入する空気、水分等が考え
られる。
According to the experience of the prior art, the impurity gases in cryogenic liquefaction refrigeration systems using helium gas include (a) oil vapor in the compressor (hydrocarbon compounds such as methane, ethane, and propane), and (b) Possible causes include air and moisture remaining in the device, (c) foreign gases generated from structures (plastic, O-rings, gaskets, magnets), and (d) air and moisture entering from the outside.

これらの不純ガスは、炭化水素系物質、炭酸ガ
ス、一酸化炭素、水、酸素、窒素、ネオン等かな
りの種類があり、しかも1ppm以下の超微量ガス
である。このため、精製器30の吸着器31の充
填物の種類を多くし、−40℃位まで冷却しても大
部分の微量ガスはここで捕捉されずにコールドボ
ツクス6内に侵入して行くことになる。そしてコ
ールドボツクス6内に侵入した不純ガスは、それ
ぞれの分圧に相当する温度の熱交換器壁面や配管
に付着堆積し、長時間の連続運転によりコールド
ボツクス6の能力が低下してくることになり、最
終的には運転不能となる。
These impure gases come in many varieties, including hydrocarbons, carbon dioxide, carbon monoxide, water, oxygen, nitrogen, and neon, and they are extremely trace amounts of less than 1 ppm. For this reason, even if the types of fillers in the adsorber 31 of the purifier 30 are increased and the temperature is cooled to about -40°C, most of the trace gases will not be captured here but will enter the cold box 6. become. The impure gas that has entered the cold box 6 is deposited on the heat exchanger walls and piping at temperatures corresponding to the respective partial pressures, and the performance of the cold box 6 decreases due to long-term continuous operation. Eventually, it becomes impossible to drive.

第1熱交換器7でも捕捉できない不純ガスは順
次、第2、第3の熱交換器8,9にも付着してい
くので、第1熱交換器7の出口にも第3の吸着器
32を設置しなければならない。
Since the impure gas that cannot be captured by the first heat exchanger 7 also adheres to the second and third heat exchangers 8 and 9, the third adsorber 32 is also attached to the outlet of the first heat exchanger 7. must be installed.

そして、第1熱交換器7に不純ガスが付着し運
転に支障を来すようになれば、装置を停止し常温
までウオームアツプし、該熱交換器7と吸着器3
2とを再生させなければならない。また長期使用
により第3の吸着器32が使用不能になれば、コ
ールドボツクス6を開放し、これを交換しなけれ
ばならない。しかしながらコールドボツクス6の
内部は10-3cmHg以下の超真空に保たれているの
で、一度大気に開放すると内部をもとの超真空に
戻すためには大変な人手と時間とを必要とする。
また、前記吸着器32をコールドボツクス6に交
換可能なフランジ接続とすると、超真空維持の上
で、該ボツクスの信頼性を著しく低下してしま
う。更に吸着器出入口配管を溶接構造とすれば、
今度は交換がきわめてむずかしくなる。
If impure gas adheres to the first heat exchanger 7 and causes a problem in operation, the device is stopped and warmed up to room temperature, and the heat exchanger 7 and adsorber 3 are heated up to room temperature.
2 must be regenerated. Furthermore, if the third adsorber 32 becomes unusable due to long-term use, the cold box 6 must be opened and replaced. However, since the inside of cold box 6 is kept at an ultra-vacuum of 10 -3 cmHg or less, once it is exposed to the atmosphere, it requires a great deal of manpower and time to return the interior to the original ultra-vacuum.
Further, if the adsorber 32 is connected to the cold box 6 by a replaceable flange, the reliability of the box will be significantly reduced in maintaining ultra-vacuum. Furthermore, if the adsorber inlet/outlet piping is welded,
This time it will be extremely difficult to replace.

(発明が解決しようとする問題点) 従来技術においては前記のように種々の問題が
ある。本発明は、前記のような問題点を除去する
精製及び再生装置を得ることを目的とするもので
ある。
(Problems to be Solved by the Invention) The prior art has various problems as described above. The object of the present invention is to obtain a purification and regeneration device that eliminates the above-mentioned problems.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の極低温用液化冷凍装置における低沸点
ガスの精製及び再生装置は前記の問題点を解決す
るために、次の構成からなる 第1の発明 第1熱交換器と該熱交換器の出口に接続された
吸着器とからなる組を、第2熱交換器以下の熱交
換器群の収容されるコールドボツクスとは別個に
2組以上設けて精製器ボツクスに収容すること。
これらの組を圧縮機側とコールドボツクス側にガ
ス管によつてそれぞれ連結すること。1つの組が
精製側として作動しているとき他の組が再生側と
して作動するように切換可能な切換弁が前記ガス
管に設けられていること。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the low boiling point gas purification and regeneration device in the cryogenic liquefaction refrigeration system of the present invention has the following configuration. A purifier is constructed by providing two or more sets each consisting of a heat exchanger and an adsorber connected to the outlet of the heat exchanger, separately from the cold box in which the heat exchanger group below the second heat exchanger is accommodated. be placed in a box.
Connect these sets to the compressor side and cold box side using gas pipes. The gas pipes are provided with switching valves that can be switched so that when one set operates as a refining side, the other set operates as a regeneration side.

