JPH0141961B2 - - Google Patents

Info

Publication number
JPH0141961B2
JPH0141961B2 JP57105069A JP10506982A JPH0141961B2 JP H0141961 B2 JPH0141961 B2 JP H0141961B2 JP 57105069 A JP57105069 A JP 57105069A JP 10506982 A JP10506982 A JP 10506982A JP H0141961 B2 JPH0141961 B2 JP H0141961B2
Authority
JP
Japan
Prior art keywords
methacrylate
optical transmission
polymer
carbon atoms
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57105069A
Other languages
Japanese (ja)
Other versions
JPS58221808A (en
Inventor
Yoshiharu Tategami
Yasuyuki Kato
Shigeo Wake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP57105069A priority Critical patent/JPS58221808A/en
Priority to DE8383105869T priority patent/DE3373550D1/en
Priority to EP83105869A priority patent/EP0097325B1/en
Priority to US06/504,861 priority patent/US4576438A/en
Priority to CA000430675A priority patent/CA1230767A/en
Publication of JPS58221808A publication Critical patent/JPS58221808A/en
Publication of JPH0141961B2 publication Critical patent/JPH0141961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • G02B1/048Light guides characterised by the cladding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は芯−さや構造から成る耐熱性にすぐれ
た光伝送繊維に関する。 光伝送繊維は従来、ガラス系材料を基体として
製造され、光信号伝送媒体として機器間や機器内
の計測制御用、データ伝送用あるいは医療用、装
飾用や画像伝送用として広く利用されている。し
かし、ガラス系材料を基材とした光伝送繊維は、
内径の細い繊維にしないと可撓性に乏しい欠点が
あり、又、断線しやすいこと、比重が大きいこ
と、コネクターを含めて高価であることなどの理
由から、最近これをプラスチツクで作る試みが
種々提案されている。 プラスチツクを使用する場合の大きな特徴は軽
量であること、内径の太い繊維でも強靭で可撓性
に富むこと、従つて、高開口度、大口径が可能で
あり、受発光素子との結合が容易であることなど
操作性にすぐれている点にある。プラスチツクで
このような光伝送繊維を製造する一般的な方法
は、屈折率が大きく、かつ、光の透過性が良好な
プラスチツクを芯成分とし、これよりも屈折率が
小さく、かつ、透明なプラスチツクをさや成分と
する芯−さや構造を有する繊維とするものであ
る。この方法は、芯−さや界面で光を反射させる
ことにより光を伝送するものであり、芯とさやを
構成するプラスチツクの屈折率の差の大きいもの
ほど光伝送性にすぐれている。 光透過性の高いプラスチツクとしては無定形の
材料が好ましく、工業的にはポリメタクリル酸メ
チルやポリスチレンが注目される材料である(例
えば、特公昭43−8978号公報、特公昭53−21660
号公報)。 しかし、このようなプラスチツクの光伝送繊維
は温度の上昇と共に伝送損失の低下があり、その
低下値が大きく、光信号媒体としての信頼性に欠
ける場合があつた。また、耐熱性に欠点があり、
移動体、たとえば自動車、船舶、航空機またはロ
ボツトなどへ適用する場合には用途や適用個所に
制限が生ずる。ポリメタクリル酸メチルやポリエ
チレンの使用可能な上限温度は約80℃であり、そ
れ以上の温度では熱収縮が大きくなつたり、変形
したり、ミクロ構造上のゆらぎが生じて、光伝送
繊維としての機能を果さなくなるなどの欠点を有
し、又、一旦80℃以上の温度条件下で使用される
と、常温にもどしても光伝送損失が大きくなり再
び使用することが出来なくなるなど、狭い温度領
域でしか使用出来ないという欠点を有し、耐熱性
にすぐれたプラスチツク光伝送繊維の開発がのぞ
まれていた。 本発明者らはかかる現状にかんがみ、耐熱性に
すぐれ、かつ、光伝送性にすぐれたプラスチツク
光伝送繊維の開発を鋭意検討した結果、本発明に
到達した。 すなわち、本発明はエステル部分に炭素数8以
上の脂環式炭化水素基を有するメタクリル酸エス
