JPH0141870B2 - - Google Patents

Info

Publication number
JPH0141870B2
JPH0141870B2 JP7028084A JP7028084A JPH0141870B2 JP H0141870 B2 JPH0141870 B2 JP H0141870B2 JP 7028084 A JP7028084 A JP 7028084A JP 7028084 A JP7028084 A JP 7028084A JP H0141870 B2 JPH0141870 B2 JP H0141870B2
Authority
JP
Japan
Prior art keywords
valve body
plunger
end surface
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7028084A
Other languages
Japanese (ja)
Other versions
JPS60215175A (en
Inventor
Tomohide Matsumoto
Shigeru Shirai
Masaji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7028084A priority Critical patent/JPS60215175A/en
Publication of JPS60215175A publication Critical patent/JPS60215175A/en
Publication of JPH0141870B2 publication Critical patent/JPH0141870B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電気信号に応じて発生する電磁力を
利用して流体出口側の圧力を任意に制御すること
のできる圧力比例制御弁に関する。 従来例の構成とその問題点 第1図に従来のこの種圧力比例制御弁の構造を
示す。第1図において、1は圧力を制御するガバ
ナ部、2は圧力を制御するための電磁力を発生す
る駆動部である。 ガバナ部1は流体入口3と流体出口4、流体入
口3と流体出口4間に設けた弁座5、及び弁座5
に対向して設けた弁体6、弁体6に支持され流体
入口3側の圧力(以下一次圧とする)P1を受け
て動作するダイヤフラム7、弁体6を閉弁方向に
付勢する弾性体8、弁体6の変位量を規制するス
トツパ9から構成されている。 駆動部2は、ボビン10に巻回されたコイル1
1、コイル11を包囲するごとく設けたヨーク1
2、コイル11の中央部に貫通して設けた摺動筒
13、摺動筒13の内部に設けたプランジヤ1
4、ダイヤフラム7の背圧室を形成する取付台1
5から構成されている。 ここでコイル11に通電するとその通電量に応
じた電磁力Fmが弁体6に作用し、弁体6は下方
に変位して流体は流体出口4側へ流出し、P2
る二次圧を生じる。このような力関係において、
弁体6及びダイヤフラム7の受圧面積を等しく設
ければ、一次圧P1の変化はキヤンセルされ、二
次圧P2によつて弁体6を上方に持上げる力と電
磁力Fmのバランスにより弁開度がきまる。つま
り、電磁力Fmに応じた二次圧P2が得られるとと
もに周知のガバナ機能を有する。 したがつて、コイル11への通電量を制御する
ことにより二次圧P2を任意に制御することがで
きる。 しかしながら、従来例では、弁体6の変位、す
なわちプランジヤ14の変位にともない同一起磁
力を与えているにもかかわらず電磁力Fmが変化
するため、ガバナ特性にオーバーシユート現象が
発生する。この点について第2図及び第3図にも
とづいて詳しく説明する。 第2図は所定の起磁力すなわちコイル11への
通電量を与えた時の弁体6の変位量X(プランジ
ヤ10の変位量)と電磁力Fmの関係を示す特性
図であり、第3図はガバナ特性を示す。 ここでコイル11に通電し所望の二次圧P2mを
得ようとした時、第2図Aの特性において弁体6
の変位量は閉止点XoからXaに変位し電磁力Faと
バランスする。ただし、この時の一次圧P1は標
準圧P1aとする。なおガバナ部1の設計に際して
は、一次圧P1が最低圧P1minになつても所望の二
次圧P2mが得られるように弁体6がストツパ9に
当接する距離、すなわち最大変位量Xmaxは余裕
をもたせるとともにダイヤフラム7のオゾン劣化
を考慮し、大きな応力がかからないよう最適な値
に設計する。この状態において一次圧P1が最大
圧P1maxまで変化すると、弁体6は閉弁方向に
Xbまで変位し、二次圧P2mが保たれる。次に一
次圧P1が最低圧P1minとなると、二次圧P2mが減
少するため、弁体6は下方に変位して弁開度が大
きくなり、二次圧P2mを保つよう動作する。この
時弁体6はストツパ9に当接し、弁体変位量は
Xmaxとなり、電磁力はFmaxとなる。したがつ
て、さらに一次圧P1が最低圧P1minから増加して
きた時、設定電磁力Faに対してΔFm1だけ大きい
Fmaxとバランスする二次圧P2m′ではじめて弁体
6は上方に変位する。したがつてΔP2mのオーバ
ーシユートが発生し、所望の二次圧P2mが得られ
ない。特に燃料ガスの圧力(流量)を制御する場
合、燃焼量が増加し、熱交換器等(図示せず)を
破損する危険があつた。 このため従来例では、プランジヤ14の形状を
複雑な形状としたり磁気ギヤツプを大きくして磁
気効率を低下させ第2図に示すように電磁力の変
化ΔFm2を小さくして対応しており、したがつて
コイル11の大型化、消費電力の増加はまぬがれ
ないものであつた。 発明の目的 本発明は、上記従来の問題点に鑑み、プランジ
ヤの動作範囲と弁体の変位量の相互位置関係を選
択することにより、ガバナ特性のオーバーシユー
トを解消するとともに、駆動部の小型コンパクト
化を図ることを目的とする。 発明の構成 この目的を達成するために本発明による圧力比
例制御弁は、流体通路内に設けた弁座と弁座に対
向して設けられ、ダイヤフラムに支持された弁体
を有するガバナ部と、コイルとヨークと、そのコ
イルの中心軸上を移動し、前記弁体に電磁力を作
用させるプランジヤを有する駆動部とからなり、
前記弁体の最大変位量をXmax、ヨークの上部端
面とプランジヤの上端面の軸方向の間隙をgPu、
ヨーク下部端面とプランジヤ下端面の軸方向の間
隙をgPdとし、弁閉止状態において、Xmax≧
gPd>(Xmax−1)、gPu>(Xmax−1)(mm)
なる条件を満足するよう構成したものである。 この構成により、磁気効率を低下させることな
く、プランジヤの変位にもとずく電磁力の変化を
小さくできるため、ガバナ特性のオーバーシユー
トを解消し、かつ駆動部の小型化が可能となる。 実施例の説明 以下本発明の一実施例を図面にもとづいて説明
する。 第4図は本発明による圧力比例制御弁の構造図
を示し、弁体6が弁座5に当接する点からストツ
パ9に当接するまでの距離を弁体6の最大変位量
Xmax、ヨーク12の上部端面12uとプランジ
ヤ14の上端面14uの軸方向の間隙をgPu、ヨ
ーク12の下部端面12dとプランジヤ下端面1
4dの軸方向の間隙をgPdとする時、弁閉止点す
なわち弁体6が弁座5に当接した状態でそれらの
相互関係位置は次の条件を満足するように構成さ
れている。 (1) Xmax≧gPd>(Xmax−1)(mm) (2) gPu>(Xmax−1)(mm) その他は第1図従来例と同じであり同一記号を
付して説明を省略する。 第5図は、第4図の要部断面図でありプランジ
ヤ14の変位量(弁体6の変位量)とコイル11
への通電量を一定した時の電磁力Fmの変化を示
している。弁閉止点Xoからプランジヤ14が下
降するとヨーク12の下部端面12dとプランジ
ヤ14の下端面14dとで形成される間隙gPdす
なわち磁気ギヤツプが小さくなりプランジヤ14
を吸引する力が増加する。ところがヨーク12の
下部端面12dとプランジヤ14の下端面14d
が一致する点付近、つまり間隙gPdが0となる付
近をピーク点としてプランジヤ14を上方に持上
げる成分が作用し、電磁力Fmは減少をはじめス
トツパ9に弁体6が当接する点Xmaxでプランジ
ヤ14は停止する。 第6図cはその様子を示す弁体6の変位置Xと
電磁力Fmの関係を示す特性図であり、弁体6の
変位置がXmaxの時の電磁力を一次圧P1が標準圧
P1aにおける弁開度Xa時の電磁力Faと略等しく
なるようにしている。 第7図Eは本実施例によるガバナ特性を示し、
第6図cに示すように弁体6が最大変位置Xmax
まで変位した状態で電磁力の差はΔFmであるた
め、一次圧が最低圧P1minから増加する場合にお
いても、標準圧P1aにおいて設定した二次圧P2m
と略等しい二次圧となつた時点で弁体6は上方に
変位し標準圧P1a時の弁開度Xaに近づく。したが