第2の発明 第1の発明の構成に更に、各組の第1熱交換器
と冷凍サイクルとを接続する該熱交換器加熱また
は冷却用の外部流体供給管を設けたこと。
Second invention In addition to the configuration of the first invention, an external fluid supply pipe for heating or cooling the heat exchanger is provided to connect the first heat exchanger of each set and the refrigeration cycle.

本発明において、「第1熱交換器」とは、液化
冷凍装置の液化冷凍運転中、高圧ガス、低圧ガス
及び冷却用の外部冷却剤の三流体間で熱交換が行
なわれ、熱交換器出口における高圧ガスの温度が
前記外部冷却剤の熱交換器への入口温度に略等し
くなるまで冷却される熱交換器のことを言う。
In the present invention, the "first heat exchanger" refers to a device in which heat exchange is performed between three fluids, high-pressure gas, low-pressure gas, and an external coolant for cooling, during liquefaction refrigeration operation of the liquefaction refrigeration system, and the heat exchanger exits the heat exchanger. refers to a heat exchanger that is cooled until the temperature of the high pressure gas at is approximately equal to the inlet temperature of the external coolant to the heat exchanger.

(作用) 第2熱交換器以下の熱交換器群の収容されるコ
ールドボツクスと別個に第1熱交換器と吸着器と
を精製器ボツクスに収容し、この吸着器を前記第
1熱交換器の出口側に接続したので、高真空に保
持されるコールドボツクスに無関係に該熱交換器
の清掃と吸着器の交換がきわめて容易となる。
(Function) A first heat exchanger and an adsorber are housed in a purifier box separately from a cold box in which a group of heat exchangers below the second heat exchanger are housed, and this adsorber is connected to the first heat exchanger. Since the heat exchanger is connected to the outlet side of the heat exchanger, it is extremely easy to clean the heat exchanger and replace the adsorber regardless of the cold box which is maintained at a high vacuum.

第1熱交換器と吸着器の組を2組以上設けるこ
とにより、この組を精製側と再生側に切換使用で
き、装置を停止することなく連続運転ができる。
By providing two or more sets of the first heat exchanger and the adsorber, this set can be switched between the purification side and the regeneration side, allowing continuous operation without stopping the apparatus.

第1熱交換器と吸着器の組が2組以上あり、こ
の第1熱交換器と冷凍サイクルとを接続する該熱
交換器加熱または冷却用の外部流体供給管を設け
たので、精製と再生の双方の併行運転ができると
ともに、吸着器内において不純ガスの捕捉を十分
にし、コールドボツクス内への不純ガスの侵入を
なくすことができる。
There are two or more sets of the first heat exchanger and adsorber, and an external fluid supply pipe for heating or cooling the heat exchanger is provided to connect the first heat exchanger and the refrigeration cycle. Both can be operated in parallel, and impure gas can be sufficiently captured in the adsorber to prevent impurity gas from entering the cold box.

(実施例) 第1図は本発明の実施例のフローシートダイヤ
グラムであつて、第8図の従来技術における精製
器30のところを精製器ボツクス40とし、ここ
に、第8図においてコールドボツクス6内にあつ
た第1熱交換器7と第3の吸着器32との組を収
容するとともに、この組を2組すなわち7aと3
2aの組と7bと32bの2組として、圧縮機側
とコールドボツクス側の間のガス流動に関して併
列に設置している。圧縮機からの吐出管5はコー
ルドボツクス6内の高圧ガス管15に対して、分
岐するガス管41,42により連結され、一方低
圧ガス管16は圧縮機への吸込管24に対して、
分岐するガス管43,44により連結される。5
1〜58はガスの流路を切換えるための切換弁で
ある。また第1熱交換器7aと熱交換する流体は
外部流体供給管45より流入する。同様に第1熱
交換器7bと熱交換する流体は外部流体供給管4
7より流入する。
(Embodiment) FIG. 1 is a flow sheet diagram of an embodiment of the present invention, in which the purifier 30 in the prior art in FIG. 8 is replaced with a purifier box 40, and the cold box 6 in FIG. The set of the first heat exchanger 7 and the third adsorber 32 that were in the interior is accommodated, and two sets of this set, namely 7a and
Two sets, 2a and 7b and 32b, are installed in parallel for gas flow between the compressor side and the cold box side. The discharge pipe 5 from the compressor is connected to the high pressure gas pipe 15 in the cold box 6 by branching gas pipes 41 and 42, while the low pressure gas pipe 16 is connected to the suction pipe 24 to the compressor.
They are connected by branching gas pipes 43 and 44. 5
1 to 58 are switching valves for switching gas flow paths. Further, the fluid that exchanges heat with the first heat exchanger 7a flows in from the external fluid supply pipe 45. Similarly, the fluid that exchanges heat with the first heat exchanger 7b is the external fluid supply pipe 4.
It flows in from 7.