テルから成る重合体を芯成分とし、該芯成分より
も少なくとも3%小さい屈折率を有する透明重合
体をさや成分とすることを特徴とする耐熱性にす
ぐれた光伝送繊維を提供するものである。 本発明の光伝送繊維は、常温から80℃附近まで
の温度範囲において使用できる芯成分にポリメタ
クリル酸メチルを使用した従来から提案されてい
る光伝送繊維に比べ、温度の上昇と共に生ずる導
光損失の低下の割合が少なく、光信号伝送媒体と
しての信頼性をいちじるしく高めうるものであ
る。さらに予期せざることに、上述の従来から提
案されている光伝送繊維が全く使用出来ない温度
においても、導光損失の低下がほとんど見られな
い光伝送繊維を提供しうるものである。 本発明において芯成分に使用されるエステル部
分に炭素数8以上の脂環式炭化水素基を有するメ
タクリル酸エステルからなる重合体を構成する単
量体は、式 (ここでRは炭素数0〜2からなる炭化水素基
で、Aは炭素数8以上の脂環式炭化水素基であ
る)であらわされる単量体である。 該単量体は、メタクリル酸あるいはより好まし
くはその酸塩化物を式ROHの脂環式炭化水素・
モノオールでエステル化することによつてつくら
れる。 脂環式炭化水素・モノオールとしては1−アダ
マンタノール、2−アダマンタノール、3−メチ
ル−1−アダマンタノール、3,5−ジメチル−
1−アダマンタノール、3−エチルアダマンタノ
ール、3−メチル−5−エチル−1−アダマンタ
ノール、3,5,8−トリエチル−1−アダマン
タノールおよび3,5−ジメチル−8−エチル−
1−アダマンタノール、オクタヒドロ−4,7−
メタノインデン−5−オール、オクタヒドロ−
4,7−メタノインデン−1−イルメタノール、
p−メンタノール8、p−メンタノール−2,3
−ヒドロキシ−2,6,6−トリメチル−ビシク
ロ〔3,1,1〕ヘプタン、3,7,7−トリメ
チル−4−ヒドロキシ−ビシクロ〔4,1,0〕
ヘプタン、ボルネオール、イソボルネオール、2
−メチルカルフアノール、2,2,5−トリメチ
ルシクロヘキサノール等の脂環式炭化水素・モノ
オールをあげることができ、これに対応するメタ
クリル酸エステルからなる重合体又は共重合体を
例示することができる。脂環式炭化水素基に限定
する理由は芳香族炭化水素基の場合、光伝送繊維
において導光損失が大きく、光信号伝送媒体とし
ての用途に制限が生じるためである。 炭素数8以上の脂環式炭化水素基のうち、とく
に好適には炭素数10以上の脂環式炭化水素基の場
合が耐熱性向上の寄与率が高い。 これらのメタクリル酸エステルの中で特に好適
にはメタクリル酸−1−アダマンチル、メタクリ
ル酸−2−アダマンチル、メタクリル酸−3,5
−ジメチル−1−アダマンチル、メタクリル酸ボ
ルニル、メタクリル酸イソボニル、メタクリル酸
フエンチル、メタクリル酸L−メンチル、メタク
リル酸−p−メンタン、メタクリル酸2−メチル
カンフアン、メタクリル酸2,2,5−トリメチ
ルシクロヘキサンをあげることができる。該メタ
クリル酸エステルからなる重合体は高い屈折率を
示すので光伝送繊維として好ましい特性を有す
る。 これらのメタクリル酸エステルと共重合する成
分としては、炭素数1〜6のアルキル基を有する
アクリル酸アルキルもしくはメタクリル酸アルキ
ルの中から選ばれ、例えばメチル、エチル、n−
プロピル、n−ブチル、シクロヘキシル等のアル
キル基を有するアクリル酸アルキル、もしくはメ
タクリル酸アルキルを有効に使用することができ
る。 炭素数7以下の脂環式炭化水素基を有するメタ
クリル酸エステルを使用する場合は耐熱性が向上
しない。又、炭素数8以上の場合でも直鎖状炭化
水素基、たとえばメタクリル酸n−オクチルやメ
タクリル酸n−ドデシルなどのメタクリル酸エス
テルは耐熱性向上に寄与しない。 炭素数が約20までの脂環式炭化水素がのぞまし
く、それ以上になると重合体の機械的強度が低下
する傾向にある。 芯成分の重合体は、エステル部分が炭素数8以
上の脂環式炭化水素基を有するメタクリル酸エス
テル20〜100%、さらに好ましくは30〜95%から
なる重合体である。該メタクリル酸エステル成分
の含有率は、光伝送繊維としての耐熱性、高温時
の寸法安定性、可撓性を確保するために20%以上
が望ましい。 本発明を構成する他の重要な要素であるさや成
分としては、芯成分よりも少なくとも3%小さい
屈折率を有する透明重合体である。3%より小さ
い屈折率を有する場合、さや成分による光の反射
する割合が小さくなり導光損失が大きくなる。好
ましい透明重合体としては例えば、弗化ビニル、
弗化ビニリデン、トリフルオロエチレン、テトラ
フルオロエチレン、ヘキサフルオロプロペン、ト
リフルオロメチルトリフルオロビニルエーテル、
パーフルオロプロピルトリフルオロビニルエーテ
ル、メタクリル酸パーフルオロ−t−ブチルなど
の含弗素重合体やポリメタクリル酸メチル、ポリ
メタクリル酸エチルやその共重合体をあげること
ができる。 これらの含弗素重合体の中で特に好適には、弗
化ビニリデン−テトラフルオロエチレン共重合
体、トリフルオロエチレン−弗化ビニリデン共重
合体、弗化ビニリデン−テトラフルオロエチレン
−ヘキサフルオロプロペン共重合体およびメタク
リル酸パーフルオロ−t−ブチル重合体をあげる
ことができる。具体的な屈折率としては1.42以下
で、結晶性でなく無定形に近い重合体で、かつ、
