JPH0140112B2 - - Google Patents

Info

Publication number
JPH0140112B2
JPH0140112B2 JP59226672A JP22667284A JPH0140112B2 JP H0140112 B2 JPH0140112 B2 JP H0140112B2 JP 59226672 A JP59226672 A JP 59226672A JP 22667284 A JP22667284 A JP 22667284A JP H0140112 B2 JPH0140112 B2 JP H0140112B2
Authority
JP
Japan
Prior art keywords
phosphate
iodide
electrolysis
pia
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59226672A
Other languages
Japanese (ja)
Other versions
JPS61106786A (en
Inventor
Juji Matsuoka
Kazunori Yamataka
Atsushi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59226672A priority Critical patent/JPS61106786A/en
Priority to US06/791,121 priority patent/US4666570A/en
Publication of JPS61106786A publication Critical patent/JPS61106786A/en
Publication of JPH0140112B2 publication Critical patent/JPH0140112B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、アニリンの存在下、ヨウ化アンモニ
ウムまたはヨウ化ナトリウムまたはヨウ化カリウ
ムを電解酸化してp−ヨードアニリン(以下、
PIAと略記する)を製造する方法に関するもので
ある。 PIAは染料、顔料、医薬品、アラミド繊維、ポ
リイミド樹脂のモノマーなどの合成中間体として
有用な用途がある。 (従来の技術) 従来、アニリンの存在下、ヨウ化物を電解酸化
してPIAを製造する方法としては、米国特許第
3975439が挙げられる。この方法では、ヨウ化ア
ンモニウムまたはヨウ化アルカリ金属塩とアニリ
ンの電解酸化を0〜80℃で行い、PIAを得てい
る。 (発明が解決しようとする問題点) 従来技術では、ヨウ化物とアニリンを電解する
際、電解液の水層(以下、単に水層と略す)のPH
を5〜8に保持し、水層と有機層の分離を行つて
いる。このPH調整は、プロセス上水酸化ナトリウ
ムが陽極液中に混入してくるため、デカンターで
の分離を行うためである。また、従来技術の実施
例では、隔膜法と無隔膜法を実施しているが、隔
膜法の場合は、陽極で生成するヨウ化水素のため
に酸性となり、無隔膜法の場合は、陽極で生成す
るヨウ化水素より陰極で発生する水酸化物の方が
多いため、アルカリ性となるはずであるが、PH変
化、PHの調整についてはなんら記述されていな
い。 したがつて、PHと電解成績の関係についてはな
んら記述されていない。本発明者らが水層のPHと
電流効率の関係について調べたところ、実施例、
比較例で明らかな如く、特定範囲のPHでのみ高い
電流効率が得られることが明らかとなつた。特に
アルカリ性となると、電流効率が著しく低下す
る。このため特定範囲のPHに調整する必要性が、
従来技術とは全く異なる理由で必要なのである。 さらに、従来技術の電解液組成では、PH調整が
困難であつた。特に無隔膜法の場合は、水層がア
ルカリ性となつてくるので、電流効率が低下する
危険性が高かつた。 本発明者らは、上記のような従来方法がもつ欠
点を克服し、PIAを高い電流効率で製造し、しか
も、PH調整が容易な工業的方法を開発すべく鋭意
研究を重ねた結果、リン酸塩を電解液に加え、水
層のPHを特定範囲に保持することによつて、高い
電流効率が安定して得られ、電圧が低下すること
以外にも、驚くべきことに電流効率がさらに上昇
することを見出し、この知見に基いて本発明を完
成するに至つた。 (問題点を解決するための手段および作用) 本発明は、アニリンの存在下、ヨウ化アンモニ
ウムまたはヨウ化ナトリウムまたはヨウ化カリウ
ムを電解酸化してPIAを製造するに際し、電解液
にリン酸アンモニウムまたはリン酸ナトリウムま
たはリン酸カリウムを添加し、電解液中の水層の
PHを5.5〜6.9に保持しながら電解することを特徴
とするPIAの製造方法である。 本発明では、リン酸アンモニウムまたはリン酸
ナトリウムまたはリン酸カリウムを電解液に添加
し、PH変化を少なくし、PH調整を容易にし、さら
に電流効率を高めているのである。 本発明では、リン酸アンモニウム、リン酸ナト
リウム、リン酸カリウムをリン酸塩として用いる
が、工業的には、リン酸ナトリウムが好ましい。
水層中のリン酸塩濃度は1〜20重量%が好まし
く、20重量%を超えると水層の粘度が高くなる。 水層のPHは5.5〜6.9が好ましい。PHが6.9より高
いと、PIAの電流効率が低下し、副反応生成物で
ある4−アミノジフエニルアミンなどが生成す
る。また、PHが5.5より低いと、アニリンのリン
酸塩と思われるものが析出し、器壁に付着するな