つてオーバーシユート現象は発生しない。 なおgPd>(Xmax−1)が成立しない場合、
つまり弁体6が最大変位量Xmaxに達した状態で
プランジヤ下端面14dがヨーク下部端面12d
よりも1mm以上下方に位置する場合、及びgPu>
(Xmax−1)が成立しない場合つまり最大変位
量Xmaxに達した状態でプランジヤ上端面14u
がヨーク上部端面12uよりも1mm以上下方に位
置する場合いずれもプランジヤ14を上方に持上
げる力が作用し、第6図Dに示すように急激に電
磁力Fmが減少する。したがつて第7図Fに示す
ように二次圧P2mに達しない段階で弁体6が上方
に変位し、ΔP2の差が発生し、能力ダウンとなつ
てしまう。 以上のように本実施例によれば、弁体6の変位
量Xmaxとプランジヤ14及びヨーク12の相互
位置関係を最適なものにしたのでガバナ特性のオ
ーバーシユートの発生を解消することができる。
またプランジヤ14の変位に対する電磁力Fmの
変化定数の大きな条件、すなわち磁気効率の高い
条件で構成できるため、少ない起磁力で駆動する
ことができ、駆動部2の小型コンパクト化を実現
する。表1は弁座径〓36とし同一二次圧P2
(240mmH2O)を制御する圧力比例制御弁を従来
例と本発明のものとで比較したものであり起磁力
は約20%減少、またコイル重量は約1/2となり小
型化及び低コスト化を実現することができた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a pressure proportional control valve that can arbitrarily control the pressure on the fluid outlet side using electromagnetic force generated in response to an electric signal. Structure of a conventional example and its problems FIG. 1 shows the structure of a conventional pressure proportional control valve of this type. In FIG. 1, reference numeral 1 indicates a governor section for controlling pressure, and reference numeral 2 indicates a drive section for generating electromagnetic force for controlling pressure. The governor section 1 includes a fluid inlet 3 and a fluid outlet 4, a valve seat 5 provided between the fluid inlet 3 and the fluid outlet 4, and a valve seat 5.
A diaphragm 7 supported by the valve body 6 and operated in response to the pressure (hereinafter referred to as primary pressure) P 1 on the fluid inlet 3 side urges the valve body 6 in the valve closing direction. It is comprised of an elastic body 8 and a stopper 9 that restricts the amount of displacement of the valve body 6. The drive unit 2 includes a coil 1 wound around a bobbin 10.
1. Yoke 1 provided to surround coil 11
2. A sliding tube 13 provided through the center of the coil 11, and a plunger 1 provided inside the sliding tube 13.
4. Mounting base 1 forming a back pressure chamber for the diaphragm 7
It consists of 5. When the coil 11 is energized, an electromagnetic force Fm corresponding to the amount of energization acts on the valve body 6, the valve body 6 is displaced downward, and the fluid flows out to the fluid outlet 4 side, creating a secondary pressure of P2 . arise. In such a power relationship,
If the pressure-receiving areas of the valve body 6 and the diaphragm 7 are set equal, changes in the primary pressure P1 will be canceled, and the balance between the force that lifts the valve body 6 upward by the secondary pressure P2 and the electromagnetic force Fm will cause the valve to change. The opening degree is determined. In other words, a secondary pressure P2 corresponding to the electromagnetic force Fm can be obtained, and it also has a well-known governor function. Therefore, by controlling the amount of current applied to the coil 11, the secondary pressure P2 can be arbitrarily controlled. However, in the conventional example, the electromagnetic force Fm changes with the displacement of the valve body 6, that is, the displacement of the plunger 14, even though the same magnetomotive force is applied, so an overshoot phenomenon occurs in the governor characteristics. This point will be explained in detail based on FIGS. 2 and 3. FIG. 2 is a characteristic diagram showing the relationship between the displacement amount X of the valve body 6 (the displacement amount of the plunger 10) and the electromagnetic force Fm when a predetermined magnetomotive force, that is, the amount of current applied to the coil 11 is applied, and FIG. indicates the governor characteristics. Here, when trying to obtain the desired secondary pressure P 2 m by energizing the coil 11, the valve body 6 with the characteristics shown in FIG.