前記芯成分のメタクリル酸エステルとの接着性が
良好なものが望ましい。これらさや成分重合体の
製造法は従来の公知の方法でおこなうことができ
る。さや成分重合体の場合は、芯成分重合体の場
合ほど製造法による光伝送性への影響は認められ
ないので、特にゴミなどの異物が混入しないよう
にして、さや成分重合体の製造をおこなえばよ
い。 従来のプラスチツクからなる光伝送繊維の製造
は一般に、芯成分およびさや成分を懸濁重合法で
合成し、これを繊維製造装置に供給していた。こ
の方法においては多量の水を使用するため、その
中に含まれる異物が重合体中に混入しやすく、
又、その脱水工程においても異物が混入する可能
性がある。さらに、生成した重合体を繊維化する
工程において溶融紡糸するために、ペレツト化す
る工程を要し、しかも装置的にも重合体製造装置
と繊維製造工程とは分離されて位置するため、異
物が混入しやすく、空気により酸化される環境に
おかれるので着色の原因になるなどの欠点を有す
る。従つて、本発明の光伝送繊維の製造法として
望ましい方法としては、芯成分の重合体の製造段
階と光伝送繊維の製造段階とを連続した工程でお
こない、かつ、芯成分の重合体を高温度下で連続
塊状重合工程およびそれにつづく残存未反応単量
体を主体とする揮発物の連続分離工程の2工程で
製造する方法が望ましい。又は、芯成分を塊状重
合し、ついで、得られた重合体からの芯成分の形
成及びさや成分形成と共に二重押出し法によりお
こなう製造法も望ましい方法である。 塊状重合法においては、ラジカル重合開始剤と
して例えば、2,2′−アゾ−ビス(イソブチロニ
トリル)、1,1′−アゾビス(シクロヘキサンカ
ルボニトリル)、2,2′−アゾビス(2,4−ジ
メチルヴアレロニトリル)、アゾビスイソブタノ
ールジアセテート等のアゾ化合物ならびにジ−
tert−ブチルパーオキサイド、ジクミルパーオキ
サイド、メチルエチルケトンパーオキサイド、ジ
−tert−ブチルパーフタレート、ジ−tert−ブチ
ルパーアセテート、ジ−tert−アミルパーオキサ
イド等の有機過酸化物があげられる。 又、重合系中には、分子量を制御するために連
鎖移動剤としてtertブチル、n−ブチル、n−オ
クチル、及びn−ドデシルメルカプタン等を単量
体モノマーに対し約1モル%以下添加する。 本発明は上述のごとく、芯−さや構造を有する
光伝送繊維において、芯成分およびさや成分に特
定の重合体を使用することにより、従来のプラス
チツク光伝送繊維の適用温度範囲を大巾に拡大す
ることができる耐熱性にすぐれた光伝送繊維を提
供するものであり、その工業的価値はきわめて高
いものである。常用温度を110℃以上とすること
ができることから、たとえば自動車、船舶、航空
機、またはロボツト等への適用を可能とするもの
である。また、構内、ビル内通信においても、温
度条件の緩和により適用範囲を拡大するものであ
る。 次に、本発明を実施例により更に詳細に説明す
るが、本発明はこれによつてなんら限定されるも
のではない。 なお、実施例中の導光損失の測定は、ハロゲン
タングステンランプを光源として回折格子分光器
を用い、650nmの波長における被測定光伝送繊
維と基準光伝送繊維の出力強度をシリコンフオト
ダイオードで読みとり、次式により強度I1、I2
ら繊維長L(Km)の導光損失αを求めた。 α(dB/Km)=10/Llog(I2/I1) この式よりα値が小さいほど光伝送性はすぐれ
ていることを示す。 また、耐熱性試験は得られた光伝送繊維を所定
時間加熱したのち、初期と加熱後の導光損失を測
定し比較することによりおこなつた。 実施例 1 減圧蒸溜によつて精製したメタクリル酸−1−
アダマンチル87部、メチルアクリレート13部、n
−ドデシルメルカプタン0.05部および2,2′−ア
ゾビス(2,4−ジメチルヴアレロニトリル)
0.05部からなる混合物を酸素不存在下で調合し、
150℃に維持された反応槽に送り、滞溜時間8時
間予備重合し、次いで200℃に維持されたスクリ
ユーコンベア中に送り、滞溜時間2時間で重合を
完了し、25℃、クロロホルム溶液で求めた極限粘
度〔η〕0.70、屈折率1.547の重合体をえた。更
に、この重合体を255℃に加熱したベントつき押
出機に供給し、235℃に維持された二重押出しノ
ズルの中心より直径1mmのストランド状の該重合
体を芯成分として吐出しながら、弗化ビニリデン
−テトラフルオロエチレン共重合体〔弗化ビニリ
デン70%、屈折率1.405、溶融流動指数140(230
℃)〕をさや成分として溶融被覆し、芯−さや構
造のストランドをえた。芯−さや重合体の配合比
は90:10に設定した。ついで、力学的強靭性を付
与するためこのストランドを1.8倍に延伸して、
直径約0.75mmの光伝送繊維をえた。25℃と70℃に
おける導光損失を測定したところ、650nmの波
長においてそれぞれ340dB/Km、370dB/Kmであ
つた。この光伝送繊維を120℃、3時間熱処理し
たのち導光損失を再測定した結果、400dB/Kmで
あり、すぐれた耐熱性を示した。 実施例 2〜6 実施例1と同様な操作により、芯成分重合体お
よびさや成分重合体をかえて、光伝送繊維をえた
のち、耐熱性を調べた。いずれもすぐれた耐熱性
を示す光伝送繊維であつた(表1)。 比較例 比較のために、実施例1と同様な操作により、
芯成分としてポリメタクリル酸メチルを用いさや