前記熱交換器内には、精製の際には冷却流体が
流れ、再生の際には加熱流体が流れる。符号中、
第8図と同一のものはそれと同一の部分であつて
その機能が同じであるからその説明を省略する。
A cooling fluid flows through the heat exchanger during purification, and a heating fluid flows during regeneration. In the code,
The parts that are the same as those in FIG. 8 are the same parts and have the same functions, so their explanation will be omitted.

吸着器32a,32bは第1の吸着器4に続く
第2の吸着器となつており、第1熱交換器7a,
7bの高圧ガス出口側にそれぞれ連結される。次
に第2図により作動の説明する。今、図中左側の
第1熱交換器7bが液化冷凍の作動中であり右側
の第1熱交換器7aが再生の作動中であるとす
る。
The adsorbers 32a, 32b are the second adsorbers following the first adsorber 4, and the first heat exchangers 7a,
7b respectively connected to the high pressure gas outlet side. Next, the operation will be explained with reference to FIG. It is now assumed that the first heat exchanger 7b on the left side of the figure is in operation for liquefaction refrigeration, and the first heat exchanger 7a on the right side is in operation for regeneration.

第1熱交換器7bに対する高圧ガス管42と低
圧ガス管44の切換弁52,54,56,58は
何れも開となつており、外部流体供給管47には
冷却流体が流れ第1熱交換器7bを冷却してい
る。冷却流体として低温フロン系冷媒例えば冷媒
R13B1を用いることにより、該熱交換器を−
80℃まで冷却することができ、また冷媒R13と
冷媒R22を用いる二元冷凍方式を用いることに
より、−100℃位まで冷却することができる。更
に、冷却流体として液体窒素を用いることにより
−190℃位まで冷却することができる。したがつ
て、コールドボツクス6と別個に設けた精製器ボ
ツクス40内において、吸着器32a,32bを
従来技術の−40℃より遥かに低い−100℃近くに
まで冷却することが可能となる。
The switching valves 52, 54, 56, and 58 of the high-pressure gas pipe 42 and the low-pressure gas pipe 44 for the first heat exchanger 7b are all open, and cooling fluid flows into the external fluid supply pipe 47 to perform the first heat exchange. The container 7b is being cooled. By using a low-temperature fluorocarbon-based refrigerant, such as refrigerant R13B1, as the cooling fluid, the heat exchanger can be
It can be cooled to 80°C, and by using a binary refrigeration system using refrigerant R13 and refrigerant R22, it can be cooled to about -100°C. Furthermore, by using liquid nitrogen as a cooling fluid, it is possible to cool down to about -190°C. Therefore, in the purifier box 40 provided separately from the cold box 6, it is possible to cool the adsorbers 32a and 32b to nearly -100°C, which is much lower than -40°C in the prior art.

一方、第一熱交換器7aに対する高圧ガス管4
1と低圧ガス管43の切換弁51,53,55,
57は何れも閉となつており、外部流体供給管4
5には加熱流体が流れ第1熱交換器7aを加熱し
ている。
On the other hand, the high pressure gas pipe 4 for the first heat exchanger 7a
1 and the switching valves 51, 53, 55 of the low pressure gas pipe 43,
57 are all closed, and the external fluid supply pipe 4
5, heating fluid flows to heat the first heat exchanger 7a.

第1熱交換器7aを再生に切換えた直後におい
ては、外部冷却流体として液体窒素を使用してい
るとすれば第1熱交換器7aと吸着器32aは−
190℃前後の超低温の状態にある。このため熱交
換器面及び吸着器に付着している(凝縮又は固化
している)不純ガスは常温以上の温度に加熱して
それの脱着を行わなければならない。このため前
記のように加熱流体が流される。同時にバイパス
管61の開閉弁62が開かれ、また弁66,67
が開かれ精製ガス供給管63から常温以上で加圧
された精製ガスを供給し、バイパス管61を介し
て系内を流通させ排出管64から供給された精製
ガスを系外へ排出する。
Immediately after switching the first heat exchanger 7a to regeneration, if liquid nitrogen is used as the external cooling fluid, the first heat exchanger 7a and adsorber 32a are -
The temperature is extremely low, around 190℃. Therefore, the impure gas adhering (condensing or solidifying) to the heat exchanger surface and the adsorber must be heated to a temperature higher than room temperature to desorb it. For this purpose, heating fluid is flowed as described above. At the same time, the on-off valve 62 of the bypass pipe 61 is opened, and the valves 66 and 67 are opened.
is opened, a purified gas pressurized at room temperature or above is supplied from the purified gas supply pipe 63, circulated through the system via the bypass pipe 61, and the purified gas supplied from the discharge pipe 64 is discharged to the outside of the system.

