JPH0141650B2 - - Google Patents
Info
- Publication number
- JPH0141650B2 JPH0141650B2 JP6114879A JP6114879A JPH0141650B2 JP H0141650 B2 JPH0141650 B2 JP H0141650B2 JP 6114879 A JP6114879 A JP 6114879A JP 6114879 A JP6114879 A JP 6114879A JP H0141650 B2 JPH0141650 B2 JP H0141650B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- molecular weight
- average molecular
- block copolymer
- number average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000642 polymer Polymers 0.000 claims description 65
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 33
- 229920001400 block copolymer Polymers 0.000 claims description 29
- 150000001993 dienes Chemical class 0.000 claims description 19
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 18
- 238000005984 hydrogenation reaction Methods 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 150000002430 hydrocarbons Chemical group 0.000 description 32
- 229930195733 hydrocarbon Natural products 0.000 description 31
- 239000004215 Carbon black (E152) Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 15
- 229920000728 polyester Polymers 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 229920006112 polar polymer Polymers 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 229920006113 non-polar polymer Polymers 0.000 description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920001228 polyisocyanate Polymers 0.000 description 4
- 239000005056 polyisocyanate Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 3
- -1 butadiene-1 Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920006311 Urethane elastomer Polymers 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241000209761 Avena Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- KJLDTYUGZVCMRD-UHFFFAOYSA-L [dodecanoyloxy(diphenyl)stannyl] dodecanoate Chemical compound C=1C=CC=CC=1[Sn+2]C1=CC=CC=C1.CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O KJLDTYUGZVCMRD-UHFFFAOYSA-L 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- CNVULGHYDPMIHD-UHFFFAOYSA-L bis[(2-hydroxybenzoyl)oxy]lead Chemical compound [Pb+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O CNVULGHYDPMIHD-UHFFFAOYSA-L 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- JTGNPNLBCGBCMP-UHFFFAOYSA-N tetraoctylstannane Chemical compound CCCCCCCC[Sn](CCCCCCCC)(CCCCCCCC)CCCCCCCC JTGNPNLBCGBCMP-UHFFFAOYSA-N 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
本発明はブロツク共重合体およびその製法に関
する。さらに詳しくは、本発明は、炭化水素鎖ブ
ロツクとポリエステルブロツクとを有する新規な
ブロツク共重合体およびその製法に関する。
少くとも1個の水酸基を有する主査が飽和した
または部分的に飽和した炭化水素系ポリマーは、
ポリオレフインのような非極性ポリマーとの相溶
性が良いので、非極性ポリマーに対する反応性付
与材料として、あるいはポリイソシアネートと反
応させてウレタンエラストマーとして、用いられ
ている。しかしながら、該炭化水素系ポリマー
は、極性ポリマーとの相溶性が悪く、またポリイ
ソシアネートと反応させて得られるウレタンエラ
ストマーの引張強度および伸びも充分でない。
本発明者等は、極性ポリマーおよび非極性ポリ
マーのいずれにもよく相溶し、さらにポリイソシ
アネートと反応して優れた物性を示す新規ポリマ
ーおよびその製法を提供すべく鋭意検討した結
果、本発明に到達した。
すなわち、本発明の要旨は、数平均分子量が
400〜48000の範囲にある少くとも1個の水酸基を
有する主鎖の水添率が80%以上の共役ジエン系重
合体水添物とε―カプロラクトンとを、該炭化水
素系ポリマー中の水酸基1当量に対しε―カプロ
ラクトンが2モル以上であるような割合で反応さ
せることを特徴とするブロツク共重合体の製法に
ある。
以下、本発明をさらに詳細に説明するに、本発