ど電解を正常に行うことができなくなる。 本発明では、ヨウ化アンモニウムまたはヨウ化
ナトリウムまたはヨウ化カリウムをヨウ化物とし
て用いるが、工業的には、特にヨウ化ナトリウム
が好ましい。カチオンは前述のリン酸塩のカチオ
ンと同じであることが好ましい。 アニリンの存在下、ヨウ化アンモニウムまたは
ヨウ化ナトリウムまたはヨウ化カリウムを電解す
る場合は、隔膜法、無隔膜法いずれの方法でも支
障なく行うことができる。隔膜法の場合は、陽極
でヨウ化水素が生成し、陰極では対応する水酸化
物が生成する。水酸化物が必要な場合は、隔膜法
が選択される。一方、無隔膜法の場合は、陰極で
生成する水酸化物のため水層がアルカリ性とな
り、電流効率が低下する危険性が高いが、本発明
によれば、実施例3、4、比較例3、4で明らか
な如く、PH変化が少なく、高い電流効率が安定し
て得られる。この方法は隔膜が不要であり、電槽
構造が簡単となり、しかも、電極間隔を狭くで
き、電力原単位の向上が図れる。 陽極材料としては、白金、ルテニウム、ロジウ
ム、イリジウムを単独もしくはチタンやタンタル
にメツキしたもの、各々合金、合金メツキ、ま
た、白金、ルテニウム、ロジウム、イリジウムと
バルブメタル(チタン、タンタルなど)との酸化
物合金、炭素などを挙げることができる。 陰極材料としては、水素過電圧の低いものが好
ましいが、特に限定されることなく、鉄、ニツケ
ル、ステンレスなどを挙げることができる。 隔膜を用いる場合は、必要に応じてカチオン交
換膜、アニリン交換膜などが用いられる。 以下、隔膜法について述べる。その記述は、無
隔膜法においても概ね適用できるので実施例を示
すに止めた。 電解層は有機電解反応において通常用いられる
ものであつて、電解液を両極の間に通過させるこ
とができるようなものであればよい。例えば、電
解槽は陰極板と陽極板を平行に対立させ、両極の
間に陰極室、陽極室を形成するように、膜−極間
隔を規定するポリエチレン板、隔膜、ポリエチレ
ン板をこの順序に置く。これらのポリエチレン板
の中央部分には、電解液が通過するように開孔部
を設ける。電極の通電面積は、この開孔部の大き
さによつてきまり、そして、電極と隔膜との間隔
は、このポリエチレン板の厚みによつて規定され
る。陽極液と陰極液は、それぞれのタンクから電
解槽に設けられた供給口を経て陽極室、陰極室に
入り、室内を通過する間に一部が反応して流出口
から出て、陽極液タンク、陰極液タンクに戻り、
タンクと室との間を循環する。 電流密度は1〜30A/dm2が好ましく、30A/
dm2より高い電流密度では電圧が著しく高くな
り、1A/dm2より低い電流密度では生産性が悪
くなる。 電解温度は20〜60℃が好ましい。電解温度と副
生成物であるo−ヨードアニリン(以下、OIAと
略す)の生成量と相関があり、温度が低い方が、
p/o体比が大きくなり好ましい。しかし、電圧
が上昇し、電力原単位が悪くなる。 電解槽内の電解液流速は0.1〜4m/秒が好ま
しい。0.1m/秒より遅い流速では電流効率が低
下し、4m/秒より速い流速では電解槽内の圧損
失が非常に多くなる。 電極と隔膜の間隔は、通常0.5〜3mmが好まし
い。 水相のPHの調整は、必要に応じて、対応する水
酸化物、ヨウ化水素を加えて行うことができる。 陽極液は、水層と有機層から成る。水層は、
水、リン酸塩、ヨウ化物が主成分であり、有機層
はアニリン、PIA、OIAが主成分である。有機層
中のPIAの濃度は1〜60重量%が好ましい。陽極
液中に有機層の占る割合をorg容量比と定義する
が、org容量比は0.01〜1が好ましい。陰極液は
各々リン酸塩の水溶液、ヨウ化物の水溶液、水酸
化物の水溶液いずれも使用できるが、生成物であ
る対応する水酸化物を用いるのがより好ましい。 (発明の効果) 以上述べてきたように、本発明によれば、リン
酸塩を加えることによつて、水層のPH変化を抑制
し、PIAの電流効率の低下するのを防止すると共
に、なおかつ電流効率を高めることができる。ま
た、PHを5.5〜6.9に保持することにより、最も高
い電流効率が得られるのである。リン酸塩を加え
PH変化を抑制でき、PH調整が容易になつたのは、
工業的に実施する上で有利である。しかも、リン
酸塩を加えることによつて電圧が下り、電力原単
位の向上が図れる。以上の点で本発明の方法は、
極めて優れたPIAの工業的製法である。 (実施例) 次に、実施例によつて本発明をさらに詳細に説
明する。なお、実施例および比較例における測定
値は、下記方法によつた。 電流効率(%) =生成したPIAのモル数×2/通電量(フアラデー単
位)×100 p/o(モル比)=生成PIA/生成OIA 実施例 1 陽極液として、リン酸二水素ナトリウム75g、
リン酸水素二ナトリウム75g、ヨウ化ナトリウム
150g、アニリン300g、水1200gの混合液を用
い、陽極液タンクに入れた。陰極液タンクには2
%水酸化ナトリウム水溶液1Kgを入れた。両タン
クの電解液を次の電解槽に循環した。 電解槽は隔膜で仕切られた陽極液と陰極室から
なり、陽極には白金メツキしたチタン板、陰極に
は鉄板で両極ともに1cm×100cmの通電面積を有
するものを用い、両極の間に通電面積が1cm×
100cmになるように開孔部を有する厚さ2mmのポ
リエチレン板2枚と、その中央にはパーフルオロ
カーボン型陽イオン交換膜を置いて陰極室と陽極
室を形成させたものを用いた。電解槽は電解液の
供給口と流出口を有しており、電解液は流速2
m/秒で流し、電流密度10A/dm2、電解温度50
℃で電解を2時間行つた。陽極液水層のPHは、あ