排出されたガスは大気に放出するか、別に設置
されている精製回収装置に送り、精製後回収す
る。外部流体供給管45内を流れる加熱流体は加
熱した窒素、低温フロン系冷媒、ブライン等であ
り、これらにより第1熱交換器7aと吸着器32
aを加熱するための熱供給が行われる。排出管6
4のガスの温度が常温以上になつたら、弁67を
閉じて真空生成管65の弁68を開き、真空ポン
プにより系内のガス及び不純ガスの排出を行う。
このような加圧された精製ガスの供給と真空引き
を交互に行い、系内の不純ガスが十分に除去され
るまで、この操作を繰返す。
The emitted gas is either released into the atmosphere or sent to a separately installed purification and recovery equipment, where it is purified and recovered. The heating fluid flowing inside the external fluid supply pipe 45 is heated nitrogen, low-temperature fluorocarbon refrigerant, brine, etc.
Heat is supplied to heat a. Discharge pipe 6
When the temperature of the gas No. 4 reaches room temperature or higher, the valve 67 is closed and the valve 68 of the vacuum generating tube 65 is opened, and the gas and impure gas in the system are discharged by the vacuum pump.
The supply of pressurized purified gas and evacuation are alternately performed, and this operation is repeated until the impurity gas in the system is sufficiently removed.

一定時間の運転を行つて左側の第1熱交換器7
bの精製能力または液化冷凍能力が低下し始めた
ときは、切換弁を開閉操作して再生の完了してい
る右側の第1熱交換器7aを液化冷凍作動に切換
え、左側の第1熱交換器7bを再生作動に切換え
る。
After operating for a certain period of time, the first heat exchanger 7 on the left
When the refining capacity or liquefaction refrigeration capacity of b begins to decrease, open and close the switching valve to switch the first heat exchanger 7a on the right side, which has completed regeneration, to liquefaction refrigeration operation, and switch the first heat exchanger 7a on the left side to liquefaction refrigeration operation. switch 7b to regeneration operation.

第3図は左側の第1熱交換器7bが液化冷凍作
動をしており、右側の第1熱交換器7aが再生作
動している場合において、外部流体供給管47に
冷却流体をまた外部流体供給管45に加熱流体を
それぞれ流すにあたり、圧縮機71、凝縮器7
2、膨脹弁73、蒸発器74からなる冷凍サイク
ルを作動させ、前記管47にはブラインによつて
間接的に冷熱を運搬し、一方前記管45には間接
的に凝縮に伴う熱を運搬することにより、省エネ
ルギーを計つた実施例である。75はクーリング
タワーである。
FIG. 3 shows a case in which the first heat exchanger 7b on the left side is performing liquefaction freezing operation and the first heat exchanger 7a on the right side is performing regeneration operation, and the cooling fluid is supplied to the external fluid supply pipe 47. In order to flow the heating fluid into the supply pipe 45, the compressor 71 and the condenser 7
2. A refrigeration cycle consisting of an expansion valve 73 and an evaporator 74 is operated, and cold heat is indirectly conveyed to the pipe 47 by brine, while heat due to condensation is indirectly conveyed to the pipe 45. This is an example of energy saving. 75 is a cooling tower.

また第4図は第3図と同様に省エネルギーを計
つた実施例であるが、冷凍サイクルの冷媒を直接
に冷却用、加熱用として外部流体供給管45,4
7にそれぞれ流入させている点が違つている。
Also, FIG. 4 shows an embodiment designed to save energy in the same way as FIG.
The difference is that they each flow into 7.

第3図、第4図とも圧縮冷凍サイクルの冷媒と
してR13B1を用いるものであり、省エネルギ
ー上、有用な加熱、冷却方式のフローシートの一
部を示したものである。したがつて、左側の第1
熱交換器7bにおいても、バイパス管61、精製
ガス供給管63、排出管64、真空生成管65、
弁66,67,68は当然設けられているのであ
るが、これら図示は省略されている。また、冷凍
サイクルの蒸発熱、凝縮熱を前記と逆に管45,
47に与えるべき管系統も図示が省略されてい
る。
Both FIG. 3 and FIG. 4 use R13B1 as a refrigerant in a compression refrigeration cycle, and show a part of a flow sheet of a heating and cooling system useful for energy saving. Therefore, the first one on the left
Also in the heat exchanger 7b, a bypass pipe 61, a purified gas supply pipe 63, a discharge pipe 64, a vacuum generation pipe 65,
Although valves 66, 67, and 68 are naturally provided, their illustration is omitted. In addition, the heat of evaporation and heat of condensation of the refrigeration cycle are transferred to the pipe 45,
The illustration of the pipe system to be provided to 47 is also omitted.