成分に弗化ビニリデン−テトラフルオロエチレン
共重合体を用いた芯−さや構造を有する光伝送繊
維をえた。25℃と70℃における導光損失を測定し
たところ、650nmの波長においてそれぞれ
350dB/Km、500dB/Kmであつた。このものを
105℃で7時間、110℃で3時間、120℃で3時間
または150℃で3時間それぞれ加熱処理したとこ
ろ、いずれも1000dB/Km以上の伝送損失を示し、
耐熱性はおとつていた。 また、芯成分としてメタクリル酸ベンジルまた
はメタクリル酸−n−オクチルからなる重合体を
用いてえた光伝送繊維も100℃、2時間熱処理後
はいずれも1000dB/Km以上の伝送損失を示した。 実施例 7および8 実施例1と同様な操作により、表2に示すよう
な芯成分重合体およびさや成分重合体を用いて光
伝送繊維をつくり、耐熱性を調べ、結果を表2に
示した。いずれもすぐれた耐熱性を示した。
The present invention relates to an optical transmission fiber having a core-sheath structure and having excellent heat resistance. Optical transmission fibers have conventionally been manufactured using glass-based materials as a base material, and are widely used as optical signal transmission media for measurement control between and within devices, for data transmission, for medical purposes, for decoration, and for image transmission. However, optical transmission fibers based on glass-based materials,
Recently, various attempts have been made to make fibers made of plastic because they have the disadvantage of poor flexibility unless they are made from fibers with a thin inner diameter, and they also break easily, have a high specific gravity, and are expensive, including the connector. Proposed. The main characteristics of using plastic are that it is lightweight, and even fibers with a thick inner diameter are strong and flexible.Therefore, high apertures and large diameters are possible, and it is easy to combine with light receiving and emitting elements. It has excellent operability. The general method for manufacturing such optical transmission fibers using plastic is to use a plastic with a high refractive index and good light transmittance as a core component, and then use a transparent plastic with a lower refractive index as a core component. The fiber has a core-sheath structure in which the sheath component is . This method transmits light by reflecting it at the core-sheath interface, and the larger the difference in refractive index between the plastics that make up the core and the sheath, the better the light transmission properties. Amorphous materials are preferable as plastics with high light transmittance, and polymethyl methacrylate and polystyrene are attracting attention industrially (for example, Japanese Patent Publication No. 43-8978, Japanese Patent Publication No. 53-21660).