らかじめ6.5に調整し、電解中はNaOHを加えPH
を6.5に保つた。 平均電圧は3.5Vであつた。電解後、電解液中
のPIAをガスクロマトグラフイーにより分析し
た。その結果、電流効率は94%であつた。運転中
のPH変化が少なく、PH調整が容易であつた。生成
ヨードアニリンのp/o比は24であつた。 比較例 1 実施例1の陽極液組成のうちリン酸ナトリウム
を除いたほかは、実施例1と同条件下で電解を行
つた。平均電圧は4.3Vであつた。電流効果は86
%であつた。運転中のPHの調整が難しく、PHがや
や変動した。生成したヨードアニリンのp/o比
は23.5であつた。 実施例 2 実施例1と同じ電解液、電解槽を用い、電解液
の流速2m/秒、電解温度50℃、電流密度10A/
dm2で、水層のPHを変化させて電解を2時間行つ
た。結果を表1に示した。
(Industrial Application Field) The present invention provides p-iodoaniline (hereinafter referred to as
The present invention relates to a method for manufacturing PIA (abbreviated as PIA). PIA has useful applications as a synthetic intermediate for dyes, pigments, pharmaceuticals, aramid fibers, and polyimide resin monomers. (Prior art) Conventionally, as a method for producing PIA by electrolytic oxidation of iodide in the presence of aniline, US Pat.
3975439 is listed. In this method, ammonium iodide or alkali metal iodide and aniline are electrolytically oxidized at 0 to 80°C to obtain PIA. (Problems to be Solved by the Invention) In the conventional technology, when electrolyzing iodide and aniline, the pH of the aqueous layer of the electrolytic solution (hereinafter simply referred to as the aqueous layer) is
is maintained at 5 to 8, and the aqueous layer and organic layer are separated. This PH adjustment is done because sodium hydroxide gets mixed into the anolyte during the process, so it is separated in a decanter. In addition, in the examples of the conventional technology, a diaphragm method and a non-diaphragm method are implemented, but in the case of the diaphragm method, it becomes acidic due to hydrogen iodide generated at the anode, and in the case of the non-diaphragm method, the anode becomes acidic. Since more hydroxide is generated at the cathode than generated hydrogen iodide, it should be alkaline, but there is no description of PH change or PH adjustment. Therefore, there is no description of the relationship between PH and electrolytic results. When the present inventors investigated the relationship between the PH of the water layer and the current efficiency, they found that
As is clear from the comparative examples, it has become clear that high current efficiency can be obtained only within a specific range of pH. In particular, when it becomes alkaline, the current efficiency decreases significantly. For this reason, it is necessary to adjust the pH to a specific range.
