JPH0142032Y2 - - Google Patents

Info

Publication number
JPH0142032Y2
JPH0142032Y2 JP1983013274U JP1327483U JPH0142032Y2 JP H0142032 Y2 JPH0142032 Y2 JP H0142032Y2 JP 1983013274 U JP1983013274 U JP 1983013274U JP 1327483 U JP1327483 U JP 1327483U JP H0142032 Y2 JPH0142032 Y2 JP H0142032Y2
Authority
JP
Japan
Prior art keywords
electrophoresis
charged particles
section
suction
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983013274U
Other languages
Japanese (ja)
Other versions
JPS59120466U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1327483U priority Critical patent/JPS59120466U/en
Publication of JPS59120466U publication Critical patent/JPS59120466U/en
Application granted granted Critical
Publication of JPH0142032Y2 publication Critical patent/JPH0142032Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は電気泳動装置に関し、特に詳しくは
泳動流路の荷電粒子を撹拌する撹拌手段を備えた
電気泳動装置に関するものである。
[Detailed Description of the Invention] (a) Field of Industrial Application This invention relates to an electrophoresis device, and more particularly to an electrophoresis device equipped with stirring means for stirring charged particles in a migration channel.

(ロ) 従来技術 一般に電気泳動法は荷電物質、例えば蛋白質、
ヘモグロビン、血清、アミノ酸等の分離・分析を
行う分析法として知られている。細胞式電気泳動
法はこの電気泳動法の一種であるが、生理食塩水
等の一つの種類の電解液を用い、この電解液内に
試料(細胞)を導入し、一定内径0.5〜0.8mmφの
泳動流路(管)で定電流による電気泳動を行い、
荷電粒子の泳動速度を光学検出器等を用いて測定
するものであり、また検出精度を向上させるため
に荷電粒子の泳動速度を平均化させる必要がある
ものである。
(b) Prior art In general, electrophoresis is performed on charged substances such as proteins,
It is known as an analytical method for separating and analyzing hemoglobin, serum, amino acids, etc. Cellular electrophoresis is a type of electrophoresis method, in which a single type of electrolyte such as physiological saline is used, and a sample (cell) is introduced into this electrolyte. Electrophoresis is performed using a constant current in an electrophoresis channel (tube),
The electrophoretic speed of charged particles is measured using an optical detector or the like, and it is necessary to average the electrophoretic speed of charged particles in order to improve detection accuracy.

しかしこの際、荷電粒子の泳動速度を高精度に
検出するのに要する時間は15〜25分である。この
検出条件は、1ml中に粒子個数が107存在する濃
度のものを使用する場合である。例えば1ml中の
粒子個数を106とすれば、この検出時間は10倍
(150〜250分)となり、逆にこの個数を108とする
と検出光は透過できなくなる。このように必要と
する検出時間が長いため泳動流路の荷電粒子は泳
動管の底方向に沈降し始め、荷電粒子によつては
泳動管の底面で停止するものがある。例えば、試
料にラツトの赤血球等を使用する場合、その沈降
する時間は5分間程度である。
However, in this case, the time required to detect the electrophoretic velocity of charged particles with high accuracy is 15 to 25 minutes. This detection condition is when a concentration of 10 7 particles is used in 1 ml. For example, if the number of particles in 1 ml is 10 6 , this detection time will be 10 times (150 to 250 minutes), and if this number is 10 8 , the detection light will no longer be able to pass through. Because of the long detection time required, the charged particles in the electrophoresis channel begin to settle toward the bottom of the electrophoresis tube, and some charged particles stop at the bottom of the electrophoresis tube. For example, when using rat red blood cells as a sample, the sedimentation time is about 5 minutes.