Publication No.). However, such plastic optical transmission fibers suffer from a drop in transmission loss as the temperature rises, and the reduction value is large, sometimes resulting in a lack of reliability as an optical signal medium. In addition, there is a drawback in heat resistance,
When applied to moving objects such as automobiles, ships, aircraft, or robots, there are restrictions on the uses and locations of application. The upper limit temperature at which polymethyl methacrylate and polyethylene can be used is approximately 80°C, and at temperatures higher than that, thermal contraction increases, deformation occurs, and microstructural fluctuations occur, making it difficult to function as an optical transmission fiber. Moreover, once it is used at a temperature of 80℃ or higher, the optical transmission loss becomes large even if the temperature is returned to room temperature, making it impossible to use it again. However, there was a need for the development of a plastic optical transmission fiber with excellent heat resistance. In view of the current situation, the inventors of the present invention have conducted intensive studies to develop a plastic light transmission fiber that has excellent heat resistance and light transmission properties, and as a result, they have arrived at the present invention. That is, the present invention uses a polymer comprising a methacrylic acid ester having an alicyclic hydrocarbon group having 8 or more carbon atoms in the ester moiety as a core component, and a transparent polymer having a refractive index that is at least 3% smaller than that of the core component. The present invention provides an optical transmission fiber with excellent heat resistance characterized by having a sheath component. The optical transmission fiber of the present invention can be used in a temperature range from room temperature to around 80 degrees Celsius.Compared to conventionally proposed optical transmission fibers that use polymethyl methacrylate as a core component, the optical transmission fiber of the present invention has a tendency to reduce light guide loss that occurs as the temperature increases. The rate of decrease in the optical signal is small, and the reliability as an optical signal transmission medium can be significantly improved. Furthermore, unexpectedly, it is possible to provide an optical transmission fiber in which the light guide loss hardly decreases even at temperatures at which the conventionally proposed optical transmission fibers described above cannot be used at all. In the present invention, the monomer constituting the polymer consisting of a methacrylic acid ester having an alicyclic hydrocarbon group having 8 or more carbon atoms in the ester moiety used as the core component has the formula (Here, R is a hydrocarbon group having 0 to 2 carbon atoms, and A is an alicyclic hydrocarbon group having 8 or more carbon atoms.) The monomer combines methacrylic acid or more preferably its acid chloride with an alicyclic hydrocarbon of the formula ROH.
Produced by esterification with monools. Alicyclic hydrocarbons/monols include 1-adamantanol, 2-adamantanol, 3-methyl-1-adamantanol, 3,5-dimethyl-
1-adamantanol, 3-ethyladamantanol, 3-methyl-5-ethyl-1-adamantanol, 3,5,8-triethyl-1-adamantanol and 3,5-dimethyl-8-ethyl-
1-adamantanol, octahydro-4,7-
Methanoinden-5-ol, octahydro-
4,7-methanoinden-1-ylmethanol,
p-menthanol 8, p-menthanol-2,3
-Hydroxy-2,6,6-trimethyl-bicyclo[3,1,1]heptane, 3,7,7-trimethyl-4-hydroxy-bicyclo[4,1,0]
Heptane, borneol, isoborneol, 2
Examples include alicyclic hydrocarbons and monools such as -methylcarphanol and 2,2,5-trimethylcyclohexanol, and corresponding polymers or copolymers of methacrylic esters. can. The reason why it is limited to alicyclic hydrocarbon groups is that aromatic hydrocarbon groups cause large light guide loss in optical transmission fibers, which limits their use as optical signal transmission media. Among the alicyclic hydrocarbon groups having 8 or more carbon atoms, particularly preferably the alicyclic hydrocarbon groups having 10 or more carbon atoms have a high contribution rate to improving heat resistance. Among these methacrylic acid esters, particularly preferred are 1-adamantyl methacrylate, 2-adamantyl methacrylate, and 3,5-methacrylate.