This is necessary for completely different reasons than in the prior art. Furthermore, with the electrolyte composition of the prior art, it was difficult to adjust the pH. Particularly in the case of the diaphragmless method, the water layer becomes alkaline, so there is a high risk that the current efficiency will decrease. The present inventors have conducted intensive research to overcome the drawbacks of the conventional methods described above, produce PIA with high current efficiency, and develop an industrial method that allows for easy pH adjustment. By adding salt salts to the electrolyte and maintaining the pH of the water layer within a specific range, high current efficiency can be stably obtained, and in addition to reducing voltage, surprisingly, current efficiency can be further increased. Based on this finding, the present invention was completed. (Means and Effects for Solving the Problems) The present invention provides that ammonium phosphate or Add sodium phosphate or potassium phosphate to the aqueous layer in the electrolyte.
This is a method for producing PIA characterized by carrying out electrolysis while maintaining the pH between 5.5 and 6.9. In the present invention, ammonium phosphate, sodium phosphate, or potassium phosphate is added to the electrolyte to reduce PH changes, facilitate PH adjustment, and further improve current efficiency. In the present invention, ammonium phosphate, sodium phosphate, and potassium phosphate are used as the phosphate, but sodium phosphate is preferred industrially.
The phosphate concentration in the aqueous layer is preferably 1 to 20% by weight, and if it exceeds 20% by weight, the viscosity of the aqueous layer increases. The pH of the aqueous layer is preferably 5.5 to 6.9. When the pH is higher than 6.9, the current efficiency of PIA decreases, and side reaction products such as 4-aminodiphenylamine are produced. Additionally, if the pH is lower than 5.5, what appears to be aniline phosphate will precipitate and adhere to the vessel wall, making it impossible to perform electrolysis normally. In the present invention, ammonium iodide, sodium iodide, or potassium iodide is used as the iodide, and industrially, sodium iodide is particularly preferred. Preferably, the cation is the same as the cation of the phosphate described above. When ammonium iodide, sodium iodide, or potassium iodide is electrolyzed in the presence of aniline, it can be carried out without any problem by either a diaphragm method or a diaphragmless method. In the case of the diaphragm method, hydrogen iodide is produced at the anode and the corresponding hydroxide is produced at the cathode. If hydroxide is required, the diaphragm method is selected. On the other hand, in the case of the non-diaphragm method, there is a high risk that the water layer becomes alkaline due to the hydroxide generated at the cathode and the current efficiency decreases. , 4, there is little PH change and high current efficiency can be stably obtained. This method does not require a diaphragm, simplifies the structure of the container, and allows the electrode spacing to be narrowed, thereby improving the power consumption rate. Anode materials include platinum, ruthenium, rhodium, and iridium alone or plated with titanium or tantalum, alloys and alloy platings, and oxidation of platinum, ruthenium, rhodium, and iridium with valve metals (titanium, tantalum, etc.). Examples include metal alloys, carbon, etc. The cathode material is preferably one with a low hydrogen overvoltage, but is not particularly limited, and examples include iron, nickel, stainless steel, and the like. When using a diaphragm, a cation exchange membrane, an aniline exchange membrane, etc. are used as necessary. The diaphragm method will be described below. The description is generally applicable to the non-diaphragm method, so only examples are shown. The electrolytic layer may be one commonly used in organic electrolytic reactions, as long as it allows the electrolytic solution to pass between the two electrodes. For example, in an electrolytic cell, a cathode plate and an anode plate are opposed in parallel, and a polyethylene plate that defines the membrane-to-electrode distance, a diaphragm, and a polyethylene plate are placed in this order to form a cathode chamber and an anode chamber between the two electrodes. . An opening is provided in the center of each of these polyethylene plates to allow the electrolyte to pass therethrough. The current-carrying area of the electrode is determined by the size of the opening, and the distance between the electrode and the diaphragm is determined by the thickness of the polyethylene plate. The anolyte and catholyte enter the anode and cathode chambers from each tank through the supply ports provided in the electrolytic cell, and while passing through the chambers, a portion reacts and exits from the outlet, and is transferred to the anolyte tank. , return to the catholyte tank,
circulate between the tank and the chamber. The current density is preferably 1 to 30A/ dm2 , and 30A/dm2.