このため、泳動管内を浮遊し泳動する荷電粒子
の数が減少し、試料の測定精度が低下する。この
改善策として泳動管の内径を大きくしたり、又電
解液の濃度をあげたりして泳動管内の荷電粒子が
沈降する時間を延ばす方法がとられてきたが、両
者の方法は共に泳動管内を透過して泳動管内の荷
電粒子の泳動速度を測定する検出光の透過率を落
とし、結局測定精度が低下することになる。従つ
て泳動管の内径を小さくし、かつ電解液の濃度を
薄くした状態で、荷電粒子の沈降を防止する方法
の出現が望まれていた。
For this reason, the number of charged particles floating and migrating in the electrophoresis tube decreases, and the accuracy of sample measurement decreases. As a countermeasure to this problem, methods have been taken to increase the internal diameter of the electrophoresis tube or increase the concentration of the electrolyte solution to prolong the time it takes for the charged particles to settle in the electrophoresis tube. This reduces the transmittance of the detection light that passes through and measures the electrophoretic speed of charged particles in the electrophoresis tube, resulting in a decrease in measurement accuracy. Therefore, it has been desired to develop a method for preventing the sedimentation of charged particles while reducing the inner diameter of the electrophoresis tube and reducing the concentration of the electrolyte.

(ハ) 目的 この考案はこれらの事情に鑑みなされたもの
で、泳動流路を泳動する荷電粒子の沈降を防止
し、測定精度を向上できるようにするものであ
る。
(c) Purpose This invention was devised in view of these circumstances, and is intended to prevent sedimentation of charged particles migrating in an electrophoresis channel and to improve measurement accuracy.

(ニ) 構成 この考案の構成は、荷電粒子を泳動させる泳動
流路に、陽極部、光学検出部及び陰極部をこの順
に配設し、前記の電極部のいずれか一方側の流路
末端に吸込・吐出手段を、他方の電極部側の流路
末端に荷電粒子を含む電解液貯留槽をそれぞれ設
け、吸込・吐出手段の作動により前記貯留槽及び
泳動流路で荷電粒子の撹拌を行なわせ、それによ
つて荷電粒子を十分に浮遊させるよう構成してな
る電気泳動装置である。
(d) Configuration The configuration of this device is that an anode section, an optical detection section, and a cathode section are arranged in this order in a migration channel in which charged particles are migrated, and the electrode section is placed at the end of the channel on either side of the electrode section. A suction/discharge means is provided, and an electrolytic solution storage tank containing charged particles is provided at the end of the channel on the other electrode side, and the charged particles are stirred in the storage tank and the electrophoresis channel by operation of the suction/discharge means. This is an electrophoresis device configured to sufficiently suspend charged particles.

なお、この考案に用いる吸込・吐出手段は実施
例のようにシリンダとピストンとから構成するの
が好ましいが、他にポンプを正転・逆転させる手
段も好ましい。
The suction/discharge means used in this invention is preferably composed of a cylinder and a piston as in the embodiment, but other means for rotating the pump forward or reverse are also preferable.

(ホ) 実施例 以下図に示す実施例に基づいてこの考案を詳述
する。なお、これによつてこの考案が限定される
ものではない。
(e) Examples This invention will be described in detail based on the examples shown in the figures below. Note that this invention is not limited to this.

まず第1図において、電気泳動装置1は、泳動
流路(管)2に前方から陰(マイナス)電極部
3、検出部4及び陽(プラス)電極部5を順次備
え、さらにマイナス電極部3側に設置した吸込・
吐出手段6と、プラス電極部5側に設置した貯留
槽7とから主として構成される。
First, in FIG. 1, an electrophoresis device 1 includes a negative electrode section 3, a detection section 4, and a positive electrode section 5 in order from the front in a migration channel (tube) 2, and further includes a negative electrode section 3. Suction installed on the side
It mainly consists of a discharge means 6 and a storage tank 7 installed on the positive electrode section 5 side.

検出部4は検出光8を集光するレンズ9と、こ
のレンズで集光された検出光を検出する光検出器
10と、この検出器の検出信号を処理する信号処
理部11と、この処理部の手前で検出信号を信号
処理部11に流したり、カツトする信号取込部1
2とから構成される。
The detection unit 4 includes a lens 9 that collects the detection light 8, a photodetector 10 that detects the detection light collected by this lens, a signal processing unit 11 that processes the detection signal of this detector, and a signal processing unit 11 that processes the detection signal of this detector. A signal acquisition section 1 that sends the detection signal to the signal processing section 11 or cuts it off before the section.
It consists of 2.