明の製法により得られるブロツク共重合体は、主
鎖の水添率が80%以上の共役ジエン系重合体水添
物(以下、単に炭化水素系ポリマーと略称する)
からなるブロツクと、式
The present invention relates to a block copolymer and a method for producing the same. More specifically, the present invention relates to a novel block copolymer having a hydrocarbon chain block and a polyester block, and a method for producing the same. A main saturated or partially saturated hydrocarbon polymer having at least one hydroxyl group is
Since it has good compatibility with non-polar polymers such as polyolefins, it is used as a material that imparts reactivity to non-polar polymers, or as a urethane elastomer by reacting with polyisocyanate. However, the hydrocarbon polymer has poor compatibility with polar polymers, and the tensile strength and elongation of urethane elastomers obtained by reacting with polyisocyanates are also insufficient. The present inventors have conducted intensive studies to provide a new polymer that is compatible with both polar and non-polar polymers and exhibits excellent physical properties when reacted with polyisocyanate, and a method for producing the same. As a result, the present invention has been completed. Reached. That is, the gist of the present invention is that the number average molecular weight is
A hydrogenated conjugated diene polymer with a hydrogenation rate of 80% or more in the main chain and at least one hydroxyl group in the range of 400 to 48,000 and ε-caprolactone are added to the hydroxyl group 1 in the hydrocarbon polymer. A method for producing a block copolymer, characterized in that the reaction is carried out at a ratio of 2 moles or more of ε-caprolactone per equivalent. To explain the present invention in more detail below, the block copolymer obtained by the production method of the present invention is a hydrogenated conjugated diene polymer (hereinafter simply referred to as hydrocarbon) having a hydrogenation rate of 80% or more in the main chain. (abbreviated as polymer)
A block consisting of and a formula
【式】(式中、nは2以上
の数である)で表わされるポリエステルブロツク
とからなるブロツク共重合体であり、その構造か
ら、炭化水素系ポリマーの末端に上記ポリエステ
ルブロツクで表わされる置換基をもつポリマーで
ある。炭化水素系ポリマーからなるブロツクを
It is a block copolymer consisting of a polyester block represented by the formula: (in the formula, n is a number of 2 or more), and from its structure, the hydrocarbon polymer has a substituent group represented by the polyester block at the end. It is a polymer with A block made of hydrocarbon polymer
【式】または[expression] or
【式】で示し、ポ
リエステルブロツクをBで示して、本発明のブロ
ツク共重合体の構造を例示すると次の通りであ
る。
本発明のブロツク共重合体の好ましい構造は、
炭化水素系ポリマーの末端に、平均1個以上好ま
しくは平均1.5〜4個の上記ポリエステルブロツ
クで表わされる置換基をもつ構造である。炭化水
素系ポリマーとしては、主鎖が飽和したまたは大
部分飽和したものであり、具体的には、主鎖の水
添率が80%以上の共役ジエン系重合体水添物が用
いられる。共役ジエン系重合体としては、例え
ば、ブタジエン―1,3、イソプレンなどの共役
ジエンの単独重合体またはこれらの共役ジエン70
重量%以上とスチレン、メチルアクリレート、メ
チルメタアクリレート、アクリロニトリル、アク
リル酸、2―ビニルピリジン、塩化ビニル、酢酸
ビニル等のビニルモノマー30重量%以下との共重
合体が挙げられる。そして、このような共役ジエ
ン系重合体は、水添により、主鎖が80%以上好ま
しくは95%以上水添されていることが好ましい。
本発明のブロツク共重合体の数平均分子量は
600〜60000好ましくは1000〜10000である。数平
均分子量が小さすぎると耐侯性が十分でなく、ま
た、大きすぎると流動性が低下するため取り扱い