Current densities higher than dm 2 result in significantly higher voltages, and current densities lower than 1 A/dm 2 result in poor productivity. The electrolysis temperature is preferably 20 to 60°C. There is a correlation between the electrolysis temperature and the amount of by-product o-iodoaniline (hereinafter abbreviated as OIA), and the lower the temperature, the more
It is preferable because the p/o isomer ratio becomes large. However, the voltage increases and the power consumption rate worsens. The flow rate of the electrolytic solution in the electrolytic cell is preferably 0.1 to 4 m/sec. At a flow rate lower than 0.1 m/sec, the current efficiency decreases, and at a flow rate higher than 4 m/sec, the pressure loss within the electrolytic cell becomes very large. The distance between the electrode and the diaphragm is usually preferably 0.5 to 3 mm. The pH of the aqueous phase can be adjusted by adding a corresponding hydroxide or hydrogen iodide, if necessary. The anolyte consists of an aqueous layer and an organic layer. The water layer is
The main components are water, phosphate, and iodide, and the main components of the organic layer are aniline, PIA, and OIA. The concentration of PIA in the organic layer is preferably 1 to 60% by weight. The ratio of the organic layer in the anolyte is defined as the org capacity ratio, and the org capacity ratio is preferably 0.01 to 1. As the catholyte, any of an aqueous solution of phosphate, an aqueous iodide, and an aqueous hydroxide can be used, but it is more preferable to use the corresponding hydroxide as a product. (Effects of the Invention) As described above, according to the present invention, by adding phosphate, it is possible to suppress the PH change in the water layer and prevent the current efficiency of PIA from decreasing. Furthermore, current efficiency can be increased. Furthermore, the highest current efficiency can be obtained by maintaining the pH between 5.5 and 6.9. add phosphate
The reason why PH changes can be suppressed and PH adjustment has become easier is that
This is advantageous for industrial implementation. Moreover, by adding phosphate, the voltage can be lowered and the power consumption rate can be improved. In the above points, the method of the present invention has the following features:
This is an extremely superior industrial manufacturing method for PIA. (Example) Next, the present invention will be explained in more detail with reference to Examples. Note that the measured values in the Examples and Comparative Examples were based on the following method. Current efficiency (%) = Number of moles of PIA produced x 2/Amount of current flow (Faraday unit) x 100 p/o (molar ratio) = PIA produced/OIA produced Example 1 As the anolyte, 75 g of sodium dihydrogen phosphate,
75g disodium hydrogen phosphate, sodium iodide
A mixture of 150 g of aniline, 300 g of aniline, and 1200 g of water was used and placed in the anolyte tank. The catholyte tank has 2
% aqueous sodium hydroxide solution was added. The electrolyte in both tanks was circulated to the next electrolytic cell. The electrolytic cell consists of an anolyte and a cathode chamber separated by a diaphragm.The anode is a platinum-plated titanium plate, the cathode is an iron plate, and both electrodes have a current-carrying area of 1 cm x 100 cm, with a current-carrying area between the two electrodes. is 1cm×
Two 2 mm thick polyethylene plates with 100 cm openings and a perfluorocarbon cation exchange membrane placed in the center to form a cathode chamber and an anode chamber were used. The electrolytic cell has an electrolyte supply inlet and an outlet, and the electrolyte has a flow rate of 2.
Flow at m/sec, current density 10A/dm 2 , electrolysis temperature 50
Electrolysis was carried out at ℃ for 2 hours. The pH of the anolyte aqueous layer was adjusted to 6.5 in advance, and NaOH was added during electrolysis to increase the pH.
was kept at 6.5. The average voltage was 3.5V. After electrolysis, PIA in the electrolyte was analyzed by gas chromatography. As a result, the current efficiency was 94%. There were few PH changes during operation, and PH adjustment was easy. The p/o ratio of the iodoaniline produced was 24. Comparative Example 1 Electrolysis was carried out under the same conditions as in Example 1, except that sodium phosphate was removed from the anolyte composition. The average voltage was 4.3V. Current effect is 86
It was %. It was difficult to adjust the pH while driving, and the pH fluctuated slightly. The p/o ratio of the iodoaniline produced was 23.5. Example 2 Using the same electrolytic solution and electrolytic cell as in Example 1, the flow rate of the electrolytic solution was 2 m/sec, the electrolysis temperature was 50°C, and the current density was 10 A/sec.