-Dimethyl-1-adamantyl, bornyl methacrylate, isobornyl methacrylate, phenthyl methacrylate, L-menthyl methacrylate, p-menthane methacrylate, 2-methylcamphane methacrylate, 2,2,5-trimethylcyclohexane methacrylate can be given. The polymer made of the methacrylic acid ester exhibits a high refractive index and thus has favorable properties as a light transmission fiber. The component to be copolymerized with these methacrylic esters is selected from alkyl acrylates and alkyl methacrylates having an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, n-
Alkyl acrylates or alkyl methacrylates having alkyl groups such as propyl, n-butyl, and cyclohexyl can be effectively used. When a methacrylic acid ester having an alicyclic hydrocarbon group having 7 or less carbon atoms is used, heat resistance does not improve. Further, even when the number of carbon atoms is 8 or more, linear hydrocarbon groups such as methacrylic acid esters such as n-octyl methacrylate and n-dodecyl methacrylate do not contribute to improving heat resistance. Alicyclic hydrocarbons having up to about 20 carbon atoms are preferred; beyond this, the mechanical strength of the polymer tends to decrease. The core component polymer is a polymer comprising 20 to 100%, more preferably 30 to 95%, of a methacrylic acid ester in which the ester moiety has an alicyclic hydrocarbon group having 8 or more carbon atoms. The content of the methacrylic acid ester component is preferably 20% or more in order to ensure heat resistance, dimensional stability at high temperatures, and flexibility as an optical transmission fiber. The sheath component, which is another important component of the present invention, is a transparent polymer having a refractive index that is at least 3% lower than the core component. If the refractive index is smaller than 3%, the proportion of light reflected by the sheath component will be small and the light guide loss will be large. Preferred transparent polymers include vinyl fluoride,
Vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropene, trifluoromethyl trifluorovinyl ether,
Examples include fluorine-containing polymers such as perfluoropropyl trifluorovinyl ether and perfluoro-t-butyl methacrylate, polymethyl methacrylate, polyethyl methacrylate, and copolymers thereof. Among these fluorine-containing polymers, particularly preferred are vinylidene fluoride-tetrafluoroethylene copolymer, trifluoroethylene-vinylidene fluoride copolymer, and vinylidene fluoride-tetrafluoroethylene-hexafluoropropene copolymer. and perfluoro-t-butyl methacrylate polymer. The specific refractive index is 1.42 or less, it is a non-crystalline and nearly amorphous polymer, and
It is desirable that the adhesive has good adhesion to the methacrylic acid ester of the core component. These sheath component polymers can be produced by conventionally known methods. In the case of sheath component polymers, the manufacturing method does not have as much of an effect on optical transmission as in the case of core component polymers, so the sheath component polymers should be manufactured with special care taken to avoid contamination with foreign matter such as dust. Bye. Conventional optical transmission fibers made of plastic have generally been produced by synthesizing a core component and a sheath component by a suspension polymerization method, and supplying this to a fiber manufacturing apparatus. Since this method uses a large amount of water, foreign substances contained therein are likely to mix into the polymer.
Furthermore, there is a possibility that foreign matter may be mixed in during the dehydration process. Furthermore, in order to melt-spun the produced polymer into fibers, a step of pelletizing is required, and the polymer production equipment and the fiber production process are located separately, so foreign substances may be generated. It has drawbacks such as being easily mixed in and causing coloration because it is placed in an environment where it is oxidized by air. Therefore, a desirable method for manufacturing the optical transmission fiber of the present invention is to carry out the manufacturing step of the core component polymer and the manufacturing step of the optical transmission fiber in a continuous process, and to increase the polymerization of the core component polymer. A two-step production method is preferred: a continuous bulk polymerization step at high temperature, followed by a continuous separation step of volatiles mainly consisting of residual unreacted monomers. Alternatively, a production method in which the core component is bulk polymerized, and then the core component and sheath component are formed from the obtained polymer by a double extrusion method is also desirable. In the bulk polymerization method, for example, 2,2'-azobis(isobutyronitrile), 1,1'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2,4 azo compounds such as -dimethylvaleronitrile), azobisisobutanol diacetate, and di-