が困難となる。また炭化水素系ポリマーからなる
ブロツクの数平均分子量(A)は400〜4800で、ポリ
エステルブロツクの数平均分子量(B)は200〜3000
で、(B)/(A)が0.01〜10の範囲である。なお、ここ
でポリエステルブロツクの数平均分子量(B)は、1
分子当りポリエステルブロツクが複数個ある場合
には、その総和である。(B)/(A)の値が小さすぎる
と、極性ポリマーの相溶性が改善されず、(B)/(A)
の値が大きくなると非極性ポリマーとの相溶性が
不十分となる。
本発明のブロツク共重合体を製造するには、数
平均分子量が400〜48000の範囲にある少くとも1
個の水酸基を有する主鎖の水添率が80%以上の共
役ジエン系重合体水添物(以下、これを「水酸基
を有する炭化水素系ポリマー」と略称する)とε
―カプロラクトンを、該炭化水素系ポリマー中の
水酸基1当量に対しε―カプロラクトン2モル以
上であるような割合で反応させる。水酸基を有す
る炭化水素系ポリマーとしては、400〜48000好ま
しくは1000〜10000の範囲の数平均分子量をもつ
ものが用いられる。数平均分子量が小さすぎる
と、耐侯性が十分でなく、また大きすぎると流動
性が低下するため取り扱いが困難となる。1分子
当りの平均水酸基は1以上好ましくは、1.5〜3.0
である。そして水酸基は主鎖の末端、長鎖分岐の
末端にあることが好ましい。主鎖は飽和または大
部分飽和しているものが用いられる。ここで大部
分飽和しているとは、炭化水素系ポリマーが1,
4―ポリブタジエンの水添率である場合、主鎖の
2重結合の水添率が80%以上であるようなものを
指示する。炭化水素系ポリマーとしては、前述の
ような共役ジエン系重合体の水添物が好ましい。
しかしてこのような水酸基を有する炭化水素系
ポリマーは、共役ジエンまたは共役ジエンとビニ
ルモノマーを原料として周知の方法、例えばラジ
カル重合法、アニオン重合法などによつて製造さ
れた共役ジエン系ポリマーまたは共役ジエン系コ
ポリマーを、通常、水素添加することにより得ら
れる。ラジカル重合による場合、過酸化水素を重
合開始剤として重合すれば直接末端に水酸基を有
する共役ジエン系ポリマーまたはコポリマーが得
られるが、アニオン重合による場合、まずアニオ
ン重合触媒を用いて末端にアルカリ金属が結合し
た構造のリビングポリマーを製造し、次いでモノ
エポキシ化合物、ホルムアルデヒド等を反応させ
る。原料共役ジエンとしては、イソプレン、クロ
ロプレン等も使用しうるがブタジエン―1,3が
好ましい。共重合成分としては、前述のようなビ
ニルモノマーが挙げられる。共重合成分の使用量
は総モノマー量の30重量%以下が好ましい。水素
添加は、ニツケル、コバルト、白金、パラジウ
ム、ルテニウム、ロジウム等の触媒を単独である
いは担体に担持して用いて、常法により、水素下
において実施すればよい。
水酸基を有する炭化水素系ポリマーのその他の
製法としては、α―オレフインと他のモノマーと
の共重合体を酸化・分解処理し、次いで還元する
方法が挙げられる。たとえば、イソブチレンとブ
タジエンまたは1,3―ペンタジエンをカチオン
重合させて得られるブチルゴム系の重合体をオゾ
ン分解処理し、次いでリチウムアルミニウムハイ
ドライドで還元すればポリヒドロキシポリイソブ
チレンが得られる。
水酸基を有する炭化水素系ポリマーとε―カプ
ロラクトンとを反応させるブロツク共重合体の製
造は、次のようにして行うことができる。
反応装置としては通常の反応器で十分である。
反応は所定量の水酸基を有する炭化水素系ポリマ
ーとε―カプロラクトンを反応器に仕込み、100
℃〜250℃の温度で30分〜15時間行われる。より
好ましい温度範囲は130〜230℃である。10℃より
低温になると反応速度の低下をきたし、工業的見
地から不利になる。また250℃より高温ではポリ
マーが劣化してくるので好ましくない。
本発明で使用されるε―カプロラクトンの量は
特に限定されないが通例水酸基を有する炭化水素
系ポリマー中の水酸基1当量に対し2モル以上用
いるのが好ましい。とくに好ましい範囲は5モル
〜100モルである。2モルより少ないと極性ポリ
マーに対する相溶性改良という目的が十分に達せ
られない場合があるからである。
反応の際、ブロツク化触媒は必要に応じて使用
することが出来るが一般に使用した方が反応時間
が短縮できるので好ましい。有効な触媒として
は、テトラオクチルスズ、ジフエニールスズジラ
ウレート及びジラウリルスズオキサイド等の有機
スズ化合物、酢酸鉛、サリチル酸鉛及び2―エチ
ルヘキサン酸鉛等の鉛塩、チタン酸テトラブチル
及びチタン酸イソプロピル等の有機チタン化合物
等の開環重合用触媒が挙げられる。使用する触媒
の量は特に限定されないが通例ε―カプロラクト
ンの量に対し0.005重量%〜5重量%である。よ
り好ましい量は0.05重量%〜1重量%である。あ
まり触媒量が多いと得られるブロツク共重合体が
変色することがあるのでできるだけ上記範囲で実
施するのが好ましい。溶媒は必要に応じて用いる
ことが出来る。使用可能な溶媒は水酸基、カルボ
キシル基等の活性水素を含有しないもので、例と
しては、トルエン、キシレン、ベンゼン、ヘプタ
ン、シクロヘキサン等の炭化水素、酢酸エチル、
酢酸ブチル等のエステル類、メチルエチルケト
ン、メチルイソブチルケトン等のケトン類、エチ
レングリコールジメチルエーテル、ジエチレング
リコールジメチルエーテル等のエーテル類が挙げ
られる。
以上のようにして得られた本発明のブロツク共
重合体は末端に少くとも1個の水酸基を有してい
るのでポリイソシアネートと反応させて三次元硬
化物にすることもでき、硬化物は、引張強度、伸
びなどの物性がすぐれている。また本発明のブロ
ツク共重合体は、水酸基を有する炭化水素系ポリ
マーのブロツクとポリエステルブロツクとからな
るので非極性ポリマーにも、極性ポリマーにもよ
く相溶し、それらの反応性改質剤として使用する
こともできる。更に末端の水酸基を予め変成した
後種々の改質剤として使用することができるので
極めて有用な物資である。
次に実施例、応用例および参考例により、本発
明のブロツク共重合体を説明するが、本発明は、
その要旨を越えない限り、これらの例によつて拘
束を受けるものではない。なお硬化物の機械的性
質はJISK―6301に従つて測定した。また、数平
均分子量は、日立パーキンエルマー社製VPO
(Vapor Pressure Csmometer)115型を用い、
トルエン溶液中、40℃で測定した。
参考例 1
末端に水酸基を有する主鎖が飽和した炭化水素
系ポリマーの製造;
容量10のオートクレーブにポリヒドロキシポ
リブタジエン(Arco Chem.社製R―45HT,〔―
OH〕=0.82meq/g、シス1,4:15%、トラン
ス―1,4:58%、ビニル:27%)3Kg、シクロ
ヘキサン3Kg及びカーボン担持ルテニウム(5
