JPH0140308Y2 - - Google Patents

Info

Publication number
JPH0140308Y2
JPH0140308Y2 JP17077584U JP17077584U JPH0140308Y2 JP H0140308 Y2 JPH0140308 Y2 JP H0140308Y2 JP 17077584 U JP17077584 U JP 17077584U JP 17077584 U JP17077584 U JP 17077584U JP H0140308 Y2 JPH0140308 Y2 JP H0140308Y2
Authority
JP
Japan
Prior art keywords
field
permanent magnet
magnet
coercive force
strontium ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17077584U
Other languages
Japanese (ja)
Other versions
JPS6188475U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17077584U priority Critical patent/JPH0140308Y2/ja
Publication of JPS6188475U publication Critical patent/JPS6188475U/ja
Application granted granted Critical
Publication of JPH0140308Y2 publication Critical patent/JPH0140308Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【考案の詳細な説明】 利用産業分野 この考案は、自動車のスターターモーター等の
直流機の界磁用永久磁石に係り、出力特性の向上
を計つた高出力用モーターの界磁用永久磁石の改
良に関する。
[Detailed description of the invention] Field of application This invention relates to permanent magnets for the field of DC machines such as automobile starter motors, and is an improvement of the permanent magnet for the field of high-output motors with the aim of improving output characteristics. Regarding.

背景技術 近年、直流機は小形化及び高出力化が進み、
益々高性能化が計られている。この出力向上を計
るには、残留磁速密度の高い磁石が必要となる
が、逆に、出力向上を計ると、電機子反作用によ
る減磁界が増加し、保磁力の高い磁石を界磁用永
久磁石に使用する必要が生じる。
Background technology In recent years, DC machines have become smaller and have higher output.
Efforts are being made to improve performance. In order to improve this output, a magnet with a high residual magnetic velocity density is required, but conversely, when aiming to improve the output, the demagnetizing field due to armature reaction increases, and a magnet with high coercive force is used as a permanent magnetic field. It becomes necessary to use it for magnets.

このため、従来は、直流機を構成する円筒状ヨ
ーク内周面に配置される複数の断面円弧状の界磁
用永久磁石として、電機子反作用による減磁界側
領域(電機子の脱出側)に保磁力が高く磁束密度
の低い永久磁石を用い、増磁界側領域(電機子の
突入側)には残留磁束密度が高く保磁力の低い永
久磁石を用いて、全体の数分の一の部分を保磁力
の高い永久磁石で構成した複合型界磁用永久磁石
が提案(特開昭52−61712号、特開昭57−148566
号公報)されていた。
For this reason, in the past, field permanent magnets with a plurality of arc-shaped cross sections were placed on the inner circumferential surface of the cylindrical yoke constituting the DC machine, and were used in the demagnetizing field side region (the escape side of the armature) due to the armature reaction. A permanent magnet with high coercive force and low magnetic flux density is used, and a permanent magnet with high residual magnetic flux density and low coercive force is used in the increasing field side region (armature plunge side), and a fraction of the total magnetic flux is Composite field permanent magnets composed of permanent magnets with high coercive force were proposed (JP-A-52-61712, JP-A-57-148566).
(No. Publication).

しかし、上記提案の磁石はフエライト磁石を主
としており、高出力モーター用としては、十分で
はなかつた。
However, the magnets proposed above are mainly ferrite magnets, and are not sufficient for use in high-output motors.

一方、出願人は、先に、R(RはYを含む希土
類元素のうち少なくとも1種)8原子%〜30原子
%、B2原子%〜28原子%、Fe42原子%〜90原子
%を主成分とし、主相が正方晶からなるFe−B
−R系永久磁石を提案(特開昭59−46008号)し
た。
On the other hand, the applicant previously disclosed that the main components are R (R is at least one rare earth element including Y) 8 to 30 atom%, B2 to 28 atom%, and Fe42 to 90 atom%. Fe-B whose main phase is tetragonal
-Proposed an R-based permanent magnet (Japanese Patent Application Laid-open No. 46008/1983).