The amount of displacement is from the closing point Xo to Xa and is balanced with the electromagnetic force Fa. However, the primary pressure P 1 at this time is the standard pressure P 1 a. When designing the governor section 1, the distance at which the valve body 6 contacts the stopper 9 , that is, the maximum displacement, is determined so that the desired secondary pressure P2m can be obtained even when the primary pressure P1 reaches the minimum pressure P1 min. The amount Xmax is designed to be an optimal value so as to have a margin and take ozone deterioration of the diaphragm 7 into consideration so that large stress is not applied. In this state, when the primary pressure P 1 changes to the maximum pressure P 1 max, the valve body 6 moves in the valve closing direction.
The displacement reaches Xb, and the secondary pressure P 2 m is maintained. Next, when the primary pressure P 1 reaches the minimum pressure P 1 min, the secondary pressure P 2 m decreases, so the valve body 6 is displaced downward and the valve opening increases, maintaining the secondary pressure P 2 m. It works like that. At this time, the valve body 6 comes into contact with the stopper 9, and the amount of displacement of the valve body is
Xmax, and the electromagnetic force becomes Fmax. Therefore, when the primary pressure P 1 further increases from the lowest pressure P 1 min, it is larger by ΔFm 1 than the set electromagnetic force Fa.
The valve body 6 is displaced upward only when the secondary pressure P 2 m' balances with Fmax. Therefore, an overshoot of ΔP 2 m occurs, and the desired secondary pressure P 2 m cannot be obtained. In particular, when controlling the pressure (flow rate) of the fuel gas, the amount of combustion increases and there is a risk of damaging a heat exchanger or the like (not shown). For this reason, in the conventional example, the shape of the plunger 14 is made complicated, the magnetic gap is made large, the magnetic efficiency is reduced, and the electromagnetic force change ΔFm 2 is reduced as shown in FIG. As a result, it was inevitable that the coil 11 would become larger and its power consumption would increase. Purpose of the Invention In view of the above-mentioned conventional problems, the present invention solves the overshoot of the governor characteristics by selecting the mutual positional relationship between the operating range of the plunger and the amount of displacement of the valve body, and also reduces the size of the drive unit. The purpose is to make it more compact. Structure of the Invention In order to achieve this object, the pressure proportional control valve according to the present invention includes: a valve seat provided in a fluid passage; a governor portion having a valve body provided opposite to the valve seat and supported by a diaphragm; Consisting of a coil, a yoke, and a drive unit having a plunger that moves on the central axis of the coil and applies electromagnetic force to the valve body,
The maximum displacement of the valve body is Xmax, and the axial gap between the upper end surface of the yoke and the upper end surface of the plunger is gPu.
The axial gap between the lower end surface of the yoke and the lower end surface of the plunger is gPd, and when the valve is closed, Xmax≧
gPd>(Xmax−1), gPu>(Xmax−1)(mm)
It is designed to satisfy the following conditions. With this configuration, changes in electromagnetic force due to displacement of the plunger can be reduced without reducing magnetic efficiency, thereby eliminating overshoot in governor characteristics and making it possible to downsize the drive unit. DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below based on the drawings. FIG. 4 shows a structural diagram of the pressure proportional control valve according to the present invention.
Xmax, the gap in the axial direction between the upper end surface 12u of the yoke 12 and the upper end surface 14u of the plunger 14 is gPu, the lower end surface 12d of the yoke 12 and the lower end surface 1 of the plunger 14;
