JPH0140119B2 - - Google Patents

Info

Publication number
JPH0140119B2
JPH0140119B2 JP59232054A JP23205484A JPH0140119B2 JP H0140119 B2 JPH0140119 B2 JP H0140119B2 JP 59232054 A JP59232054 A JP 59232054A JP 23205484 A JP23205484 A JP 23205484A JP H0140119 B2 JPH0140119 B2 JP H0140119B2
Authority
JP
Japan
Prior art keywords
volume
stainless steel
solution
weight
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59232054A
Other languages
Japanese (ja)
Other versions
JPS61110792A (en
Inventor
Masami Kobayashi
Hiroshi Oda
Hiromi Masuhara
Yoshio Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Nisshin Steel Co Ltd filed Critical Mitsubishi Corp
Priority to JP23205484A priority Critical patent/JPS61110792A/en
Publication of JPS61110792A publication Critical patent/JPS61110792A/en
Publication of JPH0140119B2 publication Critical patent/JPH0140119B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はステンレス鋼に直接純金の極薄めつき
を施して、ステンレス鋼に半田性とワイヤーボン
デイング性を付与する際のめつき方法に関する。 (従来技術) ステンレス鋼は剛性、ばね性、耐熱性などに優
れ、銅合金やニツケル合金より安価なため、近年
ICリードフレームなどの電子部品素材として注
目されている。しかしステンレス鋼を電子部品に
使用するにあたつては半田性やワイヤーボンデイ
ング性に優れていることが必須の条件であるが、
ステンレス鋼は表面が強固な不動態化皮膜に覆わ
れているので、直接半田づけやワイヤーボンデイ
ングを行うことができない。このため従来よりス
テンレス鋼に半田性やワイヤーボンデイング性を
付与する方法が種々試みられている。例えば半田
性を付与する方法としては(a)ステンレス鋼を弗酸
単味または弗酸と塩酸もしくは硝酸との混酸で処
理して、表面の不動態化皮膜を除去した後直ちに
半田づけを行う方法、(b)弗酸、塩酸、硫酸などの
混酸でステンレス鋼に前処理を施した後ニツケル
または銅めつきを施し、その上に半田の浸漬めつ
きを施す方法、(c)酸による前処理後ニツケルの厚
づけめつきを施す方法などが開発されている。 (発明が解決しようとする問題点) しかしながら(a)の方法は半田づけが辛うじてで
きる程度であるうえ、酸が残留して、半田づけ箇
所やその周辺を腐食させるので、現在までのとこ
ろ実用化されていない。また(b)の方法は半田を浸
漬めつきによりめつきする際230〜250℃程度の溶
融半田中を通過させなければならないため、ステ
ンレス鋼に熱歪みが生じ、精密性を必要とする電
子部品用ステンレス鋼のめつきに応用するには好
ましい方法ではなかつた。さらに(c)の方法は経時
変化によりニツケルの表面が酸化ニツケルになつ
て、半田性が極端に低下してしまうため、半田づ
け前に酸洗しなければならないので、実用上採用
しがたい方法であつた。 一方ワイヤーボンデイング性を付与する方法と
してはこれら(a)〜(c)の方法では不可能で、従来ス
テンレス鋼の表面にNiの下地めつきを施し、そ
の上にAuやAgの厚づけめつき(1μm以上)を行
う方法が開発されている。この方法によれば半田
性も付与されるのであるが、2段めつきになり、
かつ貴金属を多量に使用するため、コストが高
く、コスト低減の厳しい電子部品のめつきに応用
するには問題があつた。 (問題点を解決するための手段) そこで本発明者らはステンレス鋼に半田性とワ
イヤーボンデイング性とを安価に付与する方法に
ついて研究を重ねた結果ステンレス鋼に純金の極
薄めつきを直接施せばよいことを見出だした。す
なわちこの方法によればめつきは1段めつきであ
り、かつめつきする純金の付着量も極微量で、高
速めつきが可能であるので、コストが安価にな
る。まためつき金属も純金であるので、耐食性、
耐熱性、耐薬品性、耐経時変化性などに優れ、安
定した半田性、ボンデイング性を付与することが
できる。。 第1表はステンレス鋼に種々の金属をめつきし
た場合の耐経時変化性と耐熱性とを示したもので
あるが、金のニツケルやコバルトの合金をめつき
したものはニツケルやコバルトが酸化されて、表
面が酸化物に覆われてしまうので、半田性は常温
下でも急速に低下してしまい、耐熱性も劣る。
(Field of Industrial Application) The present invention relates to a plating method for imparting solderability and wire bonding properties to stainless steel by directly applying extremely thin plating of pure gold to stainless steel. (Conventional technology) Stainless steel has been gaining popularity in recent years because it has excellent rigidity, springiness, and heat resistance, and is cheaper than copper alloys and nickel alloys.