さらに吸込・吐出手段6は、泳動管2にバルブ
13を介して接続されたシリンダ管14と、この
管内を往復運動するピストン15と、このピスト
ンを駆動させる駆動部16とから構成され、かつ
この駆動部は検出部4の信号取込部12と同期回
路部17でそれぞれ連絡されている。
Furthermore, the suction/discharge means 6 is composed of a cylinder pipe 14 connected to the migration tube 2 via a valve 13, a piston 15 that reciprocates within this pipe, and a drive section 16 that drives this piston. The drive section is connected to the signal acquisition section 12 of the detection section 4 and the synchronous circuit section 17, respectively.

また貯留槽7は、泳動管2にバルブ18を介し
て接続した送液管19と、この管の開口端が挿入
されたサンプルカツプ20とから構成される。な
お、21,22はそれぞれ両電極部3,5と泳動
管2内とを仕切る隔膜で、23は荷電粒子であ
る。
The storage tank 7 is composed of a liquid feeding tube 19 connected to the migration tube 2 via a valve 18, and a sample cup 20 into which the open end of this tube is inserted. Note that 21 and 22 are diaphragms that partition the electrode sections 3 and 5 from the inside of the migration tube 2, respectively, and 23 is a charged particle.

以上のように構成される電気泳動装置1は、駆
動部16のピストン15の吸込・吐出作動により
荷電粒子及び電解液の導入・撹拌を行い荷電粒子
23の泳動速度を測定する。まず電解液及び試料
の泳動管2内への導入は、試料及び電解液をサン
プルカツプ20に入れ、2つのバルブ13,18
を開け、ピストン15を吸込作動させて行う。次
に2つのバルブ13,18を閉め荷電粒子23の
泳動速度の測定に当り両電極部3,5に定電圧を
かけ荷電粒子23を泳動させる。この状態で第2
図に示すように荷電粒子23に検出光8をあて検
出器10で検出信号に代え、信号処理部11でそ
の信号を処理し荷電粒子23の泳動速度を測定す
る。この時ピストン15の吸込作動信号は同期回
路17を通じて検出部4の信号取込部12に連絡
され、検出器10の検出信号のカツトが解除さ
れ、信号処理部11によつて検出信号は処理され
る。
The electrophoresis device 1 configured as described above introduces and stirs charged particles and an electrolytic solution by suction/discharge operations of the piston 15 of the drive unit 16, and measures the migration speed of the charged particles 23. First, the electrolytic solution and sample are introduced into the migration tube 2 by putting the sample and electrolytic solution into the sample cup 20 and using the two valves 13 and 18.
This is done by opening the door and causing the piston 15 to perform suction operation. Next, the two valves 13 and 18 are closed, and in order to measure the migration speed of the charged particles 23, a constant voltage is applied to both electrode sections 3 and 5 to cause the charged particles 23 to migrate. In this state, the second
As shown in the figure, a detection light 8 is applied to the charged particles 23 and converted into a detection signal by the detector 10, and the signal is processed by the signal processing section 11 to measure the migration speed of the charged particles 23. At this time, the suction operation signal of the piston 15 is communicated to the signal acquisition section 12 of the detection section 4 through the synchronization circuit 17, the cutoff of the detection signal of the detector 10 is released, and the detection signal is processed by the signal processing section 11. Ru.