Fe−B−R系永久磁石は、磁石特性が極めて
高く、高出力モーター用の界磁用永久磁石には最
適であるが、従来の界磁用永久磁石であるフエラ
イト磁石と比較して、価格が高く、また、保磁力
(iHc)の温度変化が大きく、直流モーターの使
用時の温度上昇とともに、保磁力が低下する問題
があつた。
Fe-BR-based permanent magnets have extremely high magnetic properties and are ideal for field permanent magnets for high-output motors, but they are expensive compared to ferrite magnets, which are conventional field permanent magnets. In addition, there was a problem that the coercive force (iHc) varied greatly with temperature, and the coercive force decreased as the temperature rose when the DC motor was used.

考案の目的 この考案は、かかる現状に鑑み、直流機の高出
力化を可能にした界磁用永久磁石を提案するもの
であり、特に、Fe−B−R系永久磁石の有する
すぐれた磁石特性を有効に活用し、高出力モータ
ーに適した界磁用永久磁石の提供を目的としてい
る。
Purpose of the invention In view of the current situation, this invention proposes a field permanent magnet that makes it possible to increase the output of DC machines.In particular, the purpose of this invention is to utilize the excellent magnetic properties of Fe-BR-based permanent magnets. The aim is to effectively utilize this field to provide permanent magnets suitable for high-output motors.

考案の構成と効果 この考案は、直流機を構成する円筒状ヨーク内
周面に配置される複数個の断面円弧状の界磁用永
久磁石において、 各界磁用永久磁石の減磁界側領域を保磁力の温
度係数が正の特性を有するストロンチウムフエラ
イト磁石で構成し、 かつストロンチウムフエライト磁石に隣接する
増磁界側領域を保磁力の温度係数が負の特性を有
するFe−B−R系永久磁石で構成するとともに、 該Fe−B−R系永久磁石の厚さをストロンチ
ウムフエライト磁石の厚さより小とし、 断面弓形ヨークを介して前記円筒状ヨーク内周
面に配置したことを特徴とする界磁用永久磁石で
ある。
Structure and effect of the invention This invention maintains the demagnetized field side region of each field permanent magnet in a plurality of field permanent magnets each having an arcuate cross section and arranged on the inner peripheral surface of a cylindrical yoke constituting a DC machine. Consisting of a strontium ferrite magnet that has a positive temperature coefficient of magnetic force, and an Fe-B-R permanent magnet that has a negative temperature coefficient of coercive force in the magnetic field side region adjacent to the strontium ferrite magnet. In addition, the Fe-B-R permanent magnet has a thickness smaller than that of the strontium ferrite magnet, and is arranged on the inner peripheral surface of the cylindrical yoke via a yoke having an arcuate cross section. It's a magnet.

この考案において、各界磁用永久磁石の減磁界
側領域に用いる保磁力の温度係数が正の特性を有
する永久磁石には、基本組成が、SrO・6Fe2O3
であり、保磁力(iHc)の温度係数が約0.3%/
deg程度のいわゆるストロンチウムフエライト磁
石が適している。
In this invention, the permanent magnet used in the demagnetizing field side region of each field permanent magnet, which has a positive temperature coefficient of coercive force, has a basic composition of SrO 6Fe 2 O 3
The temperature coefficient of coercive force (iHc) is approximately 0.3%/
A so-called strontium ferrite magnet with a magnet size of about 100°C is suitable.

また、増磁界側領域に用いる保磁力の温度係数
が負の特性を有する永久磁石には、保磁力
(iHc)の温度係数が約−0.6%/deg程度である
R(RはYを含む希土類元素のうち少なくとも1
種)8原子%〜30原子%、B2原子%〜28原子%、
Fe42原子%〜90原子%を主成分とし、主相が正
方晶からなるFe−B−R系永久磁石が適してい
る。
In addition, permanent magnets with a negative temperature coefficient of coercive force used in the magnetic field side region have a temperature coefficient of coercive force (iHc) of about -0.6%/deg (R is a rare earth magnet containing Y). at least one of the elements
Species) 8 atomic% to 30 atomic%, B2 atomic% to 28 atomic%,
Fe-BR permanent magnets whose main component is Fe42 to 90 atom % and whose main phase is tetragonal are suitable.