%)触媒〔日本エンゲルハルト(株)製〕300gを仕
込み、系内を精製アルゴンガスで置換した後、高
純度水素ガスをオートクレーブ内に供給し始め、
同時に加熱を開始する。約30分を要してオートク
レーブ内は定常条件(内温100℃、内圧50Kg/cm2)
に達した。この条件で15時間経過後、水添反応を
停止し、以下常法に従つてポリマーを精製し、乾
燥した。
得られたポリマーは赤外吸収スペクトルによる
分析の結果、殆んど二重結合を含まぬ炭化水素系
ポリマーであつた。水添物の―OH基は
0.81meq/gであり、蒸気圧法で測定した数平均
分子量は3000であつた。
実施例 1
参考例1の方法によつて得られた末端に少くと
も1個の水酸基を有する主鎖が飽和した炭化水素
系ポリマー494g及びε―カプロラクトン456gを
2の三つ口フラスコに入れ180℃に昇温した。
昇温後、触媒としてオクチル酸スズ0.35gを入
れ、180〜190℃で6時間反応させた。反応後減圧
にして未反応のε―カプロラクトンを留去した。
留去されたε―カプロラクトンはわずか(約5
g)であり、殆んど100%反応していた。得られ
たポリマーの赤外吸収スペクトルは3500cm-1に末
端OH基の吸収と1730cm-1に大きなエステル基の
吸収を示した。この吸収強度はアセトンで何回も
洗浄しても変化なかつた。またこのポリマーのゲ
ルパーミエーシヨンクロマトグラフイー(GPC)
による分析では原料の炭化水素系ポリマーのピー
クより高分子量側にピークが移行していた。また
蒸気圧法で測定した数平均分子量は4800であつ
た。
以上のことから反応生成物は、末端に少くとも
1個の水酸基を有する主鎖の飽和した炭化水素系
ポリマーの末端OH基を開始点にしてε―カプロ
ラクトンが開環重合して生成したブロツクポリマ
ーで、炭化水素系ポリマーのブロツクの数平均分
子量が約3000、式The structure of the block copolymer of the present invention is exemplified as follows, where the polyester block is represented by B. The preferred structure of the block copolymer of the present invention is:
It has a structure in which the hydrocarbon polymer has an average of one or more substituents, preferably an average of 1.5 to 4 substituents, represented by the above polyester blocks, at the terminal end thereof. The hydrocarbon polymer has a saturated or mostly saturated main chain, and specifically, a hydrogenated conjugated diene polymer having a hydrogenation rate of 80% or more in the main chain is used. Examples of the conjugated diene polymer include homopolymers of conjugated dienes such as butadiene-1,3 and isoprene, or conjugated dienes 70 and 70 of these conjugated dienes.
Examples include copolymers of at least 30% by weight of vinyl monomers such as styrene, methyl acrylate, methyl methacrylate, acrylonitrile, acrylic acid, 2-vinylpyridine, vinyl chloride, and vinyl acetate. The main chain of such a conjugated diene polymer is preferably hydrogenated by 80% or more, preferably 95% or more.
The number average molecular weight of the block copolymer of the present invention is
600 to 60,000, preferably 1,000 to 10,000. If the number average molecular weight is too small, the weather resistance will not be sufficient, and if it is too large, the fluidity will decrease, making handling difficult. In addition, the number average molecular weight (A) of the block made of hydrocarbon polymer is 400 to 4800, and the number average molecular weight (B) of the polyester block is 200 to 3000.
and (B)/(A) is in the range of 0.01 to 10. Note that the number average molecular weight (B) of the polyester block is 1
If there are multiple polyester blocks per molecule, it is the sum of them. If the value of (B)/(A) is too small, the compatibility of polar polymers will not be improved, and (B)/(A)
When the value of is large, the compatibility with the nonpolar polymer becomes insufficient. To produce the block copolymer of the present invention, at least one polymer having a number average molecular weight in the range of 400 to 48,000 is required.