Examples include organic peroxides such as tert-butyl peroxide, dicumyl peroxide, methyl ethyl ketone peroxide, di-tert-butyl perphthalate, di-tert-butyl peracetate, and di-tert-amyl peroxide. Further, in the polymerization system, in order to control the molecular weight, tert-butyl, n-butyl, n-octyl, n-dodecyl mercaptan, etc. are added as a chain transfer agent in an amount of about 1 mol % or less based on the monomers. As mentioned above, the present invention greatly expands the applicable temperature range of conventional plastic optical transmission fibers by using specific polymers for the core component and the sheath component in optical transmission fibers having a core-sheath structure. The present invention provides an optical transmission fiber with excellent heat resistance, and its industrial value is extremely high. Since the normal operating temperature can be 110°C or higher, it can be applied to, for example, automobiles, ships, aircraft, or robots. Furthermore, the range of application will be expanded by easing temperature conditions in on-premises and in-building communications. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. The light guide loss in the examples was measured by using a diffraction grating spectrometer with a halogen tungsten lamp as the light source, and reading the output intensities of the measured optical transmission fiber and the reference optical transmission fiber at a wavelength of 650 nm with a silicon photodiode. The light guide loss α for the fiber length L (Km) was determined from the intensities I 1 and I 2 using the following equation. α (dB/Km)=10/Llog(I 2 /I 1 ) From this equation, it is shown that the smaller the α value, the better the optical transmission performance. Further, the heat resistance test was conducted by heating the obtained optical transmission fiber for a predetermined period of time, and then measuring and comparing the light guide loss at the initial stage and after heating. Example 1 Methacrylic acid-1- purified by vacuum distillation
87 parts of adamantyl, 13 parts of methyl acrylate, n
-0.05 part of dodecyl mercaptan and 2,2'-azobis(2,4-dimethylvaleronitrile)
A mixture consisting of 0.05 parts is prepared in the absence of oxygen,
The chloroform solution was sent to a reaction tank maintained at 150℃ for prepolymerization for 8 hours, then sent to a screw conveyor maintained at 200℃ to complete polymerization after a residence time of 2 hours. A polymer with an intrinsic viscosity [η] of 0.70 and a refractive index of 1.547 was obtained. Furthermore, this polymer was supplied to a vented extruder heated to 255°C, and while the polymer in the form of a strand with a diameter of 1 mm was discharged as a core component from the center of a double extrusion nozzle maintained at 235°C, a fluorophore was added. Vinylidene fluoride-tetrafluoroethylene copolymer [vinylidene fluoride 70%, refractive index 1.405, melt flow index 140 (230
°C)] as a sheath component to obtain a strand with a core-sheath structure. The blending ratio of the core-sheath polymer was set at 90:10. Next, this strand was stretched 1.8 times to give it mechanical toughness.
An optical transmission fiber with a diameter of approximately 0.75 mm was obtained. When the light guide loss was measured at 25°C and 70°C, it was 340 dB/Km and 370 dB/Km at a wavelength of 650 nm, respectively. After heat-treating this optical transmission fiber at 120°C for 3 hours, the light guide loss was measured again and was 400 dB/Km, indicating excellent heat resistance. Examples 2 to 6 Optical transmission fibers were obtained in the same manner as in Example 1 by changing the core component polymer and the sheath component polymer, and then their heat resistance was examined. All of them were optical transmission fibers that exhibited excellent heat resistance (Table 1). Comparative Example For comparison, by the same operation as in Example 1,
An optical transmission fiber having a core-sheath structure using polymethyl methacrylate as the core component and vinylidene fluoride-tetrafluoroethylene copolymer as the sheath component was obtained. When the light guide loss was measured at 25℃ and 70℃, it was found that at a wavelength of 650nm,
It was 350dB/Km and 500dB/Km. this thing
When heat treated at 105℃ for 7 hours, 110℃ for 3 hours, 120℃ for 3 hours, or 150℃ for 3 hours, each showed a transmission loss of 1000dB/Km or more.
Heat resistance was low. Further, optical transmission fibers obtained using polymers consisting of benzyl methacrylate or n-octyl methacrylate as a core component also exhibited transmission losses of 1000 dB/Km or more after heat treatment at 100° C. for 2 hours. Examples 7 and 8 Optical transmission fibers were made using the core component polymer and sheath component polymer as shown in Table 2 by the same operation as in Example 1, and the heat resistance was examined, and the results are shown in Table 2. . All exhibited excellent heat resistance.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 エステル部分に炭素数8以上の脂環式炭化水
素基を有するメタクリル酸エステルから成る重合
体を芯成分とし、該芯成分よりも少なくとも3%
小さい屈折率を有する透明重合体をさや成分とす
ることを特徴とする耐熱性にすぐれた光伝送繊
維。 2 エステル部分に炭素数8以上の脂環式炭化水
素基を有するメタクリル酸エステルが式 (ここでRは炭素数0〜2からなる炭化水素基
で、Aは炭素数8以上の脂環式炭化水素基であ
る) で表わされる単量体である特許請求の範囲第1項
に記載の光伝送繊維。 3 エステル部分に炭素数8以上の脂環式炭化水
素基を有するメタクリル酸エステルから成る重合
体が、メタクリル酸アダマンチル、メタクリル酸
−3,5−ジメチル−1−アダマンチル、メタク
リル酸ボルニル、メタクリル酸イソボルニル、メ
タクリル酸−p−メンタン、メタクリル酸フエン
チルまたはメタクリル酸L−メンチルからなる重
合体である特許請求の範囲第1項に記載の光伝送
繊維。 4 芯成分よりも少なくとも3%小さい屈折率を
有する透明重合体が弗化ビニリデン−テトラフル
オロエチレン共重合体、トリフルオロエチレン−
弗化ビニリデン共重合体、弗化ビニリデン−テト
ラフルオロエチレン−ヘキサフルオロプロペン共
重合体、またはメタクリル酸パーフルオロ−t−
ブチル重合体である特許請求の範囲第1項に記載
の光伝送繊維。
[Scope of Claims] 1. A polymer comprising a methacrylic acid ester having an alicyclic hydrocarbon group having 8 or more carbon atoms in the ester moiety as a core component, and at least 3% more than the core component.