It is attracting attention as a material for electronic components such as IC lead frames. However, when using stainless steel for electronic components, it is essential that it has excellent solderability and wire bonding properties.
Since the surface of stainless steel is covered with a strong passivation film, direct soldering or wire bonding cannot be performed on it. For this reason, various methods have been attempted to impart solderability and wire bondability to stainless steel. For example, methods for imparting solderability include (a) a method in which stainless steel is treated with hydrofluoric acid alone or with a mixed acid of hydrofluoric acid and hydrochloric acid or nitric acid, and the passivation film on the surface is removed, followed by soldering immediately; (b) A method in which stainless steel is pretreated with a mixed acid such as hydrofluoric acid, hydrochloric acid, or sulfuric acid, then nickel or copper plating is applied, and solder is immersed on top of that, (c) Pretreatment with acid. A method for applying thick nickel plating has been developed. (Problem to be solved by the invention) However, method (a) can only barely perform soldering, and the acid remains and corrodes the soldered area and its surroundings, so it has not been put to practical use to date. It has not been. In addition, in method (b), when solder is plated by immersion plating, it must pass through molten solder at a temperature of about 230 to 250 degrees Celsius, which causes thermal distortion in stainless steel and prevents the use of electronic components that require precision. This method was not suitable for application to stainless steel plating. Furthermore, in method (c), the surface of the nickel turns into nickel oxide due to changes over time, resulting in extremely poor solderability, and the method requires pickling before soldering, making it difficult to adopt in practice. It was hot. On the other hand, as a method for imparting wire bonding properties, these methods (a) to (c) are not possible. Conventionally, the surface of stainless steel is plated with Ni undercoat, and then a thick layer of Au or Ag is plated on top of that. (1 μm or more) has been developed. This method also imparts solderability, but it results in two-step soldering.
In addition, since a large amount of precious metal is used, the cost is high, and there are problems in applying it to plating electronic parts, where cost reduction is difficult. (Means for Solving the Problems) Therefore, the inventors of the present invention have conducted repeated research on a method of imparting solderability and wire bondability to stainless steel at low cost. I found something good. That is, according to this method, plating is performed in one stage, and the amount of pure gold deposited is extremely small, and high-speed plating is possible, resulting in low costs. In addition, since the plating metal is pure gold, it has excellent corrosion resistance and
It has excellent heat resistance, chemical resistance, and resistance to changes over time, and can provide stable solderability and bonding properties. . Table 1 shows the aging resistance and heat resistance of stainless steel plated with various metals. Since the surface is covered with oxides, the solderability rapidly decreases even at room temperature, and the heat resistance is also poor.