Hydrogenated conjugated diene polymers with a main chain hydrogenation rate of 80% or more (hereinafter referred to as "hydrocarbon polymers having hydroxyl groups") and ε
- Caprolactone is reacted in a ratio such that 2 moles or more of ε-caprolactone per equivalent of hydroxyl group in the hydrocarbon polymer. As the hydrocarbon polymer having hydroxyl groups, those having a number average molecular weight in the range of 400 to 48,000, preferably 1,000 to 10,000 are used. If the number average molecular weight is too small, the weather resistance will not be sufficient, and if it is too large, the fluidity will decrease, making handling difficult. The average hydroxyl group per molecule is 1 or more, preferably 1.5 to 3.0
It is. The hydroxyl group is preferably located at the end of the main chain or at the end of a long chain branch. The main chain used is saturated or mostly saturated. Mostly saturated means that the hydrocarbon polymer has 1,
When referring to the hydrogenation rate of 4-polybutadiene, specify one in which the hydrogenation rate of the double bonds in the main chain is 80% or more. As the hydrocarbon polymer, hydrogenated products of conjugated diene polymers as described above are preferred. However, such a hydrocarbon polymer having a hydroxyl group is a conjugated diene polymer or a conjugated diene polymer manufactured from a conjugated diene or a conjugated diene and a vinyl monomer by a well-known method such as a radical polymerization method or an anionic polymerization method. It is usually obtained by hydrogenating a diene copolymer. In the case of radical polymerization, if the polymerization is carried out using hydrogen peroxide as a polymerization initiator, a conjugated diene polymer or copolymer having a hydroxyl group at the terminal can be obtained directly, but in the case of anionic polymerization, an alkali metal is first added to the terminal using an anionic polymerization catalyst. A living polymer with a bonded structure is produced and then reacted with a monoepoxy compound, formaldehyde, etc. As the raw material conjugated diene, isoprene, chloroprene, etc. can also be used, but butadiene-1,3 is preferred. Examples of the copolymerization component include vinyl monomers as described above. The amount of the copolymer component used is preferably 30% by weight or less of the total monomer amount. Hydrogenation may be carried out in a conventional manner under hydrogen using a catalyst such as nickel, cobalt, platinum, palladium, ruthenium, rhodium or the like alone or supported on a carrier. Other methods for producing hydrocarbon polymers having hydroxyl groups include a method in which a copolymer of α-olefin and another monomer is oxidized and decomposed, and then reduced. For example, polyhydroxypolyisobutylene can be obtained by subjecting a butyl rubber-based polymer obtained by cationic polymerization of isobutylene and butadiene or 1,3-pentadiene to an ozone decomposition treatment and then reducing it with lithium aluminum hydride. A block copolymer can be produced by reacting a hydrocarbon polymer having a hydroxyl group with ε-caprolactone in the following manner. A conventional reactor is sufficient as the reactor.
The reaction was carried out by charging a predetermined amount of a hydrocarbon polymer with hydroxyl groups and ε-caprolactone into a reactor.
It is carried out for 30 minutes to 15 hours at a temperature of ℃ to 250℃. A more preferred temperature range is 130-230°C. When the temperature is lower than 10°C, the reaction rate decreases, which is disadvantageous from an industrial standpoint. Furthermore, temperatures higher than 250°C are not preferred because the polymer deteriorates. The amount of ε-caprolactone used in the present invention is not particularly limited, but it is generally preferred to use 2 moles or more per equivalent of hydroxyl group in the hydrocarbon polymer having hydroxyl groups. A particularly preferred range is 5 mol to 100 mol. This is because if the amount is less than 2 moles, the objective of improving compatibility with polar polymers may not be fully achieved. During the reaction, a blocked catalyst can be used if necessary, but it is generally preferable to use it because the reaction time can be shortened. Effective catalysts include organotin compounds such as tetraoctyltin, diphenyltin dilaurate and dilauryltin oxide, lead salts such as lead acetate, lead salicylate and lead 2-ethylhexanoate, tetrabutyl titanate and isopropyl titanate. Examples include catalysts for ring-opening polymerization such as organic titanium compounds such as . The amount of catalyst used is not particularly limited, but is usually 0.005% to 5% by weight based on the amount of ε-caprolactone. A more preferred amount is 0.05% to 1% by weight. If the amount of catalyst is too large, the obtained block copolymer may change color, so it is preferable to carry out the reaction within the above range as much as possible. A solvent can be used as necessary. Usable solvents are those that do not contain active hydrogen such as hydroxyl groups and carboxyl groups, and examples include hydrocarbons such as toluene, xylene, benzene, heptane, and cyclohexane, ethyl acetate,
Examples include esters such as butyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether. Since the block copolymer of the present invention obtained as described above has at least one hydroxyl group at the end, it can be made into a three-dimensional cured product by reacting with a polyisocyanate, and the cured product is It has excellent physical properties such as tensile strength and elongation. Furthermore, since the block copolymer of the present invention is composed of a hydrocarbon polymer block having a hydroxyl group and a polyester block, it is well compatible with both non-polar polymers and polar polymers, and can be used as a reactive modifier for these polymers. You can also. Furthermore, it is an extremely useful material because it can be used as a variety of modifiers after the terminal hydroxyl group has been modified in advance. Next, the block copolymer of the present invention will be explained with reference to Examples, Application Examples, and Reference Examples.
We are not intended to be bound by these examples unless they go beyond their gist. The mechanical properties of the cured product were measured according to JISK-6301. In addition, the number average molecular weight is VPO manufactured by Hitachi PerkinElmer
(Vapor Pressure Csmometer) using type 115,
Measured in toluene solution at 40°C. Reference Example 1 Production of a hydrocarbon polymer whose main chain is saturated and has a hydroxyl group at the end; Polyhydroxypolybutadiene (R-45HT manufactured by Arco Chem., [-
OH] = 0.82 meq/g, cis-1,4: 15%, trans-1,4: 58%, vinyl: 27%) 3 kg, cyclohexane 3 kg and carbon-supported ruthenium (5
After charging 300 g of catalyst (manufactured by Nippon Engelhard Co., Ltd.) and replacing the inside of the system with purified argon gas, high-purity hydrogen gas was started to be supplied into the autoclave.