An optical transmission fiber with excellent heat resistance characterized by having a transparent polymer having a small refractive index as a sheath component. 2 A methacrylic acid ester having an alicyclic hydrocarbon group having 8 or more carbon atoms in the ester moiety has the formula (Here, R is a hydrocarbon group having 0 to 2 carbon atoms, and A is an alicyclic hydrocarbon group having 8 or more carbon atoms.) optical transmission fiber. 3 A polymer consisting of a methacrylic acid ester having an alicyclic hydrocarbon group having 8 or more carbon atoms in the ester moiety is adamantyl methacrylate, -3,5-dimethyl-1-adamantyl methacrylate, bornyl methacrylate, isobornyl methacrylate. The optical transmission fiber according to claim 1, which is a polymer consisting of p-menthane methacrylate, phenthyl methacrylate, or L-menthyl methacrylate. 4. The transparent polymer having a refractive index at least 3% lower than the core component is vinylidene fluoride-tetrafluoroethylene copolymer, trifluoroethylene-
Vinylidene fluoride copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropene copolymer, or perfluoro-t-methacrylic acid
The optical transmission fiber according to claim 1, which is a butyl polymer.
JP57105069A 1982-06-17 1982-06-17 Optical transmission fiber Granted JPS58221808A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57105069A JPS58221808A (en) 1982-06-17 1982-06-17 Optical transmission fiber
DE8383105869T DE3373550D1 (en) 1982-06-17 1983-06-15 Optical fiber
EP83105869A EP0097325B1 (en) 1982-06-17 1983-06-15 Optical fiber
US06/504,861 US4576438A (en) 1982-06-17 1983-06-16 Heat-resisting optical fiber
CA000430675A CA1230767A (en) 1982-06-17 1983-06-17 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105069A JPS58221808A (en) 1982-06-17 1982-06-17 Optical transmission fiber

Publications (2)

Publication Number Publication Date
JPS58221808A JPS58221808A (en) 1983-12-23
JPH0141961B2 true JPH0141961B2 (en) 1989-09-08

Family

ID=14397658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105069A Granted JPS58221808A (en) 1982-06-17 1982-06-17 Optical transmission fiber

Country Status (1)

Country Link
JP (1) JPS58221808A (en)

Also Published As

Publication number Publication date
JPS58221808A (en) 1983-12-23

Similar Documents

Publication Publication Date Title
EP0097325B1 (en) Optical fiber
US4812011A (en) Optical fiber comprising a methacrylate polymer core and a fluoro polymer cladding
JPH0521203B2 (en)
US4779954A (en) Plastic optical fiber resistant to heat and humidity
JPH0610683B2 (en) Plastic fiber optic fiber
JPH0141961B2 (en)
JPS61176902A (en) Production of heat resistant optical fiber
JPS59200202A (en) Optical transmission fiber
JPH0143283B2 (en)
JPS623401B2 (en)
JPS60407A (en) Optical transmission fiber
JPH0521202B2 (en)
JPS60222804A (en) Light transmitting fiber
JPS61208006A (en) Production of heat resistant optical fiber
JPS59172603A (en) Optical transmission fiber
JPS59176703A (en) Optical transmission fiber
JPS60222803A (en) Light transmitting plastic fiber
JPS62267706A (en) Production of optical fiber
JPS6095406A (en) Light transmitting fiber
JPS6120907A (en) Production of optical fiber
JPS59214802A (en) Light transmitting fiber
JPS60129710A (en) Light transmitting fiber
JPH0451206A (en) Plastic optical fiber
JPS59226302A (en) Optical transmission cable
JPH05224033A (en) Plastic optical fiber