さらに泳動管2内の荷電粒子23が沈降しない
ように荷電物質によつて決められた時間(例…ラ
ツトの赤血球では5分程度)に応じ、2つのバル
ブ13,18を開け泳動管2内の電解液及び荷電
粒子23をシリンダ管14内のピストン15を駆
動部16の信号によつて吐出作動させ、サンプル
カツプ20内に流しながら電解液、荷電粒子23
を第3図のように撹拌する。この時ピストン15
の駆動信号は前記の吸込作動信号とは逆に検出部
4の信号取込部12が検出信号を取込むように働
くことによつて信号処理部11による検出信号の
処理は行なわれない。このようにピストン15の
吐出作動によつて撹拌された電解液、荷電粒子2
3は再度、前記と同様のピストン15による吸込
作動により泳動管2内に戻され、荷電粒子23の
泳動速度の測定を行う。
Furthermore, in order to prevent the charged particles 23 in the electrophoresis tube 2 from settling, the two valves 13 and 18 are opened according to the time determined by the charged substance (for example, about 5 minutes for rat red blood cells). The piston 15 in the cylinder pipe 14 is actuated to discharge the electrolytic solution and the charged particles 23 by a signal from the drive unit 16, and the electrolytic solution and the charged particles 23 are discharged while flowing into the sample cup 20.
Stir as shown in Figure 3. At this time piston 15
In contrast to the above-mentioned suction operation signal, the drive signal operates so that the signal acquisition section 12 of the detection section 4 acquires the detection signal, so that the detection signal is not processed by the signal processing section 11. The electrolytic solution and charged particles 2 stirred by the discharge operation of the piston 15 in this way
3 is again returned to the migration tube 2 by the same suction operation by the piston 15 as described above, and the migration speed of the charged particles 23 is measured.

以上のようなピストン15の吸込・吐出作動を
例えば30分間で60回繰り返し、常時泳動管2内に
荷電粒子23が浮遊している状態で荷電粒子23
の泳動速度を測定する。
The suction and discharge operations of the piston 15 as described above are repeated, for example, 60 times in 30 minutes, and the charged particles 23 are constantly suspended in the migration tube 2.
Measure the migration speed of

(ヘ) 効果 この発明の効果は、荷電粒子を含む電解液を撹
拌する貯留槽と吸込・吐出手段とを設け泳動流路
の荷電粒子を浮遊状態にさせることによつて、測
定可能粒子数を増加させ測定精度が向上できるよ
うにするものである。
(F) Effect The effect of the present invention is that the number of measurable particles can be increased by providing a storage tank for stirring an electrolytic solution containing charged particles and a suction/discharge means to make the charged particles in the migration channel suspended. This makes it possible to increase measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る電気泳動装置の機能説
明図、第2図はこの泳動管内の荷電粒子の状態を
示す説明図、第3図はこのサンプルカツプ内の荷
電粒子の撹拌状態を示す説明図である。 1……電気泳動装置、2……泳動管、3……マ
イナス電極部、4……検出部、5……プラス電極
部、6……吸込・吐出手段、7……貯留槽。
Fig. 1 is an explanatory diagram of the functions of the electrophoresis device according to this invention, Fig. 2 is an explanatory diagram showing the state of charged particles in this electrophoresis tube, and Fig. 3 is an explanatory diagram showing the state of stirring of charged particles in this sample cup. It is a diagram. DESCRIPTION OF SYMBOLS 1... Electrophoresis device, 2... Electrophoresis tube, 3... Negative electrode section, 4... Detection section, 5... Positive electrode section, 6... Suction/discharge means, 7... Storage tank.

Claims (1)

【実用新案登録請求の範囲】 荷電粒子を泳動させる泳動流路に、陽極部、光
学検出部及び陰極部をこの順に配設し、前記の電
極部のいずれか一方側の流路末端に吸込・吐出手
段を、他方の電極部側の流路末端に荷電粒子を含
む電解液貯留槽をそれぞれ設けてなり、下記操
作; (1) 吸込・吐出手段による吸込作業と吐出作動を
一定時間間隔毎に繰返し、前記貯留槽及び泳動
流路で荷電粒子の撹拌・流動を行い、 (2) 上記吸込作動とその次の吐出作動との各間に
前記泳動流路での泳動を行い、 (3) 上記泳動毎に同期して光学検出部の検出信号
を処理しうる 操作を行いうる制御部を具備してなる電気泳動装
置。
[Scope of Claim for Utility Model Registration] An anode section, an optical detection section, and a cathode section are disposed in this order in an electrophoresis channel for electrophoresing charged particles, and suction and The discharge means is provided with an electrolyte storage tank containing charged particles at the end of the flow path on the other electrode side, and the following operations are performed: (1) The suction operation and discharge operation by the suction/discharge means are performed at fixed time intervals. Repeatedly stirring and flowing the charged particles in the storage tank and the electrophoresis channel; (2) performing electrophoresis in the electrophoresis channel between the suction operation and the next discharge operation; An electrophoresis apparatus comprising a control unit capable of performing operations to process detection signals from an optical detection unit in synchronization with each electrophoresis.
JP1327483U 1983-01-31 1983-01-31 electrophoresis device Granted JPS59120466U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327483U JPS59120466U (en) 1983-01-31 1983-01-31 electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327483U JPS59120466U (en) 1983-01-31 1983-01-31 electrophoresis device