Start heating at the same time. It takes about 30 minutes to reach steady conditions inside the autoclave (internal temperature 100℃, internal pressure 50Kg/cm 2 ).
reached. After 15 hours under these conditions, the hydrogenation reaction was stopped, and the polymer was purified and dried according to a conventional method. As a result of analysis by infrared absorption spectrum, the obtained polymer was found to be a hydrocarbon polymer containing almost no double bonds. -OH group of hydrogenated
It was 0.81meq/g, and the number average molecular weight measured by vapor pressure method was 3000. Example 1 494 g of a hydrocarbon polymer with a saturated main chain having at least one hydroxyl group at the end obtained by the method of Reference Example 1 and 456 g of ε-caprolactone were placed in a three-necked flask (No. 2) at 180°C. The temperature rose to .
After raising the temperature, 0.35 g of tin octylate was added as a catalyst, and the mixture was reacted at 180 to 190°C for 6 hours. After the reaction, unreacted ε-caprolactone was distilled off under reduced pressure.
Only a small amount of ε-caprolactone was distilled off (approximately 5
g), and the reaction was almost 100%. The infrared absorption spectrum of the obtained polymer showed an absorption of the terminal OH group at 3500 cm -1 and a large absorption of the ester group at 1730 cm -1 . This absorption intensity did not change even after washing with acetone many times. In addition, gel permeation chromatography (GPC) of this polymer
In the analysis, the peak shifted to the higher molecular weight side than the peak of the raw material hydrocarbon polymer. The number average molecular weight measured by vapor pressure method was 4800. From the above, the reaction product is a block polymer produced by ring-opening polymerization of ε-caprolactone using the terminal OH group of a main chain saturated hydrocarbon polymer having at least one hydroxyl group at the terminal. So, the number average molecular weight of the hydrocarbon polymer block is about 3000, and the formula
【式】で
表わされるポリエステルブロツクの数平均分子量
が全体で約1800のブロツク共重合体である。
次にこのブロツク共重合体と極性ポリマーとの
相溶性について検討した結果を表1に示す。80℃
で両者を混合し、70℃で一時間放置した後の混合
系の状態で判定した。用いた極性ポリマーは旭電
化(株)のポリプロピレングリコールP―1000(平均
分子量約1000)、チツソ(株)のポリカプロラクトン
PCP―0240(平均分子量約2000)、及びクエーカ
ー・オーツ社のポリテトラメチレンエーテルグリ
コールPOLYEG―2000(平均分子量約
2000POLYMEGは商標)である。なお比較のた
めに、原料として用いた炭化水素系ポリマーにつ
いても同様に相溶性を検討した。It is a block copolymer with a total number average molecular weight of about 1800 for the polyester block represented by the formula. Next, Table 1 shows the results of examining the compatibility of this block copolymer with polar polymers. 80℃
The two were mixed and left at 70°C for one hour, and then the mixed system was evaluated. The polar polymers used were Asahi Denka Co., Ltd.'s polypropylene glycol P-1000 (average molecular weight approximately 1000) and Chitsuso Co., Ltd.'s polycaprolactone.
PCP-0240 (average molecular weight approx. 2000), and Quaker Oats' polytetramethylene ether glycol POLYEG-2000 (average molecular weight approx.
2000POLYMEG is a trademark). For comparison, the compatibility of the hydrocarbon polymer used as a raw material was also examined in the same manner.
【表】
応用例 1
実施例1で得られたブロツク共重合体250gを
500mlフラスコにとり、80℃の熱風乾燥機に入れ
溶解した。これにジフエニルメタンジイソシアネ
ートを16.8g加えヘラですばやく混合した後150
℃、150Kg/cm2で20分硬化し、2mm厚の透明硬化
物シートを得た。
硬化物シートの機械的性質を表2に示す。なお
比較のために原料として用いた末端に少くとも1
個の水酸基を有する主鎖の飽和した炭化水素系ポ
リマーを上記と同様にして硬化させた硬化物シー
トの機械的性質も表2に示す。
ブロツク共重合体にすることにより引張強度及
び伸びが著しく改良されることがわかる。[Table] Application example 1 250g of the block copolymer obtained in Example 1 was
The mixture was placed in a 500 ml flask and placed in a hot air dryer at 80°C to dissolve. Add 16.8g of diphenylmethane diisocyanate to this and mix quickly with a spatula.
C. and 150 kg/cm 2 for 20 minutes to obtain a transparent cured sheet with a thickness of 2 mm. Table 2 shows the mechanical properties of the cured sheet. For comparison, at least 1
Table 2 also shows the mechanical properties of a cured sheet obtained by curing a hydrocarbon polymer with a saturated main chain having 2 hydroxyl groups in the same manner as above. It can be seen that the tensile strength and elongation are significantly improved by using a block copolymer.