When the gap in the axial direction of 4d is gPd, the relative positions thereof at the valve closing point, that is, the state in which the valve body 6 is in contact with the valve seat 5, are configured so as to satisfy the following condition. (1) Xmax≧gPd>(Xmax-1)(mm) (2) gPu>(Xmax-1)(mm) The rest is the same as the conventional example shown in FIG. 1, so the same symbols are given and the explanation is omitted. FIG. 5 is a cross-sectional view of the main part of FIG. 4, showing the amount of displacement of the plunger 14 (the amount of displacement of the valve body 6) and
It shows the change in electromagnetic force Fm when the amount of current applied to is constant. When the plunger 14 descends from the valve closing point Xo, the gap gPd formed between the lower end surface 12d of the yoke 12 and the lower end surface 14d of the plunger 14, that is, the magnetic gap, becomes smaller and the plunger 14
The power to attract increases. However, the lower end surface 12d of the yoke 12 and the lower end surface 14d of the plunger 14
A component that lifts the plunger 14 upwards acts with a peak point near the point where the gap gPd becomes 0, and the electromagnetic force Fm starts to decrease and the plunger 14 reaches its peak at the point Xmax where the valve body 6 comes into contact with the stopper 9. 14 stops. Figure 6c is a characteristic diagram showing the relationship between the displacement position X of the valve body 6 and the electromagnetic force Fm .
It is made to be approximately equal to the electromagnetic force Fa at the valve opening Xa at P 1 a. FIG. 7E shows the governor characteristics according to this example,
As shown in Fig. 6c, the valve body 6 is at the maximum displacement position Xmax.
Since the difference in electromagnetic force is ΔFm when the displacement is up to
When the secondary pressure becomes approximately equal to , the valve body 6 is displaced upward and approaches the valve opening Xa at the standard pressure P 1 a. Therefore, no overshoot phenomenon occurs. Note that if gPd>(Xmax−1) does not hold,
In other words, when the valve body 6 reaches the maximum displacement Xmax, the plunger lower end surface 14d changes to the yoke lower end surface 12d.
If it is located 1mm or more below, and gPu>
If (Xmax−1) does not hold, that is, when the maximum displacement amount Xmax is reached, the plunger upper end surface 14u
In any case where the plunger 14 is located 1 mm or more below the yoke upper end surface 12u, a force that lifts the plunger 14 upward acts, and the electromagnetic force Fm suddenly decreases as shown in FIG. 6D. Therefore, as shown in FIG. 7F, the valve body 6 is displaced upward before the secondary pressure P 2 m is reached, and a difference in ΔP 2 occurs, resulting in a reduction in performance. As described above, according to this embodiment, the displacement amount Xmax of the valve body 6 and the mutual positional relationship between the plunger 14 and the yoke 12 are optimized, so that it is possible to eliminate the occurrence of overshoot in the governor characteristics.
Further, since it can be configured under conditions where the change constant of the electromagnetic force Fm with respect to the displacement of the plunger 14 is large, that is, under conditions where magnetic efficiency is high, it is possible to drive with a small magnetomotive force, and the drive unit 2 can be made smaller and more compact. Table 1 shows the valve seat diameter = 36 and the same secondary pressure P 2
(240mmH 2 O) Comparing the conventional pressure proportional control valve and the one of the present invention, the magnetomotive force is reduced by approximately 20%, and the coil weight is approximately halved, resulting in smaller size and lower cost. We were able to realize this.