Publications (2)

Publication Number Publication Date
JPS59120466U JPS59120466U (en) 1984-08-14
JPH0142032Y2 true JPH0142032Y2 (en) 1989-12-11

Family

ID=30144666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327483U Granted JPS59120466U (en) 1983-01-31 1983-01-31 electrophoresis device

Country Status (1)

Country Link
JP (1) JPS59120466U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648945B2 (en) 2010-12-17 2020-05-12 Malvern Panalytical Limited Laser doppler electrophoresis using a diffusion barrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107898A (en) * 1977-02-11 1978-09-20 Pen Kem Inc Automatic electrophoresis apparatus
JPS54114992A (en) * 1978-02-28 1979-09-07 Shimadzu Corp Tomogram image pick up unit
JPS57120850A (en) * 1981-01-20 1982-07-28 Shimadzu Corp Electrophoresis analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107898A (en) * 1977-02-11 1978-09-20 Pen Kem Inc Automatic electrophoresis apparatus
JPS54114992A (en) * 1978-02-28 1979-09-07 Shimadzu Corp Tomogram image pick up unit
JPS57120850A (en) * 1981-01-20 1982-07-28 Shimadzu Corp Electrophoresis analyzer

Also Published As

Publication number Publication date
JPS59120466U (en) 1984-08-14

Similar Documents

Publication Publication Date Title
Lestourgeon et al. The Rapid Isolation, High-Resolution Electrophoretic Characterzation, and Purification of Nuclear Proteins
US4259079A (en) Method and apparatus for electrical separation of molecules
CN101672788B (en) Method for measuring materials inside human single blood erythrocyte by mocro-fluidic chip chemiluminescence
US20230030206A1 (en) Methods and devices for separation of blood components
US3840438A (en) Method of direct potentiometric analysis of a liquid sample
HANNIG et al. Free-flow electrophoresis III. An analytical version for a rapid, quantitative determination of electrophoretic parameters
US4254084A (en) Method and apparataus for automatic isoenzyme analysis
US3997838A (en) Apparatus and method for measurement of total volume of particles in a liquid sample
US3658679A (en) System for determining the hydrogen ion concentration of flowing liquids
Beug et al. A micromethod for routine measurement of cell agglutination and dissociation
JPH0142032Y2 (en)
US20230028621A1 (en) Method, automated system and cartridge for extraction of cell-free nucleic acids from a blood sample
Kinersly Paper electrophoresis of saliva
Grönwall On paper electrophoresis in the clinical laboratory
EP3474007B1 (en) Determination method, analysis method, and analysis system
JPH0617073Y2 (en) Electrophoresis device
Hochstrasser et al. An improved column for preparative electrophoresis
Vergani Crossover electrophoresis for the rapid detection of serum hepatitis (Australia) antigen and antibody.
Bodor et al. Capillary Isotachophoresis determination of trace oxidized glutathione in blood
JP5963984B2 (en) Sample pretreatment method for thyroid stimulating antibody measurement
Smith et al. A new apparatus for preparative gel electrophoresis
Schmidt‐Nielsen Microdetermination of pH in saliva
JPS59141051A (en) Electrophoretic apparatus
RU2027188C1 (en) Method for recording variation of surface charge of erythrocytes
Knauff et al. Determination of the major proteins and mucoproteins in the duodenal fluids of cystic fibrosis and control subjects