また、第5図は外部流体供給管45,47に液
体窒素を供給する実施例であり、(イ)は液化冷凍作
動中を(ロ)は再生作動中を示し、80は液体窒素を加
熱する加熱器である。
Furthermore, Fig. 5 shows an embodiment in which liquid nitrogen is supplied to the external fluid supply pipes 45 and 47, where (a) shows the liquefaction freezing operation in progress, (b) shows the regeneration operation in progress, and 80 shows the liquid nitrogen being heated. It is a heater.

更に、第6図は外部流体供給管を2個用い、供
給管47aに液体窒素を、供給管47bにブライ
ンを流すようにした実施例である。この実施例に
よれば液体窒素の使用量を減少し、又は全く使用
しないで液化冷凍を行うことができる。この場
合、液体窒素の使用時に比べて液化率(冷凍能
力)は若干低下するが、液体窒素を使用しないで
すむというメリツトがある。
Further, FIG. 6 shows an embodiment in which two external fluid supply pipes are used, and liquid nitrogen is supplied to the supply pipe 47a, and brine is supplied to the supply pipe 47b. According to this embodiment, liquefaction freezing can be performed with a reduced amount of liquid nitrogen used or without using it at all. In this case, although the liquefaction rate (refrigeration capacity) is slightly lower than when liquid nitrogen is used, there is an advantage that liquid nitrogen does not need to be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱交換器の清掃及び吸着器の
交換が容易となる。従来技術のコールドボツクス
においては、操作ミス等によつてコールドボツク
ス内に油が侵入した場合、清掃が非常に困難であ
つた。すなわち、コールドボツクスを開放し、内
部構造物を取り出して溶媒等で洗條し、または配
管を一部切断するなどの作業が必要であつた。ま
た清掃後、コールドボツクス内部を超真空の状態
に復帰するための時間も数週間を必要とした。別
言すれば、従来技術においては、第1熱交換器の
清掃と吸着器の交換には莫大な費用と時間を要し
た。
According to the present invention, it becomes easy to clean the heat exchanger and replace the adsorber. In the conventional cold box, if oil enters the cold box due to an operational error or the like, it is very difficult to clean it. That is, it was necessary to open the cold box, take out the internal structure and wash it with a solvent, or cut a portion of the piping. Furthermore, after cleaning, it took several weeks to restore the inside of the cold box to an ultra-vacuum state. In other words, in the prior art, cleaning the first heat exchanger and replacing the adsorber required an enormous amount of cost and time.

これに対し、本発明によれば、コールドボツク
スと別個に精製器ボツクスを設けて第1熱交換器
と吸着器を収容したので、該熱交換器の清掃と吸
着器の交換がきわめて容易である。すなわち、前
記第1熱交換器と吸着器を精製器ボツクスに収容
したので、−190℃位までの低温の断熱はコールド
ボツクスに比べてきわめて簡単容易であり、真空
断熱する場合でも10-1mmHg程度の真空で十分で
あつてコールドボツクスの場合のように10-3
10-6mmHg以下の超真空に維持する必要がなく、
また真空槽を使用しない断熱材による通常の防熱
施工のみでも大丈夫である。しかも、精製器ボツ
クスはコールドボツクスに比べて遥かに小型であ
り、清掃、交換を前以て考慮したが設計ができ
る。そして第1熱交換器の清掃と吸着器の交換等
をきわめて容易にかつ短時間で行うことができ
る。
On the other hand, according to the present invention, since the purifier box is provided separately from the cold box and houses the first heat exchanger and the adsorber, it is extremely easy to clean the heat exchanger and replace the adsorber. . That is, since the first heat exchanger and adsorber are housed in the purifier box, insulation at low temperatures down to -190°C is much simpler than in a cold box, and even when vacuum insulation is used, the temperature is 10 -1 mmHg. A vacuum of about 10 -3 is sufficient, as in the case of a cold box.
There is no need to maintain an ultra-vacuum below 10 -6 mmHg,
It is also possible to simply perform ordinary heat insulation construction using heat insulating materials without using a vacuum chamber. Additionally, purifier boxes are much smaller than cold boxes, and can be designed with cleaning and replacement considerations in mind. Furthermore, cleaning of the first heat exchanger, replacement of the adsorbent, etc. can be performed extremely easily and in a short time.