【表】 発明の効果 以上詳述したように本発明による圧力比例制御
は、プランジヤのヨークに対する動作範囲と弁体
の変位量の相互位置関係を前述のごとく、弁閉止
状態において、Xmax≧gPd>(Xmax−1)、
gPu>(Xmax−1)(mm)なる条件を満足するよ
う構成し、弁体の変位に対する電磁力の変化を放
物線状としたものであり、定常時の電磁力と弁体
が最大変位量に達した時の電磁力を略等しくでき
るため、ガバナ特性のオーバーシユートが発生し
ない。また磁気効率の高い条件で駆動部を構成で
きるため、少ない起磁力で駆動できコイルの小型
化、低コストを実現する。さらに弁体の変位に対
する電磁力の変化定数を小さくする必要がないた
め、プランジヤの形状及び磁気回路における磁気
ギヤツプとなる部分の形状、寸法バラツキ等特別
の配慮が不要であり、構造が簡単でまた加工、組
立て性も向上するものである。
[Table] Effects of the Invention As described in detail above, the pressure proportional control according to the present invention establishes the mutual positional relationship between the operating range of the plunger with respect to the yoke and the displacement amount of the valve body such that in the valve closed state, Xmax≧gPd> (Xmax−1),
It is configured to satisfy the condition gPu > (Xmax-1) (mm), and the change in electromagnetic force with respect to the displacement of the valve body is parabolic, so that the electromagnetic force and valve body in steady state reach the maximum displacement. Since the electromagnetic forces can be made approximately equal when reaching the position, overshoot of the governor characteristics does not occur. Furthermore, since the drive section can be configured under conditions with high magnetic efficiency, it can be driven with less magnetomotive force, resulting in smaller coils and lower costs. Furthermore, since there is no need to reduce the change constant of the electromagnetic force with respect to the displacement of the valve body, there is no need for special considerations such as the shape of the plunger and the shape and size variations of the part that becomes the magnetic gap in the magnetic circuit, resulting in a simple structure. Processing and assembling properties are also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力比例制御弁の断面構造図、
第2図は同電磁力特性図、第3図は同ガバナ特性
図、第4図は本発明の一実施例を示す圧力比例制
御弁の断面構造図、第5図は同要部断面図、第6
図は同電磁力特性図、第7図は同ガバナ特性図で
ある。 1……ガバナ部、2……駆動部、5……弁座、
6……弁体、7……ダイヤフラム、11……コイ
ル、12……ヨーク、12u……ヨーク上部端
面、12d……ヨーク下部端面、14……プラン
ジヤ、14u……プランジヤ上端面、14d……
プランジヤ下端面。
Figure 1 is a cross-sectional structural diagram of a conventional pressure proportional control valve.
FIG. 2 is an electromagnetic force characteristic diagram, FIG. 3 is a governor characteristic diagram, FIG. 4 is a sectional structural diagram of a pressure proportional control valve showing an embodiment of the present invention, and FIG. 5 is a sectional diagram of the same essential parts. 6th
The figure shows the electromagnetic force characteristic diagram, and FIG. 7 shows the same governor characteristic diagram. 1... Governor part, 2... Drive part, 5... Valve seat,
6...Valve body, 7...Diaphragm, 11...Coil, 12...Yoke, 12u...Yoke upper end surface, 12d...Yoke lower end surface, 14...Plunger, 14u...Plunger upper end surface, 14d...
Lower end of plunger.