【表】
実施例 2
参考例1の方法によつて得られた末端に少くと
も1個の水酸基を有する主鎖が飽和した炭化水素
系ポリマー482g及びε―カプロラクトン228gを
用いた他は実施例1と全く同様にしてワツクス状
のブロツク共重合体を得た。蒸気圧法で測定した
ブロツク共重合体の数平均分子量は3900であつ
た。従つて炭化水素系ポリマーのブロツクの数平
均分子量が約3000、ポリエステルブロツクの数平
均分子量が全体で約900のブロツク共重合体であ
る。
実施例 3
参考例1の方法によつて得られた末端に少くと
も1個の水酸基を有する主鎖の飽和した炭化水素
系ポリマー301g及びε―カプロラクトン1140g
を用いた他は実施例1と全く同様にして白色固状
のブロツク共重合体を得た。蒸気圧法で測定した
ブロツク共重合体の数平均分子量は11000であつ
た。従つて、このブロツク共重合体は数平均分子
量約3000の炭化水素系ポリマーのブロツクと数平
均分子量が約8000のポリエステルブロツクから成
る。
実施例 4
1,3―ブタジエン150g、イソプロピルアル
コール70g、60%過酸化水素水10gを500mlオー
トクレーブにアルゴン雰囲気中で室温で仕込み、
90℃で5時間重合し、冷却後単量体を除去し重合
体を乾燥した。重合体の水酸基価から求めた、
OH基は0.34meq/gであり、蒸気圧法で測定し
た数平均分子量は4700であつた。この重合体を参
考例1と同様な水添を行ない数平均分子量5000、
OH基0.34meq/g、水添率95%以上の粘度の水
添重合体が得られた。
上記水添重合体882g及びε―カプロラクトン
342gを用いた他は実施例1と全く同様にしてワ
ツクス状のブロツク共重合体を得た。蒸気圧法で
測定したブロツク共重合体の数平均分子量は6700
であつた。
実施例 5
ポリヒドロキシポリブタンジエンとして日本曹
達(株)製NISSO―PBG―1000(〔―OH〕=
1.22meq/g、トランス1.4=8.9%、ビニル91.1
%、NISSO―PBは商標)を用いた他は参考例1
と全く同様にして水添を行い―OH基1.21meq/
gであり、蒸気圧法で測定した数平均分子量1400
の水添重合体を得た。この水添重合体は496g及
びε―カプロラクトン684gを2の三つ口フラ
スコに入れ180℃に昇温した。昇温後ジブチルス
ズジラウレート0.3g加え、同温度で7時間反応
させた。得られたブロツク共重合体の数平均分子
量は3500であつた。[Table] Example 2 Example 1 except that 482 g of a hydrocarbon polymer with a saturated main chain having at least one hydroxyl group at the end obtained by the method of Reference Example 1 and 228 g of ε-caprolactone were used. A wax-like block copolymer was obtained in exactly the same manner as above. The number average molecular weight of the block copolymer measured by vapor pressure method was 3900. Therefore, it is a block copolymer in which the hydrocarbon polymer block has a number average molecular weight of about 3,000 and the polyester block has a total number average molecular weight of about 900. Example 3 301 g of a hydrocarbon polymer with a saturated main chain having at least one hydroxyl group at the end obtained by the method of Reference Example 1 and 1140 g of ε-caprolactone
A white solid block copolymer was obtained in exactly the same manner as in Example 1, except that . The number average molecular weight of the block copolymer measured by vapor pressure method was 11,000. Therefore, this block copolymer consists of a hydrocarbon polymer block with a number average molecular weight of about 3,000 and a polyester block with a number average molecular weight of about 8,000. Example 4 150 g of 1,3-butadiene, 70 g of isopropyl alcohol, and 10 g of 60% hydrogen peroxide were placed in a 500 ml autoclave at room temperature in an argon atmosphere.
Polymerization was carried out at 90°C for 5 hours, and after cooling, the monomer was removed and the polymer was dried. Determined from the hydroxyl value of the polymer,
The OH group was 0.34 meq/g, and the number average molecular weight measured by vapor pressure method was 4700. This polymer was hydrogenated in the same manner as in Reference Example 1, and the number average molecular weight was 5000.
A hydrogenated polymer with a viscosity of 0.34 meq/g of OH groups and a hydrogenation rate of 95% or more was obtained. 882g of the above hydrogenated polymer and ε-caprolactone
A wax-like block copolymer was obtained in exactly the same manner as in Example 1, except that 342 g was used. The number average molecular weight of the block copolymer measured by vapor pressure method is 6700.
It was hot. Example 5 NISSO-PBG-1000 manufactured by Nippon Soda Co., Ltd. ([-OH]=
1.22meq/g, trans 1.4=8.9%, vinyl 91.1
%, NISSO-PB is a trademark) is used as reference example 1.
Hydrogenation was carried out in exactly the same manner as -OH group 1.21meq/
g, and the number average molecular weight measured by vapor pressure method is 1400
A hydrogenated polymer was obtained. 496 g of this hydrogenated polymer and 684 g of ε-caprolactone were placed in No. 2 three-necked flask and heated to 180°C. After raising the temperature, 0.3 g of dibutyltin dilaurate was added, and the mixture was reacted at the same temperature for 7 hours. The number average molecular weight of the obtained block copolymer was 3,500.