そして第1熱交換器と吸着器からなる組を2組
以上、並列に設けることにより、不慮の事故が発
生しない限り、前記の組を液化冷凍と再生に切換
使用することにより、精製器ボツクスの開放は必
要とされない。
By installing two or more sets consisting of the first heat exchanger and adsorber in parallel, unless an unexpected accident occurs, the above-mentioned sets can be switched to liquefaction freezing and regeneration. No opening is required.

また本発明によれば、精製器ボツクス内に入つ
てくる低沸点ガス中の不純ガスは先ず、第1熱交
換器の壁面において凝縮、固化することにより大
部分捕集される。この熱交換器面上の不純ガスは
常温にするだけで簡単に除去できる。このため液
化冷凍を中止することなく再生が簡単に行える。
Further, according to the present invention, most of the impure gases in the low boiling point gas entering the purifier box are first collected by condensing and solidifying on the wall surface of the first heat exchanger. This impure gas on the heat exchanger surface can be easily removed by simply bringing it to room temperature. Therefore, regeneration can be easily performed without stopping liquefaction freezing.

本発明によれば、第1熱交換器とその出口に接
続される吸着器とがコールドボツクスと別個に設
けられており、従来技術の精製器内の吸着器にお
ける−40℃よりも遥かに低い温度にまで吸着器の
温度を低下させることができるので、吸着性能が
著しく向上する。そして第1熱交換器で捕捉され
なかつた極微量の不純ガスも、この吸着器で略完
全に吸着される。そして、ここで捕集されなかつ
た不純ガスが仮りにコールドボツクス内に入つた
としても、それは極く微量であつて、1ないし2
年に1度の定期点検の間、全く問題なく運転でき
る程度の量にすぎない。これに対し、従来技術で
はコールドボツクス内に不純ガスが入り第1熱交
換器の性能が落ちたら、液化冷凍運転そのものを
停止してウオームアツプする必要があつた。
According to the present invention, the first heat exchanger and the adsorber connected to its outlet are provided separately from the cold box, and the temperature is much lower than -40°C in the adsorber in the conventional purifier. Since the temperature of the adsorber can be lowered to the same temperature as the above, the adsorption performance is significantly improved. Even trace amounts of impure gas that were not captured by the first heat exchanger are almost completely adsorbed by this adsorber. Even if impurity gas that is not collected here does enter the cold box, it will be in an extremely small amount and only 1 to 2
This amount is just enough to allow the vehicle to be operated without any problems during regular inspections once a year. In contrast, in the conventional technology, if impure gas enters the cold box and the performance of the first heat exchanger deteriorates, it is necessary to stop the liquefaction refrigeration operation itself and warm up the cold box.

本発明によれば、吸着器の数を減少できる。吸
着器は活性炭やモレキユラーシーブス等の粒子を
内蔵している。これらの内蔵物の微細な粒子が系
内を循環しないように配慮すると、逆にこの吸着
材とフイルターにより高圧ラインに圧力損失が生
じ、液化冷凍装置の能力を低下する。したがつて
吸着器の数は少い程よいのであるが、本発明によ
ると、従来技術におけるコールドボツクス内の吸
着器を省略することができる。
According to the present invention, the number of adsorbers can be reduced. The adsorber contains particles such as activated carbon and molecular sieves. If care is taken to prevent these fine particles from circulating within the system, the adsorbent and filter will cause a pressure loss in the high pressure line, reducing the capacity of the liquefaction refrigeration system. Therefore, the fewer the number of adsorbers, the better, but according to the present invention, the adsorbers in the cold box in the prior art can be omitted.

更に本発明によれば、第1熱交換器と吸着器か
らなる組を2組以上設け、これらの組を切換弁の
切換操作により液化冷凍側と再生側とに併行的に
同時作動させることができるので、別個の冷凍サ
イクルを動作させて、それから同時に得られる蒸
発熱による吸熱と凝縮熱とを冷却及び加熱用とし
て前記液化冷凍側と再生側に利用することによ
り、省エネルギーの目的も達成させることができ
る。
Further, according to the present invention, it is possible to provide two or more sets consisting of the first heat exchanger and the adsorber, and to operate these sets simultaneously on the liquefaction refrigeration side and the regeneration side by switching operation of the switching valve. Therefore, the purpose of energy saving can also be achieved by operating a separate refrigeration cycle and using the endotherm due to the heat of evaporation and the heat of condensation obtained at the same time for cooling and heating on the liquefaction refrigeration side and the regeneration side. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のフローシートダイヤ
グラム、第2図は前記実施例の一部の詳細な説明
図、第3図及び第4図は前記実施例の精製器ボツ
クスの第1熱交換器を加熱、冷却するための冷凍
サイクルの異なる実施例のフローシートダイヤグ
ラム、第5図イ,ロと第6図イ,ロは前記第1熱
交換器の加熱、冷却のための更に異なる実施例の
説明図、第7図及び第8図では易なる従来技術の
フローシートダイヤグラムである。 6……コールドボツクス、7a,7b……第1
熱交換器、41〜44……ガス管、45,47…
…外部流体供給管、51〜58……切換弁。
FIG. 1 is a flow sheet diagram of the embodiment of the present invention, FIG. 2 is a detailed explanatory diagram of a part of the embodiment, and FIGS. 3 and 4 are the first heat exchanger of the purifier box of the embodiment. Flow sheet diagrams of different embodiments of the refrigeration cycle for heating and cooling the first heat exchanger, FIGS. 7 and 8 are simple flow sheet diagrams of the prior art. 6... Cold box, 7a, 7b... 1st
Heat exchanger, 41-44... Gas pipe, 45, 47...
...External fluid supply pipe, 51-58...Switching valve.