Claims (1)

【特許請求の範囲】[Claims] 1 流体通路内に設けた弁座と、その弁座に対向
して設けた弁体と、その弁体と一体に設けられた
ダイヤフラムを有するガバナ部と、コイルと、そ
のコイルを包囲するごとく設けたヨークと、その
コイルを包囲するごとく設けたヨークと、前記コ
イルの中心軸上を移動し、前記弁体に電磁力を作
用させるプランジヤから構成される駆動部とを有
し、前記弁体の最大変位量をXnax、ヨークの上
部端面とプランジヤの上端面の軸方向の間隙を
gpu、ヨーク下部端面とプランジヤの下端面の軸
方向の間隙をgpdとし、前記弁体が前記弁座に当
接した状態において、Xnax≧gpd>(Xnax−1)、
gpu>(Xnax−1)(mm)なる条件を満足するよう
構成した圧力比例制御弁。
1. A valve seat provided in a fluid passage, a valve body provided opposite to the valve seat, a governor portion having a diaphragm provided integrally with the valve body, a coil, and a governor portion provided so as to surround the coil. a yoke provided so as to surround the coil, and a drive section composed of a plunger that moves on the central axis of the coil and applies an electromagnetic force to the valve body. The maximum displacement is X nax , and the axial gap between the upper end surface of the yoke and the upper end surface of the plunger is
gpu, the axial gap between the lower end surface of the yoke and the lower end surface of the plunger is gpd, and when the valve body is in contact with the valve seat, X nax ≧gpd> (X nax −1),
A pressure proportional control valve configured to satisfy the condition: gpu > (X nax -1) (mm).
JP7028084A 1984-04-09 1984-04-09 Pressure proportional control valve Granted JPS60215175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7028084A JPS60215175A (en) 1984-04-09 1984-04-09 Pressure proportional control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7028084A JPS60215175A (en) 1984-04-09 1984-04-09 Pressure proportional control valve

Publications (2)

Publication Number Publication Date
JPS60215175A JPS60215175A (en) 1985-10-28
JPH0141870B2 true JPH0141870B2 (en) 1989-09-07

Family

ID=13426922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7028084A Granted JPS60215175A (en) 1984-04-09 1984-04-09 Pressure proportional control valve

Country Status (1)

Country Link
JP (1) JPS60215175A (en)

Also Published As

Publication number Publication date
JPS60215175A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
KR100301880B1 (en) Electric drive valve of internal combustion engine
JPH09317927A (en) Pneumatic control valve
JPH0219845Y2 (en)
EP0048440B1 (en) Flow control valve
JP2685732B2 (en) Pilot kick type solenoid valve
JP4055627B2 (en) solenoid valve
JPH0141870B2 (en)
JPH0755044A (en) Electromagnetically operable proportional valve
JP4492649B2 (en) Bleed valve device
JPH02163425A (en) Electric and pneumatic regulator
JP2007100829A (en) Valve device
US4805871A (en) Electromagnetic valve
JP4013440B2 (en) Electromagnetic drive device and electromagnetic valve using the same
JP2013124768A (en) Solenoid valve
JPH0330756B2 (en)
JP7387244B2 (en) solenoid valve
JPH0330755B2 (en)
JP2002213634A (en) Solenoid valve structure
JPS6120750B2 (en)
JPH07113432B2 (en) Proportional control valve for gas
JPS6128943Y2 (en)
JPH041425Y2 (en)
JPH0454493Y2 (en)
JP2729148B2 (en) Moving coil type proportional control valve
JP3074709B2 (en) Flow control valve

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term