この考案の構成からなる界磁用永久磁石によ
り、価格は高いが磁石特性のすぐれたFe−B−
R系永久磁石を、比較的高温となるモーター内で
あつても最も効率よくその高性能を発揮させ得る
ため、価格を上昇させることなく、小型でかつ高
出力の直流機を作製できる。
The field permanent magnet with the configuration of this invention is expensive but has excellent magnetic properties.
Since the R-based permanent magnet can exhibit its high performance most efficiently even in a motor that is relatively hot, a small and high-output DC machine can be manufactured without increasing the price.

図面に基づく考案の開示 第1図は、この考案による界磁用永久磁石を有
する直流モーターの縦断説明図である。
Disclosure of the invention based on drawings FIG. 1 is a longitudinal sectional view of a DC motor having a field permanent magnet according to the invention.

直流モーターは、一般に、ハウジングとなる円
筒状ヨークの内周面に、例えば4〜6個の断面円
弧状の界磁用永久磁石を配列固着し、中心部には
電機子巻線を巻装する電機子鉄心と整流子とから
なる電機子が軸支される構成である。
A DC motor generally has, for example, four to six field permanent magnets with an arcuate cross section arranged and fixed on the inner peripheral surface of a cylindrical yoke that serves as a housing, and an armature winding is wound around the center. This is a configuration in which an armature consisting of an armature core and a commutator is pivotally supported.

ここでは、2個の界磁用永久磁石2を円筒状ヨ
ーク1の内周面に配置し、中心部の電機子6に対
向配置させている。
Here, two field permanent magnets 2 are arranged on the inner peripheral surface of the cylindrical yoke 1 and are arranged opposite to the armature 6 in the center.

断面円弧状の界磁用永久磁石2は、約2/3部分
の負の保磁力温度係数を有するFe−B−R系永
久磁石3で構成するが、電機子6と対向面側に後
述するストロンチウムフエライト磁石の磁極面と
Fe−B−R系永久磁石3の磁極面とがほぼ同一
高さになるよう、断面弓形のヨーク5を円筒状ヨ
ーク1との間に介在させている。
The field permanent magnet 2 having an arcuate cross section is composed of an Fe-B-R permanent magnet 3 having a negative coercive force temperature coefficient of approximately 2/3 portion, and a magnetic field permanent magnet 3 having an arcuate cross section is formed of a Fe-B-R permanent magnet 3 having a negative coercive force temperature coefficient. The magnetic pole face of a strontium ferrite magnet
A yoke 5 having an arcuate cross section is interposed between the yoke 5 and the cylindrical yoke 1 so that the magnetic pole face of the Fe-B-R permanent magnet 3 is approximately at the same height.

また、界磁用永久磁石2の残り約1/3部分を高
保磁力で保磁力温度係数が正のストロンチウムフ
エライト磁石4で構成している。
The remaining approximately one-third of the field permanent magnet 2 is made up of a strontium ferrite magnet 4 having a high coercive force and a positive temperature coefficient of coercive force.

これらの互いに隣接する一対の永久磁石は、
Fe−B−R系永久磁石3側が増磁界側領域であ
り、ストロンチウムフエライト磁石4側が減磁界
側領域となる。
A pair of permanent magnets adjacent to each other are
The Fe-BR permanent magnet 3 side is the increasing field side region, and the strontium ferrite magnet 4 side is the demagnetizing field side region.

以上の構成において、電機子6が第1図の矢印
の右回りに回転すると、電機子反作用によつて、
ストロンチウムフエライト磁石4に減磁界が作用
し、また、Fe−B−R系永久磁石3に増磁界が
作用する。
In the above configuration, when the armature 6 rotates clockwise as indicated by the arrow in FIG. 1, due to armature reaction,
A demagnetizing field acts on the strontium ferrite magnet 4, and an increasing field acts on the Fe-BR permanent magnet 3.

さらに、これらの永久磁石3,4は電機子6の
温度上昇の影響を受けともに温度が上昇する。特
に、高出力を考慮した場合には、さらに永久磁石
の温度上昇が著しくなる。
Further, the temperature of both the permanent magnets 3 and 4 increases due to the influence of the temperature increase of the armature 6. In particular, when high output is taken into account, the temperature of the permanent magnet increases significantly.

例えば、界磁用永久磁石全体を、Fe−B−R
系永久磁石のみで構成したとすると、その残留磁
束密度Brの温度係数はストロンチウムフエライ
ト磁石より小さく、温度上昇に伴なう残留磁束密
度の低下を考慮しても、ストロンチウムフエライ
ト磁石等を他磁石よりも十分に特性が高い。
For example, if the entire field permanent magnet is Fe-B-R
If the system is composed only of permanent magnets, the temperature coefficient of its residual magnetic flux density Br is smaller than that of strontium ferrite magnets, and even considering the decrease in residual magnetic flux density due to temperature rise, strontium ferrite magnets etc. It also has sufficiently high characteristics.

また、中温時では保磁力もストロンチウムフエ
ライト磁石より大きく前記電機子反作用による減
磁界が作用しても十分に耐え得る磁気特性を有し
ている。
Furthermore, at medium temperatures, the coercive force is larger than that of strontium ferrite magnets, and the magnet has magnetic properties that can sufficiently withstand the demagnetizing field caused by the armature reaction.

しかし、温度が上昇し、例えば140゜C程度にな
ると、保磁力は5000Oe程度の高保磁力ストロン
チウムフエライト磁石の常温時と同程度となつて
しまう。
However, when the temperature rises to about 140° C., for example, the coercive force becomes about the same as that of a high coercive force strontium ferrite magnet of about 5000 Oe at room temperature.

従つて、Fe−B−R系永久磁石3の厚みを大
きくする必要が生じるが、コスト面では望ましく
ない。
Therefore, it is necessary to increase the thickness of the Fe-BR permanent magnet 3, but this is not desirable from a cost standpoint.

そこで、上記したように、減磁界の作用と温度
上昇の影響を受ける界磁用永久磁石2の電機子脱
出側に、温度上昇と共に保磁力の上昇するストロ
ンチウムフエライト磁石4を配置することによ
り、高温時における減磁防止が可能となる。
Therefore, as mentioned above, by arranging the strontium ferrite magnet 4 whose coercive force increases as the temperature rises on the armature escape side of the field permanent magnet 2 which is affected by the action of the demagnetizing field and the temperature rise, high temperature This makes it possible to prevent demagnetization at times.

一方、Fe−B−R系永久磁石3は界磁用永久
磁石2の電機子突入側に配置されるため、電機子
反作用による減磁界が作用せず、増磁界側領域に
位置することとなり、たとえ温度上昇の影響を受
けても要求される磁気特性の維持が可能となり、
必要以上にその厚みを厚くする必要はない。
On the other hand, since the Fe-B-R permanent magnet 3 is placed on the armature entry side of the field permanent magnet 2, the demagnetizing field due to armature reaction does not act on it, and it is located in the area on the increasing field side. It is possible to maintain the required magnetic properties even if affected by temperature rise,
There is no need to make it thicker than necessary.

設置に際しては、断面弓形ヨーク5を円筒状ヨ
ークとの間に介在させることによつて、隣接する
ストロンチウムフエライト磁石の磁極面とその磁
極面を同一高さとする。
During installation, the yoke 5 having an arcuate cross section is interposed between the yoke 5 and the cylindrical yoke, so that the magnetic pole faces of adjacent strontium ferrite magnets are at the same height.

このように、Fe−B−R系永久磁石の厚みを
効率良く減少させ得るため、コスト面で有利とな
るとともに界磁用永久磁石2全体での磁石特性の
低下が緩和される。
In this way, the thickness of the Fe-BR-based permanent magnet can be efficiently reduced, which is advantageous in terms of cost and reduces the deterioration of the magnetic properties of the field permanent magnet 2 as a whole.

また、低温環境で使用される場合には、フエラ
イト磁石4の低温減磁による不可逆減磁の危険を
有するが、磁石自体の厚みを大きくすることによ
り対処でき、上述のFe−B−R系永久磁石3の
効果との相乗効果により、小形化、高出力化及び
低価格化を計つた直流モーターを得ることができ
る。
In addition, when used in a low-temperature environment, there is a risk of irreversible demagnetization due to low-temperature demagnetization of the ferrite magnet 4, but this can be countered by increasing the thickness of the magnet itself. Due to the synergistic effect with the effect of the magnet 3, it is possible to obtain a DC motor that is smaller in size, has higher output, and is lower in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案による界磁用永久磁石を有す
る直流モーターの縦断説明図である。 1……円筒状ヨーク、2……界磁用永久磁石、
3……Fe−B−R系永久磁石、4……ストロン
チウムフエライト磁石、5……断面弓形ヨーク、
6……電機子。
FIG. 1 is a longitudinal cross-sectional view of a DC motor having a field permanent magnet according to this invention. 1... Cylindrical yoke, 2... Permanent magnet for field,
3... Fe-B-R permanent magnet, 4... Strontium ferrite magnet, 5... Arcuate cross-section yoke,
6... Armature.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 直流機を構成する円筒状ヨーク内周面に配置さ
れる複数個の断面円弧状の界磁用永久磁石におい
て、各界磁用永久磁石の減磁界側領域を保磁力の
温度係数が正の特性を有するストロンチウムフエ
ライト磁石で構成し、かつストロンチウムフエラ
イト磁石に隣接する増磁界側領域を保磁力の温度
係数が負の特性を有するFe−B−R(RはYを含
む希土類元素のうち少なくとも1種)系永久磁石
で構成するとともに、該Fe−B−R系永久磁石
の厚さをストロンチウムフエライト磁石の厚さよ
り小とし、断面弓形ヨークを介して前記円筒状ヨ
ーク内周面に配置したことを特徴とする界磁用永
久磁石。
In a plurality of field permanent magnets each having an arc-shaped cross section and arranged on the inner peripheral surface of a cylindrical yoke constituting a DC machine, the temperature coefficient of coercive force has a positive characteristic in the demagnetizing field side region of each field permanent magnet. Fe-B-R (R is at least one rare earth element including Y) which is composed of a strontium ferrite magnet and has a magnetic field side region adjacent to the strontium ferrite magnet that has a negative temperature coefficient of coercive force. The Fe-B-R permanent magnet has a thickness smaller than that of the strontium ferrite magnet, and is arranged on the inner circumferential surface of the cylindrical yoke via a yoke having an arcuate cross section. Permanent magnet for field.
JP17077584U 1984-11-09 1984-11-09 Expired JPH0140308Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17077584U JPH0140308Y2 (en) 1984-11-09 1984-11-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17077584U JPH0140308Y2 (en) 1984-11-09 1984-11-09

Publications (2)

Publication Number Publication Date
JPS6188475U JPS6188475U (en) 1986-06-09
JPH0140308Y2 true JPH0140308Y2 (en) 1989-12-01

Family

ID=30728486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17077584U Expired JPH0140308Y2 (en) 1984-11-09 1984-11-09

Country Status (1)

Country Link
JP (1) JPH0140308Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209557B2 (en) * 2009-03-27 2013-06-12 株式会社東芝 Permanent magnet motor and washing machine

Also Published As

Publication number Publication date
JPS6188475U (en) 1986-06-09

Similar Documents

Publication Publication Date Title
JP3152405B2 (en) Electric motor
US6029336A (en) Method of fabricating a permanent magnet line start motor having magnets outside the starting cage
US4383193A (en) Field pole structure of DC motor
US4794291A (en) Permanent magnet field DC machine
JPH0116102B2 (en)
US4703210A (en) Miniature electric non-uniform magnetization rotating machine
US4639625A (en) Direct-current machine having permanent magnet field system
US4727273A (en) Permanent magnet type electric motor
JPH0140308Y2 (en)
JPS6281958A (en) Permanent magnet type dc rotary electric machine
JPH0767274A (en) Permanent magnet rotor
JPS5829358A (en) Composite permanent magnet for field system
JPS60219951A (en) Magnet type motor
JPS6162349A (en) Field structure of permanent magnet dc machine
JPS5858858A (en) Permanent magnet field type starting motor
JPS6252547B2 (en)
JPH0721100Y2 (en) Magnet type motor
JPH02266859A (en) Stator for dc machine
JPS592555A (en) Permanent magnet field dc machine
JPS6038068U (en) self-excited generator
JPS6341824Y2 (en)
JPS583775U (en) Permanent magnet field type starter motor
JPH0744809B2 (en) Field device for small electric motors
JPH0734636B2 (en) Motor
JPS60174476U (en) Axial gap type electric motor