Claims (1)

【特許請求の範囲】 1 第1熱交換器と該熱交換器の出口に接続され
た吸着器とからなる組を、第2熱交換器以下の熱
交換器群の収容されるコールドボツクスと別個に
2組以上設けて精製器ボツクスに収容し、これら
の組を圧縮機側とコールドボツクス側にガス管に
よりそれぞれ連結するとともに、1つの組が精製
側であるとき他の組が再生側となるように切換え
ることのできる切換弁を前記ガス管に設けたこと
を特徴とする極低温用液化冷凍装置における低沸
点ガスの精製及び再生装置。 2 第1熱交換器と該熱交換器の出口に接続され
た吸着器とからなる組を、第2熱交換器以下の熱
交換器群の収容されるコールドボツクスと別個に
2組以上設けて精製器ボツクスに収容し、これら
の組を圧縮機側とコールドボツクス側にガス管に
よりそれぞれ連結するとともに、1つの組が精製
側であるとき他の組が再生側となるように切換え
ることのできる切換弁を前記ガス管に設け、更に
各組の第1熱交換器と冷凍サイクルとを接続する
該熱交換器加熱または冷却用の外部流体供給管を
設けたことを特徴とする極低温用液化冷凍装置に
おける低沸点ガスの精製及び再生装置。 3 各組のガス管は高圧側と低圧側の2つが設け
られ、その何れか一方に精製ガス供給管が、他方
に排出管が切換弁を介して連結されるとともに、
排出管には更に真空生成管が切換弁を介して連結
され、また高圧側のガス管と低圧側のガス管とが
開閉弁を有するバイパス管により互いに連結さ
れ、精製ガス供給管から供給された精製ガスが、
バイパス管を介して高圧側、低圧側のガス管を流
れた後、排出管から流出し、次いで真空生成管に
より系内を真空とすることができるように前記切
換弁及び前記開閉弁が切換えられるようになつて
いることを特徴とする特許請求の範囲第2項記載
の極低温用液化冷凍装置における低沸点ガスの精
製及び再生装置。 4 第1熱交換器を加熱、冷却する外部流体供給
管に液体窒素、低温フロン系冷媒またはブライン
の何れかの流体を流通できるようにしたことを特
徴とする特許請求の範囲第2項記載の極低温用液
化冷凍装置における低沸点ガスの精製及び再生装
置。 5 第1熱交換器の高圧側の低沸点ガス出口に接
続された吸着器を−80℃より低い温度に冷却でき
るようにしたことを特徴とする特許請求の範囲第
2項または第4項記載の極低温用液化冷凍装置に
おける低沸点ガスの精製及び再生装置。 6 第1熱交換器と吸着器とからなる組のうち、
一方の組の外部流体供給管が蒸発側となるとき他
方の組の外部流体供給管が凝縮側となるように、
前記流体供給管に冷凍サイクルが連結されている
ことを特徴とする特許請求の範囲第2項または第
4項に記載の極低温用液化冷凍装置における低沸
点ガスの精製及び再生装置。
[Claims] 1. A set consisting of a first heat exchanger and an adsorber connected to the outlet of the heat exchanger is separated from a cold box in which a group of heat exchangers below the second heat exchanger are housed. Two or more sets are provided and housed in the purifier box, and these sets are connected to the compressor side and the cold box side through gas pipes, and when one set is on the refining side, the other set is on the regeneration side. 1. An apparatus for purifying and regenerating low boiling point gas in a cryogenic liquefaction refrigeration system, characterized in that the gas pipe is provided with a switching valve that can be switched in the following manner. 2. Two or more sets consisting of a first heat exchanger and an adsorber connected to the outlet of the heat exchanger are provided separately from a cold box in which a group of heat exchangers below the second heat exchanger is housed. These sets are housed in a purifier box, and these sets are connected to the compressor side and the cold box side through gas pipes, and can be switched so that when one set is on the refining side, the other set is on the regeneration side. A cryogenic liquefier characterized in that a switching valve is provided in the gas pipe, and an external fluid supply pipe for heating or cooling the heat exchanger is further provided to connect the first heat exchanger of each set and the refrigeration cycle. Purification and regeneration equipment for low boiling point gas in refrigeration equipment. 3. Each set of gas pipes is provided with two high-pressure and low-pressure sides, one of which is connected to a purified gas supply pipe and the other to a discharge pipe via a switching valve,
A vacuum generation pipe was further connected to the discharge pipe via a switching valve, and the high-pressure side gas pipe and the low-pressure side gas pipe were connected to each other by a bypass pipe having an on-off valve, and the purified gas was supplied from the purified gas supply pipe. Purified gas is
The switching valve and the on-off valve are switched so that the gas flows through the high-pressure side and low-pressure side gas pipes via the bypass pipe, flows out from the discharge pipe, and then creates a vacuum in the system by the vacuum generating pipe. A low boiling point gas purification and regeneration device in a cryogenic liquefaction refrigeration system according to claim 2, characterized in that the device is configured as follows. 4. According to claim 2, any one of liquid nitrogen, low-temperature fluorocarbon refrigerant, or brine can flow through the external fluid supply pipe that heats and cools the first heat exchanger. A purification and regeneration device for low boiling point gas in cryogenic liquefaction refrigeration equipment. 5. Claim 2 or 4, characterized in that the adsorber connected to the low boiling point gas outlet on the high pressure side of the first heat exchanger can be cooled to a temperature lower than -80°C. Purification and regeneration equipment for low boiling point gas in cryogenic liquefaction refrigeration equipment. 6 Of the set consisting of the first heat exchanger and adsorber,
so that when one set of external fluid supply pipes is on the evaporation side, the other set of external fluid supply pipes is on the condensation side;
The low boiling point gas purification and regeneration device in a cryogenic liquefaction refrigeration system according to claim 2 or 4, wherein a refrigeration cycle is connected to the fluid supply pipe.
JP61253123A 1986-10-24 1986-10-24 Low-boiling gas refining and regenerating device for cryogenic liquefying refrigerator Granted JPS63107721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253123A JPS63107721A (en) 1986-10-24 1986-10-24 Low-boiling gas refining and regenerating device for cryogenic liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253123A JPS63107721A (en) 1986-10-24 1986-10-24 Low-boiling gas refining and regenerating device for cryogenic liquefying refrigerator