Claims (1)
とも1個の水酸基を有する主鎖の水添率が80%以
上の共役ジエン系重合体水添物とε―カプロラク
トンとを、該共役ジエン系重合体水添物中の水酸
基1当量に対しε―カプロラクトンが2モル以上
であるような割合で、反応させることを特徴とす
るブロツク共重合体の製法。 2 少くとも1個の水酸基を有する主鎖の水添率
が80%以上の共役ジエン系重合体水添物が、ポリ
ヒドロキシジエン系重合体の水添物である特許請
求の範囲第1項記載のブロツク共重合体の製法。[Claims] 1. A hydrogenated conjugated diene polymer having a number average molecular weight in the range of 400 to 48,000 and having at least one hydroxyl group and a hydrogenation rate of 80% or more in the main chain, and ε-caprolactone. A method for producing a block copolymer, which comprises reacting ε-caprolactone in a proportion of 2 moles or more per 1 equivalent of hydroxyl group in the hydrogenated conjugated diene polymer. 2. Claim 1, wherein the hydrogenated conjugated diene polymer whose main chain has at least one hydroxyl group has a hydrogenation rate of 80% or more is a hydrogenated polyhydroxydiene polymer. A method for producing a block copolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6114879A JPS55152720A (en) | 1979-05-18 | 1979-05-18 | Block copolymer and preparation of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6114879A JPS55152720A (en) | 1979-05-18 | 1979-05-18 | Block copolymer and preparation of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55152720A JPS55152720A (en) | 1980-11-28 |
JPH0141650B2 true JPH0141650B2 (en) | 1989-09-06 |
Family
ID=13162728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6114879A Granted JPS55152720A (en) | 1979-05-18 | 1979-05-18 | Block copolymer and preparation of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55152720A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4810753A (en) * | 1985-10-29 | 1989-03-07 | Mitsubishi Chemical Industries Limited | Process for producing polyamide |
EP0266973A3 (en) * | 1986-11-06 | 1990-01-10 | Thiokol Corporation | Pcp/htpb block copolymer and propellant binder prepared therefrom |
TWI486367B (en) | 2012-05-30 | 2015-06-01 | Nippon Soda Co | Polyurethane |
EP3183282B1 (en) * | 2014-08-18 | 2018-08-15 | Basf Se | Polyester modified polybutadienols for the production of polyurethane elastomers and thermoplastic polyurethanes |
CN110903805B (en) * | 2019-12-23 | 2021-10-29 | 美瑞新材料股份有限公司 | Low-polarity high-resilience polyurethane hot melt adhesive, and preparation method and application thereof |
-
1979
- 1979-05-18 JP JP6114879A patent/JPS55152720A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55152720A (en) | 1980-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3700748A (en) | Selectively hydrogenated block copolymers | |
JP3675834B2 (en) | Use of polydiene diols in thermoplastic polyurethanes | |
CA2661749A1 (en) | Production of telechelic compounds by metathesis depolymerization | |
US3994868A (en) | Hydrogenation of polyhydroxylunsaturated hydrocarbon polymers | |
JPH11506476A (en) | Coupling between anionic polymer and trialkoxysilane having silicon-hydrogen bond | |
JP2725986B2 (en) | A method for hydrogenating the double bond of a conjugated diene polymer in solution. | |
JPH0141650B2 (en) | ||
JPH05286870A (en) | Olefin hydrogenation procedure | |
JPS5815484B2 (en) | Seizouhouhou | |
US5061668A (en) | Hydrogenation catalyst and hydrogenation process wherein said catalyst is used | |
JP3005646B2 (en) | Liquid polymer composition | |
DE1920403A1 (en) | Catalyst for the hydrogenation of polymers and its use for the selective hydrogenation of olefinic double bonds in hydrocarbon polymers | |
JP3163963B2 (en) | Method for hydrogenating polyhydroxy unsaturated hydrocarbon polymer | |
JPS63268703A (en) | Polymer having phenolic hydroxyl group | |
JPS6129978B2 (en) | ||
US5013798A (en) | Hydrogenation catalyst and hydrogenation process wherein said catalyst is used | |
JP3367700B2 (en) | Liquid polymer composition | |
EP0319967B1 (en) | Process for the hydrogenation of conjugated diene polymers | |
JP3446227B2 (en) | Polymerizable composition and method for producing the same | |
JP3776589B2 (en) | Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same | |
JP3448782B2 (en) | Rubber composition and rubber | |
JP3391052B2 (en) | Oil resistant rubber and rubber composition thereof | |
JPS6317848B2 (en) | ||
JPH07247302A (en) | Method for hydrogenating unsaturated polyhydroxyhydrocarbon polymer | |
JPH09176233A (en) | Method for hydrogenating hydroxy conjugated diene polymer |