【表】 る、
しかし本発明の目的とするめつき厚0.01〜0.1μ
mの極薄純金めつきを施すにあたつては前処理と
して従来の方法を適用したのでは半田やボンデイ
ングの接合強度が弱く、実用上問題があることが
判明した。例えば、特公昭58−57520号公報には、
ステンレス鋼に無機酸と有機酸とを主成分とする
浴で浸漬処理と陰極電解処理で前処理を施した
後、金めつきを施すことによりステンレス鋼に直
接金めつきを施す方法が示されているが、この方
法で上記のようなめつき厚の極薄めつきを施す
と、前処理後微細な不動態化皮膜が残存し、ま
た、前処理よりめつき浴に至る間に水切れなどが
生じて不動態化皮膜を再形成し、それらの部分に
金めつきが施されないため、接合強度が弱い。 そこで、接合強度を向上させる前処理法につい
て研究した結果、この特開昭58−61293号公報で
の前処理第2工程の処理液にピロリドン誘導体と
アセチレングリコールを添加すれば、前記のよう
な問題点を解決できることを見出だしたのであ
る。 この方法は(イ)無機酸として塩酸(35%溶液)15
〜30容量%、硫酸(85%溶液)5〜15容量%、硝
酸(68%溶液)4〜6容量%を、また有機酸とし
てクエン酸粉末5〜15重量%、酢酸(90%溶液)
0.5〜1.5容量%を含み、これらに非イオンまたは
両性界面活性剤0.1〜0.3重量%、腐食抑制剤0.05
〜0.15重量%を配合した酸性活性化浴ににステン
レス鋼を浸漬して化学研摩を行う化学研摩工程
と、(ロ)無機酸として燐酸(85%溶液)5〜15容量
%、硫酸(85%溶液)5〜15容量%を、また有機
酸としてクエン酸粉末5〜15重量%、酢酸(90%
溶液)0.5〜1.5容量%を含み、これらに非イオン
または両性界面活性剤0.1〜0.3重量%、ピロリド
ン誘導体2〜20容量%、アセチレングリコール
0.5〜7重量%、腐食抑制剤0.05〜0.15重量%を配
合した電解浴に化学研摩後のステンレス鋼を浸漬
して陰極電解し、表面活性化を行う電解活性化工
程とからなる方法であつて、本方法によればステ
ンレス鋼の不動態化皮膜は完全に除去されて、ク
ロム原子の露出した活性化表面となり、純金めつ
きに適した素地となるのである。このためこの前
処理後に純金めつきを施した場合露出したクロム
原子に金が選択的にめつきされて、クロム原子を
包み、クロムと鉄との反応による不動態化皮膜の
再形成が防止されるのである。 上記前処理法において各浴に非イオンまたは両
性界面活性剤を配合するのは、各工程後に水洗を
施した場合に水はね現象が生じて、次工程まで表
面活性化状態が維持されなくなるのを防止するた
めであり、その好ましいものとしてはポリエチレ
ングリコールアルキルエーテル、ポリエチレング
リコール脂肪酸エステルなどがある。また腐食抑
制剤を配合するのは無機酸による酸洗過多を防止
し、不動態化皮膜のみを除去するためで、腐食抑
制剤としては吸着型(NH2基、SH基、OH基な
どを有するもの)、皮膜型(重炭酸系、燐酸系な
ど)または不動態型のいずれでもよい。さらに電
解浴にピロリドン誘導体とアセチレングリコール
を配合したのはピロリドン誘導体の場合無機酸と
有機酸とにより溶解された不動態化皮膜を確実に
取り除くためであり、アセチレングリコールの場
合は肌荒れと水切れ防止のためである。すなわ
ち、ピロリドン誘導体を添加すると、全体がクロ
ム原子の露出した状態になり、そこに金が選択的
にめつきされて、めつき後鉄−クロム反応による
不動態化皮膜の再形成を防止できるのである。ま
た、アセチレングリコールを添加すると、腐食抑
制剤添加にも拘わらず強力な電解活性化処理によ
り生じる肌荒れを防止できる結果、極薄めつきの
場合にめつきされにくい凹部がなくなり、その凹
部での不動態化皮膜再形成を防止でき、しかも、
ステンレス鋼が前処理よりめつき浴に移動する間
に水が常にステンレス鋼に付着して表面を保護す
るため、水切れにより生じる不動態化皮膜再形成
をも防止できるのである。 前記各浴においては無機酸の濃度が上限より高
くなると腐食抑制剤の配合にもかかわらずステン
レス鋼の表面は酸洗過多になり、下限より低いと
活性化が不十分となり、好ましくない。また有機
酸の濃度は上限より高くしても高くした割にはス
テンレス鋼の表面を活性化できないが、下限より
低くすると活性化が不十分となる。さらに界面活
性剤、腐食抑制剤、ピロリドン誘導体およびアセ
チレングリコールはいずれも上限より高くしても
それほど効果が得られないため、高くすることは
不経済であり、下限より低くすると効果が不十分
となる。 本発明は以上のような前処理の後に純金めつき
を施すのであるが、この純金めつきの際にはめつ
き層の金純度がJISに規定されている純金の純度
である99.70%以上、好ましくは99.90〜99.99%に
なるようにめつきする。まためつき厚みとして
は、めつき厚みを単位面積当たりの付着量をめつ
きした純金の比重で除して算出する方法で0.01〜
0.1μmの極薄になるようにする。めつきは電気め
つき法によるが、浴組成、めつき条件などは公知
のものでよい。 本発明によればステンレス鋼はオーステナイト
系、フエライト系、マルテンサイト系など鋼種に
関係なくめつきでき、めつきしたものには半田
性、ワイヤーボンデイング性が付与される。 (実施例) 種々のステンレス鋼を次の(a)〜(c)の工程で前処
理した後(d)のような工程で純金めつきを施した。 (a) アルカリ脱脂工程 市販されているステンレス製槽中で70〜80℃
に加温して、その槽中をステンレス鋼を逐次通
過させることにより一次脱脂を行つた後40〜60
℃に加温したアルカリ浴中でステンレス鋼板を
陽極、一次脱脂後のステンレス鋼を陰極として
6ボルトの電圧を印加して直流電解脱脂を行つ
た。 (b) 化学研摩工程 続いて脱脂したステンレス鋼を塩酸(35%溶
液)20重量%、硫酸(85%溶液)10重量%、ク
エン酸粉末10重量%、酢酸(90%溶液)1容量
%および硝酸(68%溶液)5容量%よりなる混
酸にポリエチレングリコールアルキルエーテ
ル、ポリエチレングリコール脂肪酸エステルな
どの非イオンまたはアミノ酸類の両性界面活性
剤0.2重量%およびアミン系腐食抑制剤(例え
ばライオンアーマ社製アーモビブー28)0.1
重量%を加えた浴中を20秒通過させて、表面の
酸化物および不純物を除去した。 (c) 電解活性化工程 燐酸(85%溶液)10容量%、硫酸(85%溶
液)10容量%、クエン酸粉末5重量%、酢酸
(90%溶液)1容量%、N−メチル−2ピロリ
ドン5容量%、2−ブチン−1,4−ジオール
2重量%に上記と同様の非イオンまたは両性界
面活性剤0.2重量%および腐食抑制剤0.1重量%
を加えた浴を60℃に加温して、ステンレス鋼に
(−)電流を、チタン白金めつき板に(+)電
流を通じ、4ボルトにセツトして、浴中を通過
させ、ステンレス鋼表面の活性化を行つた。 (d) 純金めつき工程 メタル分10g/の純金めつき浴で、浴温60
℃、電流密度1A/Dm2にセツトし、1秒間約
80Åの電着量を基準として実施例1〜6のめつ
き厚みに適合する時間だけめつきした。 以上の工程で純金めつきしたステンレス鋼を第
2表に示す。
[Table] Ru,
However, the plating thickness targeted by the present invention is 0.01 to 0.1μ.
It was found that when conventional methods were applied as a pretreatment when applying ultra-thin pure gold plating of 500 mm, the joint strength of soldering and bonding was weak, which caused a practical problem. For example, in Special Publication No. 58-57520,
A method is shown in which gold plating is applied directly to stainless steel by pretreating stainless steel by immersion treatment and cathodic electrolysis treatment in a bath mainly composed of inorganic acids and organic acids, and then applying gold plating. However, when using this method to apply extremely thin plating as described above, a fine passivation film remains after the pretreatment, and water drainage occurs between the pretreatment and the plating bath. Since the passivation film is re-formed and gold plating is not applied to those parts, the bonding strength is weak. Therefore, as a result of research on a pretreatment method to improve bonding strength, it was found that if a pyrrolidone derivative and acetylene glycol were added to the treatment solution in the second pretreatment step in this Japanese Patent Application Laid-Open No. 58-61293, the above-mentioned problems could be solved. He discovered that the problem could be solved. This method uses (a) hydrochloric acid (35% solution)15 as an inorganic acid.
~30% by volume, sulfuric acid (85% solution) 5-15% by volume, nitric acid (68% solution) 4-6% by volume, and as organic acids citric acid powder 5-15% by weight, acetic acid (90% solution)
Contains 0.5-1.5% by volume, plus 0.1-0.3% by weight of nonionic or amphoteric surfactants, and 0.05% corrosion inhibitors.
A chemical polishing process in which stainless steel is immersed in an acidic activation bath containing ~0.15% by weight, and (b) phosphoric acid (85% solution) 5-15% by volume and sulfuric acid (85%) as inorganic acids. Solution) 5-15% by volume, and as organic acids citric acid powder 5-15% by weight, acetic acid (90%
Solution) Contains 0.5-1.5% by volume, including 0.1-0.3% by weight of nonionic or amphoteric surfactant, 2-20% by volume of pyrrolidone derivative, and acetylene glycol.
A method comprising an electrolytic activation step of immersing chemically polished stainless steel in an electrolytic bath containing 0.5 to 7% by weight and 0.05 to 0.15% by weight of a corrosion inhibitor and cathodic electrolysis to activate the surface. According to this method, the passivation film on stainless steel is completely removed, leaving an activated surface with exposed chromium atoms, making it a suitable substrate for pure gold plating. For this reason, when pure gold plating is applied after this pretreatment, the exposed chromium atoms are selectively plated with gold, enveloping the chromium atoms, and preventing the re-formation of a passivation film due to the reaction between chromium and iron. It is. The reason why a nonionic or amphoteric surfactant is added to each bath in the above pretreatment method is to prevent water splashing when washing with water after each step, which prevents the surface from being activated until the next step. Preferred examples include polyethylene glycol alkyl ether and polyethylene glycol fatty acid ester. In addition, a corrosion inhibitor is added to prevent excessive pickling with inorganic acids and to remove only the passivation film. It may be either a film type (bicarbonate type, phosphoric acid type, etc.) or a passive type. Furthermore, the reason why pyrrolidone derivatives and acetylene glycol are blended into the electrolytic bath is to reliably remove the passivation film dissolved by inorganic and organic acids in the case of pyrrolidone derivatives, and to prevent skin roughness and water drainage in the case of acetylene glycol. It's for a reason. In other words, when a pyrrolidone derivative is added, chromium atoms are exposed throughout the material, and gold is selectively plated there, preventing the re-formation of the passivation film due to the iron-chromium reaction after plating. be. In addition, the addition of acetylene glycol can prevent the roughening caused by strong electrolytic activation treatment despite the addition of corrosion inhibitors, eliminating the recesses that are difficult to plate in the case of extremely thin plating, and the passivation in the recesses. It can prevent film re-formation, and
Since water always adheres to the stainless steel while it is being transferred from pretreatment to the plating bath to protect the surface, it is also possible to prevent the passivation film from forming again due to water drainage. In each of the above baths, if the concentration of the inorganic acid is higher than the upper limit, the surface of the stainless steel will be over-pickled despite the addition of a corrosion inhibitor, and if it is lower than the lower limit, activation will be insufficient, which is not preferable. Further, even if the concentration of the organic acid is higher than the upper limit, the surface of the stainless steel cannot be activated, but if it is lower than the lower limit, activation becomes insufficient. Furthermore, surfactants, corrosion inhibitors, pyrrolidone derivatives, and acetylene glycol are all not very effective even if the concentration is higher than the upper limit, so it is uneconomical to increase the concentration, and the effect is insufficient when lower than the lower limit. . In the present invention, pure gold plating is performed after the above-mentioned pretreatment, and during this pure gold plating, the gold purity of the plating layer is preferably 99.70% or more, which is the purity of pure gold specified by JIS. Plate to 99.90-99.99%. The plating thickness is calculated by dividing the deposited amount per unit area by the specific gravity of the plated pure gold, from 0.01 to 0.01.
Make it extremely thin at 0.1 μm. The plating is performed by electroplating, but the bath composition, plating conditions, etc. may be any known ones. According to the present invention, stainless steel can be plated regardless of the type of steel, such as austenitic, ferritic, or martensitic, and the plated material is imparted with solderability and wire bondability. (Example) Various stainless steels were pretreated in the following steps (a) to (c) and then plated with pure gold in the step (d). (a) Alkaline degreasing process 70-80℃ in a commercially available stainless steel tank
After primary degreasing by sequentially passing stainless steel through the tank,
DC electrolytic degreasing was carried out in an alkaline bath heated to 0.degree. C. by applying a voltage of 6 volts using the stainless steel plate as an anode and the stainless steel after primary degreasing as a cathode. (b) Chemical polishing process The degreased stainless steel is then treated with 20% by weight of hydrochloric acid (35% solution), 10% by weight of sulfuric acid (85% solution), 10% by weight of citric acid powder, 1% by volume of acetic acid (90% solution) and A mixed acid consisting of 5% by volume of nitric acid (68% solution), 0.2% by weight of a nonionic or amino acid amphoteric surfactant such as polyethylene glycol alkyl ether or polyethylene glycol fatty acid ester, and an amine corrosion inhibitor (for example, Lion Armor's Armovibu) 28) 0.1
% by weight bath for 20 seconds to remove surface oxides and impurities. (c) Electrolytic activation process Phosphoric acid (85% solution) 10% by volume, sulfuric acid (85% solution) 10% by volume, citric acid powder 5% by weight, acetic acid (90% solution) 1% by volume, N-methyl-2-pyrrolidone 5% by volume, 2% by weight of 2-butyne-1,4-diol, 0.2% by weight of a nonionic or amphoteric surfactant as above and 0.1% by weight of a corrosion inhibitor.
A (-) current was applied to the stainless steel and a (+) current was applied to the titanium platinum plated plate. was activated. (d) Pure gold plating process Pure gold plating bath with a metal content of 10g/bath temperature 60℃
℃, current density 1A/ Dm2 , and for 1 second.
Plating was carried out for a time corresponding to the plating thickness of Examples 1 to 6 based on an electrodeposition amount of 80 Å. Table 2 shows stainless steel plated with pure gold through the above process.

【表】 厚みである。
次に純金めつきしたステンレス鋼のめつき密着
性、半田性およびワイヤーボンデイング性を確認
するため下記のようなテストを行つた。 (1) めつき密着性 (イ) 碁盤目テスト 実施例1〜4および6のめつき品にカツタ
ーで鋼素地に達する経緯幅1mmの碁盤目を入
れた後、160℃で10分間加熱して、加熱後碁
盤目部分に粘着テープを貼付けて剥離した
が、いずれのめつき品からもめつき層の剥離
は認められなかつた。 (ロ) 折曲げテスト 実施例1〜6のめつき品に180度繰り返し
折曲げを加えて破断させてみたが破断面のめ
つき層は剥離していなかつた。 (2) 半田性 (イ) ソルダーテスト機による方法 実施例1〜6のめつき品をテスト機にセツ
トして半田の濡れ現象を電気的に測定した
が、半田の表面張力による浸漬初期の反発現
象は少なく、濡れ性は極めて良好で、リン青
銅より優れていた。 (ロ) 半田槽によるテスト 配合比が錫6、鉛4の半田を溶かした温度
230℃の半田槽に実施例1〜6のめつき品を
3秒および5秒浸漬して半田したが、いずれ
も95%以上の「半田のり」を示し、半田性は
良好であつた。 (ハ) 電気半田ゴテによるテスト 市販の電気半田ゴテとヤニ入り半田線(錫
6、鉛4)とを用いて実施例1〜6のめつき
品同志および異なるめつき品間の半田付けを
行つた後引き離してみたが、接合した双方の
ステンレス鋼表面に半田が密着していた。 (3) ワイヤーボンデイング性 実施例1〜4および6のめつき品に高速ワイ
ヤーボンデイング機で直径25μmの金線をボン
デイングしたが、接着性は良好で、接着力は7
gの引つ張り強度を示した。 (効果) 以上説明したごとく本発明によればステンレス
鋼に密着性の優れた極薄の純金めつきを安価に能
率よく施すことができる。まためつきは純金めつ
きであるので、経時変化や熱影響を受けず、常に
安定した半田性、ワイヤーボンデイング性が維持
される。
[Table] Thickness.
Next, the following tests were conducted to confirm the plating adhesion, solderability, and wire bondability of pure gold-plated stainless steel. (1) Plating adhesion (a) Cross-cut test The plated products of Examples 1 to 4 and 6 were cut with a cutter to make a cross-cut with a width of 1 mm, reaching the steel substrate, and then heated at 160°C for 10 minutes. After heating, adhesive tape was applied to the grid area and peeled off, but no peeling of the plating layer was observed from any of the plated products. (b) Bending test The plated products of Examples 1 to 6 were repeatedly bent 180 degrees to cause them to break, but the plated layer on the broken surface did not peel off. (2) Solderability (a) Method using a solder test machine The plated products of Examples 1 to 6 were set in a test machine and the wetting phenomenon of the solder was measured electrically. There were few phenomena and the wettability was very good, superior to phosphor bronze. (b) Test using a solder bath Temperature at which solder with a mixing ratio of 6 tin and 4 lead is melted
The plated products of Examples 1 to 6 were immersed in a solder bath at 230° C. for 3 seconds and 5 seconds to be soldered, and all exhibited "solder adhesiveness" of 95% or more and had good solderability. (c) Test using an electric soldering iron Using a commercially available electric soldering iron and resin-cored solder wire (6 tin, 4 lead), soldering was carried out between the plated products of Examples 1 to 6 and between different plated products. When I tried to pull it apart, I found that the solder adhered to both stainless steel surfaces. (3) Wire bonding properties Gold wires with a diameter of 25 μm were bonded to the plated products of Examples 1 to 4 and 6 using a high-speed wire bonding machine, and the adhesion was good, with an adhesive strength of 7.
It showed a tensile strength of g. (Effects) As explained above, according to the present invention, stainless steel can be efficiently plated with ultra-thin pure gold with excellent adhesion at low cost. Furthermore, since the plating is pure gold plating, it is not affected by changes over time or heat, and stable solderability and wire bonding properties are always maintained.

Claims (1)

【特許請求の範囲】 1 (イ) 塩酸(35%溶液)15〜30容量%、硫酸
(85%溶液)5〜15容量%、硝酸(68%溶液)
4〜6容量%、クエン酸粉末5〜15重量%、酢
酸(90%溶液)0.5〜1.5容量%、非イオンまた
は両性界面活性剤0.1〜0.3重量%、腐食抑制剤
0.05〜0.15重量%を配合した酸性活性化浴にス
テンレス鋼を浸漬して化学研摩を行う化学研摩
工程と、 (ロ) 燐酸(85%溶液)5〜15容量%、硫酸(85%
溶液)5〜15容量%、クエン酸粉末5〜15重量
%、酢酸(90%溶液)0.5〜1.5容量%、非イオ
ンまたは両性界面活性剤0.1〜0.3重量%、ピロ
リドン誘導体2〜20容量%、アセチレングリコ
ール0.5〜7重量%、腐食抑制剤0.05〜0.15重量
%を配合した電解浴に化学研摩後のステンレス
鋼を浸漬して陰極電解し、表面活性化を行う電
解活性化工程と、 (ハ) 純金めつき浴にて表面活性化後のステンレス
鋼に0.01〜0.1μm厚の極薄純金めつきを施す工
程と、 を包含することを特徴とするステンレス鋼に直接
純金めつきする方法。
[Claims] 1 (a) Hydrochloric acid (35% solution) 15-30% by volume, sulfuric acid (85% solution) 5-15% by volume, nitric acid (68% solution)
4-6% by volume, citric acid powder 5-15% by weight, acetic acid (90% solution) 0.5-1.5% by volume, nonionic or amphoteric surfactant 0.1-0.3% by weight, corrosion inhibitor
A chemical polishing process in which stainless steel is immersed in an acidic activation bath containing 0.05 to 0.15% by weight, and (b) 5 to 15% by volume of phosphoric acid (85% solution) and sulfuric acid (85%).
solution) 5-15% by volume, citric acid powder 5-15% by weight, acetic acid (90% solution) 0.5-1.5% by volume, nonionic or amphoteric surfactant 0.1-0.3% by volume, pyrrolidone derivative 2-20% by volume, (c) An electrolytic activation step in which the stainless steel after chemical polishing is immersed in an electrolytic bath containing 0.5 to 7% by weight of acetylene glycol and 0.05 to 0.15% by weight of a corrosion inhibitor and subjected to cathodic electrolysis to activate the surface; A method for directly plating pure gold on stainless steel, comprising the steps of: applying an ultra-thin pure gold plating with a thickness of 0.01 to 0.1 μm to stainless steel after surface activation in a pure gold plating bath;
JP23205484A 1984-11-02 1984-11-02 Method for plating directly pure gold to stainless steel Granted JPS61110792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23205484A JPS61110792A (en) 1984-11-02 1984-11-02 Method for plating directly pure gold to stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23205484A JPS61110792A (en) 1984-11-02 1984-11-02 Method for plating directly pure gold to stainless steel

Publications (2)

Publication Number Publication Date
JPS61110792A JPS61110792A (en) 1986-05-29
JPH0140119B2 true JPH0140119B2 (en) 1989-08-25

Family

ID=16933243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23205484A Granted JPS61110792A (en) 1984-11-02 1984-11-02 Method for plating directly pure gold to stainless steel

Country Status (1)

Country Link
JP (1) JPS61110792A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699838B2 (en) * 1987-08-06 1994-12-07 川崎製鉄株式会社 Method for producing Zn or Zn-Ni alloy plated stainless steel strip
JP5559455B2 (en) * 2007-06-29 2014-07-23 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857520A (en) * 1981-09-30 1983-04-05 Sanyo Kiko Kk Correcting device for clutch disc swing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857520A (en) * 1981-09-30 1983-04-05 Sanyo Kiko Kk Correcting device for clutch disc swing

Also Published As

Publication number Publication date
JPS61110792A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
EP0075784B1 (en) Process for direct gold plating of stainless steel
JP3417395B2 (en) Lead frame for semiconductor device, method of manufacturing the same, and semiconductor device using the same
JPS61243193A (en) Method for plating pure gold on stainless steel
US20030082398A1 (en) Method for producing tin-silver alloy plating film, the tin-silver alloy plating film and lead frame for electronic parts having the plating film
US4652347A (en) Process for electroplating amorphous alloys
JP3916586B2 (en) Lead frame plating method
EP0127857B1 (en) Solderable stainless steel article and method for making same
KR960015549B1 (en) Method for direct plating of iron on aluminium
JPS607157A (en) Lead frame for ic
JPS59145795A (en) Pretreatment of stainless steel to be plated
JPH0140119B2 (en)
JPS6340864B2 (en)
JPS6340866B2 (en)
JPS621896A (en) Method for plating stainless steel with tin-lead alloy
JPS59219945A (en) Lead frame for integrated circuit
JP4704313B2 (en) Lead frame plating method
JPS6036695A (en) Silver plating method of stainless steel wire for electronic parts
JPS607161A (en) Method for imparting soldering property and bonding property to lead frame of nickel iron alloy for ic
JPH0919775A (en) Lead composite steel and its manufacture
JPH02145794A (en) Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance
JPH07303977A (en) Manufacture of aluminum clad material for stainless steel excellent in high temperature peeling resistance
JPS5887296A (en) Method for applying gold plating directly on stainless steel
JP2001200323A (en) Lead material for electronic parts and electronic parts using same lead material
JP2007009334A5 (en)
JPS59219495A (en) Stainless steel article provided with solderability