Publications (2)

Publication Number Publication Date
JPS63107721A JPS63107721A (en) 1988-05-12
JPH0142730B2 true JPH0142730B2 (en) 1989-09-14

Family

ID=17246817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253123A Granted JPS63107721A (en) 1986-10-24 1986-10-24 Low-boiling gas refining and regenerating device for cryogenic liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS63107721A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099079B1 (en) * 2004-11-15 2011-12-26 마에카와 매뉴팩쳐링 캄파니 리미티드 Cryogenic liquefying refrigerating method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138667A (en) * 1980-03-31 1981-10-29 Kobe Steel Ltd Refrigerating plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115413U (en) * 1983-01-26 1984-08-04 株式会社日立製作所 Low temperature adsorption purifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138667A (en) * 1980-03-31 1981-10-29 Kobe Steel Ltd Refrigerating plant

Also Published As

Publication number Publication date
JPS63107721A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
JP7145530B2 (en) VOCs recovery system by cryogenic condensation using air as a refrigerant
US10393432B2 (en) Configurations and methods of CO2 capture from flue gas by cryogenic desublimation
US3894856A (en) Liquefaction of natural gas with product used as adsorber
EP0211957B1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
CA2315014C (en) Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity
US20110259044A1 (en) Method and apparatus for producing liquefied natural gas
US6463744B1 (en) Method and device for producing cold
KR100618735B1 (en) Air separator and operation method thereof
US20120000242A1 (en) Method and apparatus for storing liquefied natural gas
KR100869518B1 (en) Method and apparatus for Cryogenic Helium Purification
KR20090005702A (en) Apparatus for enriching and purifying waste helium gases
CA3171542A1 (en) Facility and method for hydrogen refrigeration
JPH0142730B2 (en)
US2682157A (en) Gas separation
JP2001103626A (en) Gas recovering apparatus
US3224209A (en) Process and apparatus for purifying and separating compressed gas mixtures
CN116558229B (en) Helium purifier capable of continuously working and purifying method
CN115388616B (en) Mars surface carbon dioxide continuous capturing system adopting pressurizing liquefaction and method thereof
US3119676A (en) Process and apparatus for purifying and separating compressed gas mixtures
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPS6353470B2 (en)
JPH0436552A (en) Refrigerator with cryogenic adsorption cylinder
JPH0447232B2 (en)
Al Rabadi et al. A generic concept for Helium purification and liquefaction plant
JPH0418652Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees