JPH0141988Y2 - - Google Patents

Info

Publication number
JPH0141988Y2
JPH0141988Y2 JP20068482U JP20068482U JPH0141988Y2 JP H0141988 Y2 JPH0141988 Y2 JP H0141988Y2 JP 20068482 U JP20068482 U JP 20068482U JP 20068482 U JP20068482 U JP 20068482U JP H0141988 Y2 JPH0141988 Y2 JP H0141988Y2
Authority
JP
Japan
Prior art keywords
valve body
shape memory
weight
spring
memory spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20068482U
Other languages
Japanese (ja)
Other versions
JPS59101070U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20068482U priority Critical patent/JPS59101070U/en
Publication of JPS59101070U publication Critical patent/JPS59101070U/en
Application granted granted Critical
Publication of JPH0141988Y2 publication Critical patent/JPH0141988Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 本考案は形状記憶合金を用いた感温弁に関す
る。
[Detailed Description of the Invention] The present invention relates to a temperature-sensitive valve using a shape memory alloy.

周知のように形状記憶合金は熱弾性型マルテン
サイト変態を利用して、温度に関連した形状記憶
効果をもたせることができるから、その応用とし
て例えば特開昭56−150680号公報に見られるよう
に、温度に応じて開閉動作する感温弁に利用され
ている。
As is well known, shape memory alloys can have temperature-related shape memory effects by utilizing thermoelastic martensitic transformation. It is used in temperature-sensitive valves that open and close depending on the temperature.

上記感温弁の原理は第1図に例示したように、
流体通路a,bを有する弁箱cに弁体dを収容す
るとともに、この弁体dと弁箱cとの間に形状記
憶合金からなる形状記憶ばねeを圧縮した状態で
収容している。そしてこの形状記憶ばねeは、そ
の変態点を超える高温度域においてコイルが伸張
するような形状記憶効果をもたせておく。また、
変態点以下の低温度域では形状記憶ばねeを圧縮
できるように、復帰用のバイアスばねfを用いる
ようにしている。そして上記バイアスばねfとし
ては、従来は圧縮コイルばねのような線形荷重特
性を有するバネを用いている。
The principle of the above-mentioned temperature-sensitive valve is as illustrated in Fig. 1.
A valve body d is housed in a valve body c having fluid passages a and b, and a shape memory spring e made of a shape memory alloy is housed in a compressed state between the valve body d and the valve body c. The shape memory spring e is provided with a shape memory effect such that the coil expands in a high temperature range exceeding its transformation point. Also,
A return bias spring f is used so that the shape memory spring e can be compressed in a low temperature range below the transformation point. As the bias spring f, a spring having a linear load characteristic, such as a compression coil spring, is conventionally used.

しかしながらバイアスばねfを用いた場合、以
下に述べるような問題があつた。すなわち第2図
に示されるように、バイアスばねfは弁体dの位
置に応じて線形の荷重−撓み特性を有し、圧縮量
が大きくなるほど強い反発力を生じる。一方形状
記憶ばねeは、変態点以上の高温度域ではバイア
スばねfの反発力に打ち勝つて伸張して弁体dを
例えば開弁方向に移動させ、また変態点以下の低
温度域ではマルテンサイト変態によりバイアスば
ねfの反発力に負けて圧縮され弁体dを閉じるよ
うにする必要がある。
However, when the bias spring f was used, there were problems as described below. That is, as shown in FIG. 2, the bias spring f has a linear load-deflection characteristic depending on the position of the valve body d, and the larger the amount of compression, the stronger the repulsive force is generated. On the other hand, in a high temperature range above the transformation point, the shape memory spring e expands by overcoming the repulsive force of the bias spring f, and moves the valve body d, for example, in the valve opening direction. Due to the transformation, it is necessary to overcome the repulsive force of the bias spring f and be compressed to close the valve body d.

従つて、同第2図に示されるようにバイアスば
ねfの反発力は、高温度域で生じる形状記憶ばね
の反発力より小さく、かつ低温度域で生じる形状
記憶ばねの反発力よりは大きくなるような荷重範
囲Fに入るようにばねの諸元を設定しなければな
らない。すなわち圧縮コイルばねのような荷重−
撓み特性を有するものをバイアスばねとして用い
た場合、ばね定数が大きくなるほど上記荷重範囲
Fを大きくとる必要があり、従つて所要のバイア
ス力に対抗させるためには、より大形で強力な形
状記憶ばねfを必要とすることになる。
Therefore, as shown in FIG. 2, the repulsive force of the bias spring f is smaller than the repulsive force of the shape memory spring that occurs in the high temperature range, and larger than the repulsive force of the shape memory spring that occurs in the low temperature range. The specifications of the spring must be set so that it falls within the load range F. In other words, a load like a compression coil spring -
When using a bias spring with bending characteristics, the larger the spring constant, the larger the load range F needs to be. Therefore, in order to counter the required bias force, a larger and stronger shape memory spring must be used. This will require a spring f.

一例として従来の感温弁(第1図参照)におい
て弁作動出力が500gで弁作動ストロークが20mm
のものを得るには、線径1.6mm、コイル中心径8.4
mm、有効巻数14、自由長70mm、重量5.5gのTi−
Ni製形状記憶ばねeを必要とし、この場合、バ
イアスばねfとしては、ばね用ステンレスを素材
として、線径1.0mm、コイル中心径10.2mm、有効
巻数25、自由長145mm、重量5.3gのものを必要と
している。
As an example, in a conventional temperature-sensitive valve (see Figure 1), the valve operating output is 500 g and the valve operating stroke is 20 mm.
To get one, wire diameter 1.6mm, coil center diameter 8.4
mm, effective number of turns 14, free length 70 mm, weight 5.5 g Ti−
A shape memory spring e made of Ni is required. In this case, the bias spring f is made of spring stainless steel, has a wire diameter of 1.0 mm, a coil center diameter of 10.2 mm, an effective number of turns of 25, a free length of 145 mm, and a weight of 5.3 g. need.

以上のことから判るように、バイアスばねを用
いた従来の感温弁では大形で重い形状記憶ばねを
必要とし、高価な形状記憶合金を多量に使用する
ためコストが高く、しかもバイアスばねという余
計な部品を必要とするためユニツトも大形化する
という欠点があつた。
As can be seen from the above, conventional temperature-sensitive valves using bias springs require large and heavy shape memory springs, use large amounts of expensive shape memory alloys, resulting in high costs, and the bias springs are unnecessary. The disadvantage was that the unit also became larger because it required a number of different parts.

本考案は上記事情にもとづきなされたもので、
その目的とするところは、形状記憶ばねの小形軽
量化が図れるとともに、バイアスばねを省略でき
ることによつてユニツト全体の小形化が可能とな
る感温弁を提供することにある。
This idea was made based on the above circumstances,
The purpose is to provide a temperature-sensitive valve in which the shape memory spring can be made smaller and lighter, and the bias spring can be omitted, thereby making it possible to make the entire unit smaller.

すなわち本考案は、従来のバイアスばねに代る
ものとして、弁体に、形状記憶合金の変態点以下
の低温度域では形状記憶ばねの反発力に打ち勝つ
て弁体を移動させ、また変態点を超える高温度域
においては形状記憶ばねの反発力に負けるような
重量を有するウエイトを設け、またはこのウエイ
トに相当する自重を弁体に与え、この重量でバイ
アス力を発揮させるようにした感温弁である。
In other words, the present invention, as an alternative to the conventional bias spring, has a structure that allows the valve body to move by overcoming the repulsive force of the shape memory spring in a low temperature range below the transformation point of the shape memory alloy, and also to move the valve body above the transformation point. Temperature-sensitive valves that are equipped with a weight that is heavy enough to overcome the repulsive force of the shape memory spring in the high temperature range, or apply self-weight equivalent to this weight to the valve body, and use this weight to exert a bias force. It is.

以下本考案の第1実施例について第3図ないし
第5図を参照して説明する。第3図において図中
1は弁箱であつて、この弁箱1には水平方向に流
体通路2,3が形成されているとともに、鉛直方
向に弁体収容孔4が形成されている。1aは底蓋
である。そして上記弁体収容孔4に弁体5が昇降
自在に収容されている。この弁体5はその上下方
向中間部に流通路6を有しており、弁体5の上昇
時にはこの流通路6が上記流体通路2,3に連通
し、弁体5が降下すると流通路6が閉じるように
なつている。
A first embodiment of the present invention will be described below with reference to FIGS. 3 to 5. In FIG. 3, reference numeral 1 denotes a valve box, in which fluid passages 2 and 3 are formed in the horizontal direction, and a valve body receiving hole 4 is formed in the vertical direction. 1a is a bottom cover. A valve body 5 is housed in the valve body housing hole 4 so as to be movable up and down. This valve body 5 has a flow passage 6 in its vertically intermediate portion, and when the valve body 5 is raised, this flow passage 6 communicates with the fluid passages 2 and 3, and when the valve body 5 is lowered, the flow passage 6 is connected to the fluid passages 2 and 3. is starting to close.

そして弁体5と弁箱1との間、すなわち弁体5
と底蓋1aとの相互対向面間に、例えばTi−Ni
合金などの形状記憶合金からなるコイル状の形状
記憶ばね8が圧縮した状態で収容されている。
And between the valve body 5 and the valve body 1, that is, the valve body 5
For example, Ti-Ni is placed between the mutually opposing surfaces of the
A coiled shape memory spring 8 made of a shape memory alloy such as an alloy is housed in a compressed state.

この形状記憶ばね8は、弁体5を押し上げる方
向、つまり開弁方向に弁体5を付勢している。そ
しての形状記憶ばね8は、その変態点を超える高
温度域では、コイルが伸張するような形状記憶効
果をもたせてある。従つて、変態点以下の低温度
域ではマルテンサイト変態により、圧縮に対する
反発力が約60%弱くなるという特性をもつ。
This shape memory spring 8 biases the valve body 5 in the direction of pushing up the valve body 5, that is, in the valve opening direction. The shape memory spring 8 has a shape memory effect such that the coil expands in a high temperature range exceeding its transformation point. Therefore, in the low temperature range below the transformation point, martensitic transformation causes the repulsive force against compression to weaken by about 60%.

そして上記弁体5にウエイト9が設けられてい
る。このウエイト9の重量は、形状記憶ばね8が
上記変態点以下の低温度域にあつて圧縮に対する
反発力が弱まつている状態においては、第3図に
示すように重力によつて弁体5を押し下げ、また
形状記憶ばね8が変態点を超える高温度域に達し
て逆マルテンサイト変態を生じ、自由長が伸びる
方向に形状復帰した場合には、形状記憶ばね8の
反発力に負けて弁体5の上昇を許容するような重
さに設定されている。
A weight 9 is provided on the valve body 5. When the shape memory spring 8 is in a low temperature range below the above-mentioned transformation point and its repulsive force against compression is weakened, the weight of the weight 9 is reduced by the weight of the valve body 5 due to gravity as shown in FIG. If the shape memory spring 8 reaches a high temperature range exceeding its transformation point and undergoes reverse martensitic transformation and returns to its shape in the direction in which the free length is extended, the valve will be defeated by the repulsive force of the shape memory spring 8. The weight is set to allow the body 5 to rise.

すなわち弁体5とウエイト9によつて得られる
荷重は、第5図で示されるように、高温度域で生
じる形状記憶ばねの反発力よりは小さく、かつ低
温度域で生じる形状記憶ばねの反発力よりは大き
くなるような荷重範囲Fの内側に入るようにして
ある。そしてこの荷重、すなわち重力にもとずく
バイアス力は弁体5の上下位置にかかわらず常に
一定である。
That is, as shown in FIG. 5, the load obtained by the valve body 5 and the weight 9 is smaller than the repulsive force of the shape memory spring that occurs in the high temperature range, and is smaller than the repulsive force of the shape memory spring that occurs in the low temperature range. It is arranged to fall within the load range F that is larger than the force. This load, ie, the bias force based on gravity, is always constant regardless of the vertical position of the valve body 5.

本実施例は以上のように構成されるから、形状
記憶ばね8が所定の温度に達するまでウエイト9
と弁体5による荷重が形状記憶ばね8を圧縮さ
せ、弁体5を閉弁させる。そして変態点を超える
と、逆マルテンサイト変態によつて形状記憶ばね
8は伸張する方向に形状が復帰しようとするた
め、その反発力が大となつて弁体5を押し上げ、
第4図に示されるように流通路6が開く。従つて
この状態では流体通路2,3は連通状態となり、
流体の流通が可能となる。
Since this embodiment is configured as described above, the weight 9 is held until the shape memory spring 8 reaches a predetermined temperature.
The load exerted by the valve body 5 compresses the shape memory spring 8 and closes the valve body 5. When the transformation point is exceeded, the shape memory spring 8 attempts to return to its shape in the direction of expansion due to reverse martensitic transformation, so the repulsive force increases and pushes up the valve body 5.
The flow path 6 is opened as shown in FIG. Therefore, in this state, the fluid passages 2 and 3 are in communication,
Fluid flow becomes possible.

そして再び温度が低下してマルテンサイト変体
を生じれば、弁体5とウエイト9による荷重がバ
イアス力となつて働らき、形状記憶ばね8が圧縮
されつつ弁体5が降下し、再び第3図のように閉
弁状態となる。
Then, when the temperature decreases again and martensitic deformation occurs, the load from the valve body 5 and the weight 9 acts as a bias force, compressing the shape memory spring 8 and lowering the valve body 5, and the third The valve is closed as shown in the figure.

以上のように本実施例によれば、弁体5とウエ
イト9の重みが常に一定のバイアス力となつて弁
体5に作用するから、従来品(第1図、第2図参
照)のように線形の荷重撓み特性をもつバイアス
ばねを用いた場合に比べて、バイアス力の変化が
ない分だけ形状記憶ばね8の能力に余裕をもたせ
ることができる。つまり、従来品ではバイアスば
ねの圧縮量が大きくなるほど反発力が大となり、
しかもこの状態では形状記憶ばねが伸張した状態
となつてその反発力が弱まるから、バイアスばね
の反発力に打ち勝つためには大形で強力な形状記
憶ばねを必要とするが、本実施例によれば第5図
に示されるように弁体の位置にかかわらずバイア
ス力が常に一定であるから、バイアス力に対応す
る形状記憶ばね8も小形でかつ線径の細いものを
使用できる。
As described above, according to this embodiment, the weight of the valve body 5 and the weight 9 always acts on the valve body 5 as a constant bias force, so it is different from the conventional products (see Figs. 1 and 2). Compared to the case where a bias spring having a linear load-deflection characteristic is used, the capacity of the shape memory spring 8 can be increased by the amount that the bias force does not change. In other words, with conventional products, the greater the compression amount of the bias spring, the greater the repulsive force.
Moreover, in this state, the shape memory spring is stretched and its repulsive force weakens, so a large and strong shape memory spring is required to overcome the repulsive force of the bias spring. For example, as shown in FIG. 5, since the bias force is always constant regardless of the position of the valve body, the shape memory spring 8 corresponding to the bias force can also be small and have a thin wire diameter.

一例として本実施例では、弁作動出力が500g
で弁作動ストロークが20mmのものを得るのに線径
0.6mm、コイル中心径7.8mm、有効巻数11、総巻数
13、自由長45mm、重量0.58gの形状記憶ばね8
と、40gのウエイトを用いて従来品と同等の性能
を発揮でき、従来品に比べて形状記憶ばね8の大
幅な小形化と軽量化を図ることができた。
As an example, in this example, the valve actuation output is 500 g.
To obtain a valve operating stroke of 20 mm, the wire diameter is
0.6mm, coil center diameter 7.8mm, effective number of turns 11, total number of turns
13. Shape memory spring 8 with free length 45mm and weight 0.58g
The shape memory spring 8 was able to exhibit the same performance as the conventional product using a weight of 40 g, and was able to significantly reduce the size and weight of the shape memory spring 8 compared to the conventional product.

そして、高価な形状記憶合金の使用量が従来品
に比べて大幅に減少するため、コストダウンを図
る上できわめて有効である。また、バイアスばね
を内蔵する必要がないため、従来品に比してユニ
ツトの体積比が30%に減少した。また、従来品で
は形状記憶ばねの歪率を2.1%としていたが、本
実施例によれば、歪率が1.0%でよく、耐久性が
向上するものである。なお、上記実施例では弁体
5とは別にウエイト9を設けているが、このウエ
イト9に相当する重量を弁体5にもたせれば、特
にウエイトを別体に設ける必要はない。
In addition, since the amount of expensive shape memory alloy used is significantly reduced compared to conventional products, it is extremely effective in reducing costs. Additionally, since there is no need to incorporate a bias spring, the volume ratio of the unit has been reduced to 30% compared to conventional products. Further, in the conventional product, the strain rate of the shape memory spring was 2.1%, but according to this embodiment, the strain rate may be 1.0%, improving durability. In the above embodiment, a weight 9 is provided separately from the valve body 5, but if the valve body 5 has a weight equivalent to the weight 9, there is no need to provide a separate weight.

なお、第6図は本考案の第2実施例を示すもの
であり、この場合弁箱1に流体通路2,3を鉛直
方向に形成し、ウエイトを兼ねた弁体5によつて
上記流体通路2,3を開閉するようにしている。
8は形状記憶ばねである。上記弁体5は第1実施
例で説明したと同様に、形状記憶ばね8の変態点
以下の低温度域では、形状記憶ばね8の反発力に
打ち勝つて弁体を降下させ、また変態点以上の高
温度域では形状記憶ばね8の反発力に負けて弁体
5の上昇を許容するような自重をもたせてある。
FIG. 6 shows a second embodiment of the present invention, in which fluid passages 2 and 3 are vertically formed in the valve box 1, and the fluid passages are closed by a valve body 5 which also serves as a weight. 2 and 3 are opened and closed.
8 is a shape memory spring. As described in the first embodiment, the valve body 5 overcomes the repulsive force of the shape memory spring 8 and lowers the valve body in a low temperature range below the transformation point of the shape memory spring 8, and lowers the valve body above the transformation point. In the high temperature range, the valve element 5 is given enough weight to overcome the repulsive force of the shape memory spring 8 and allow the valve body 5 to rise.

このように構成される第2実施例によれば、上
下方向に形成される流体通路2,3の開閉制御が
行なえるとともに、弁体5がウエイトを兼用する
ため構造の簡略化が図れるものである。
According to the second embodiment configured in this way, the opening and closing of the fluid passages 2 and 3 formed in the vertical direction can be controlled, and the structure can be simplified because the valve body 5 also serves as a weight. be.

また、上記第1、第2実施例では弁体5を上下
動させるようにしたが、本考案は例えば第7図に
示されるように、レバー10を介してウエイト9
の重さを弁体5に作用させるようにすることもで
きる。このようにレバー10あるいはリンク等を
用いて重力を弁体に伝達するような構造にすれば
弁体5が水平方向あるいは斜め方向に移動する場
合にも適用でき、弁体の移動方向が制約されない
という利点がある。
Further, in the first and second embodiments, the valve body 5 is moved up and down, but in the present invention, as shown in FIG.
It is also possible to make the weight of the valve body 5 act on the valve body 5. If the structure is such that gravity is transmitted to the valve body using the lever 10 or a link, etc., it can be applied even when the valve body 5 moves horizontally or diagonally, and the direction of movement of the valve body is not restricted. There is an advantage.

また、本考案は開閉弁に限ることなく、例えば
流量調整弁や方向制御弁などにも勿論適用可能で
ある。
Moreover, the present invention is not limited to on-off valves, and can of course be applied to, for example, flow rate adjustment valves and directional control valves.

本考案は前記したように、バイアス力を弁体に
設けたウエイトあるいはウエイトに相当する自重
を有する弁体によつて生じさせるようにしたもの
であるから、従来のバイアスばねのように撓みの
変化によつてバイアスが変化することがなくな
り、常に一定のバイアス力を付与することができ
る。従つて、従来に比して小形軽量の形状記憶ば
ねであつてもバイアス力に対応させることがで
き、形状記憶合金の使用量を大幅に減らすことが
できるため、コストを大幅に低減できる。また、
バイアス力に変化がないから形状記憶ばねの歪率
も少なくて済み、耐久性が向上するとともに設計
の自由度も大きい。そして、バイアスばねを内蔵
する必要がなくなるためユニツトを小形化するこ
とができるなど、大きな効果がある。
As mentioned above, in the present invention, the bias force is generated by a weight provided on the valve body or by a valve body having its own weight equivalent to the weight. As a result, the bias does not change, and a constant bias force can always be applied. Therefore, even a shape memory spring that is smaller and lighter than conventional springs can be adapted to the bias force, and the amount of shape memory alloy used can be significantly reduced, resulting in a significant cost reduction. Also,
Since there is no change in bias force, the distortion rate of the shape memory spring can be reduced, improving durability and providing greater freedom in design. Also, since there is no need to incorporate a bias spring, the unit can be made smaller, which has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の感温弁の一例を示す概略断面
図、第2図は同従来例において弁体の位置と荷重
との関係を示す相関図。第3図ないし第5図は本
考案の一実施例を示し、第3図および第4図は互
いに異なる作動状態を示す縦断面図、第5図は弁
体の位置と荷重との関係を示す荷重−撓み線図、
第6図および第7図はそれぞれ本考案の他の実施
例を示す縦断面図である。 1……弁箱、2,3……流体通路、5……弁
体、8……形状記憶ばね、9……ウエイト。
FIG. 1 is a schematic sectional view showing an example of a conventional temperature-sensitive valve, and FIG. 2 is a correlation diagram showing the relationship between the position of the valve body and the load in the conventional example. Figures 3 to 5 show an embodiment of the present invention, Figures 3 and 4 are longitudinal sectional views showing different operating states, and Figure 5 shows the relationship between the position of the valve body and the load. Load-deflection diagram,
FIGS. 6 and 7 are longitudinal sectional views showing other embodiments of the present invention, respectively. 1... Valve box, 2, 3... Fluid passage, 5... Valve body, 8... Shape memory spring, 9... Weight.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流体通路を設けた弁箱に、上記流体通路を開閉
する方向に摺動自在な弁体を収容し、かつこの弁
体と弁箱との間には弁体を開弁方向または閉弁方
向のいずれか一方向に付勢する形状記憶合金から
なる形状記憶ばねを収容し、更に上記弁体には、
上記形状記憶合金の変態点以下の低温度域では形
状記憶ばねの反発力に打ち勝つて弁体を移動さ
せ、また変態点を超える高温度域においては形状
記憶ばねの反発力に負けるような重量を有するウ
エイトを設け、またはこのウエイトに相当する自
重を弁体に与えたことを特徴とする感温弁。
A valve body provided with a fluid passage accommodates a valve body that is slidable in the direction of opening and closing the fluid passage, and a valve body that is slidable in the direction of opening or closing the fluid passage is housed between the valve body and the valve body. A shape memory spring made of a shape memory alloy that biases in one direction is housed, and the valve body further includes:
In the low temperature range below the transformation point of the shape memory alloy mentioned above, the valve body is moved by overcoming the repulsive force of the shape memory spring, and in the high temperature range above the transformation point, the valve body is moved by weight that overcomes the repulsion force of the shape memory spring. 1. A temperature-sensitive valve characterized in that a weight is provided, or a self-weight equivalent to the weight is applied to a valve body.
JP20068482U 1982-12-27 1982-12-27 temperature sensitive valve Granted JPS59101070U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20068482U JPS59101070U (en) 1982-12-27 1982-12-27 temperature sensitive valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20068482U JPS59101070U (en) 1982-12-27 1982-12-27 temperature sensitive valve

Publications (2)

Publication Number Publication Date
JPS59101070U JPS59101070U (en) 1984-07-07
JPH0141988Y2 true JPH0141988Y2 (en) 1989-12-11

Family

ID=30426200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20068482U Granted JPS59101070U (en) 1982-12-27 1982-12-27 temperature sensitive valve

Country Status (1)

Country Link
JP (1) JPS59101070U (en)

Also Published As

Publication number Publication date
JPS59101070U (en) 1984-07-07

Similar Documents

Publication Publication Date Title
JP3112895B2 (en) Gas spring with intermediate stop function and temperature compensation capability
JP3249186B2 (en) Exhaust valve
CA2151952A1 (en) Double-Pivot Trigger
JPH0141988Y2 (en)
US5417367A (en) Device for opening a pipe and an application of said device
US4283006A (en) Thermally-activated closure device
JPS6035974U (en) valve
JPH0151907B2 (en)
JPS60160530A (en) Temperature switch
GB1578741A (en) Temperature-actuatable valve control means
US3175132A (en) Magnetostrictive motoring device
DE20114702U1 (en) Temperature control valve with a flow-controlling memory metal membrane
JPS6245423B2 (en)
JP3207731B2 (en) Relief valve
JPH0343471B2 (en)
JPH0220874B2 (en)
KR100391589B1 (en) An automotive engine hood supporting device having pressure control
JPH0226072B2 (en)
JPH08145233A (en) Flow control valve and flow control circuit
JPH01288646A (en) Shock absorber using shape memory alloy
JPH0754154B2 (en) Automatic control equipment
EP0098646A2 (en) Cold-responsive relay
JPH0163790U (en)
JPH0143147B2 (en)
JPS6335877U (en)