Electrolysis was carried out at dm 2 for 2 hours while changing the pH of the aqueous layer. The results are shown in Table 1.

【表】 比較例 2 比較例1と同じ電解液、電解槽を用い、電解条
件も同じであるが、PHのみ変化させて電解を2時
間行つた。結果を表2に示した。
[Table] Comparative Example 2 Electrolysis was carried out for 2 hours using the same electrolytic solution and electrolytic cell as in Comparative Example 1, and the same electrolytic conditions, but only the pH was changed. The results are shown in Table 2.

【表】 なお、PHを5.0、4.6でも有機層は液状であり、
析出することはなかつた。しかし、PH=4.6では、
有機層が非常に少なくなつた。アニリン塩が水層
に溶解したためと思われる。PH7.8では、ガスク
ロ分析の結果、4−アミノジフエニルアミン、ア
ゾベンゼンが検出された。 実施例 3 電解液として、リン酸二水素ナトリウム70g、
リン酸水素二ナトリウム70g、ヨウ化カリウム
150g、アニリン250g、水1210gの混合液を用
い、電解液タンクを入れた。水層のPHは6.0であ
つた。 電解槽は、陽極には白金、チタンを混合、塗
布、焼成させた酸化物合金を形成させたチタン
板、陰極には鉄板で両極の間に通電面積が1cm×
100cmになるよう開孔部を有する厚さ2mmのポリ
エチレン板1枚を置いて電解室を形成させたもの
を用いた。電解槽は電解液の供給口と流出口を有
しており、電解液は流速2m/秒で流し、電流密
度10A/dm2、電解温度50℃で電解を2時間行つ
た。電解中はPH調整を行なわなかつた。電解後の
水層のPHは6.5であつた。平均電圧3.2Vであつた。
PIAの電流効率は92%であつた。生成ヨードアニ
リンのp/o比は25であつた。 比較例 3 実施例3の電解液組成のうちリン酸塩を除き、
水を140g増やした電解液を用いたほかは、実施
例3と同様に電解を2時間行つた。電解中はPH調
整を行なわなかつた。PHは6.0から11.3まで上昇
した。平均電圧は4.4Vであり、電流効率は32%
であつた。 実施例 4 電解液として、リン酸二水素アンモニウム50
g、リン酸水素アンモニウム50g、ヨウ化アンモ
ニウム200g、アニリン300g、水1200gの混合物
を用い、電解液タンクに入れた。水層のPHは5.5
であつた。 電解槽は実施例3と同様なものを用い、電解液
流速1.5m/秒で流し、電流密度10A/dm2、電
解温度45℃で電解を2時間行つた。電解中はPH調
整を行なわなかつた。電解後の水層のPHは6.3で
あつた。平均電圧は3.2Vであつた。PIAの電流効
率は91%であつた。生成ヨードアニリンのp/o
比は25.3であつた。 比較例 4 実施例4の電解液組成のうちリン酸塩を除き、
水を100g増やした電解液を用いたほかは、実施
例4と同様に電解を2時間行つた。電解中はPH調
整を行なわなかつた。PHは5.5から9.1まで上昇し
た。平均電圧は4.2Vであつた。PIAの電流効率は
60%であつた。
[Table] Note that even if the pH is 5.0 or 4.6, the organic layer is liquid.
No precipitation occurred. However, at PH=4.6,
The organic layer became very small. This is probably due to the aniline salt being dissolved in the aqueous layer. At pH 7.8, 4-aminodiphenylamine and azobenzene were detected as a result of gas chromatography. Example 3 As an electrolyte, 70 g of sodium dihydrogen phosphate,
70g disodium hydrogen phosphate, potassium iodide
A mixed solution of 150g of aniline, 250g of aniline, and 1210g of water was used, and an electrolyte tank was put in it. The pH of the aqueous layer was 6.0. The electrolytic cell consists of a titanium plate with platinum and titanium mixed, coated, and fired to form an oxide alloy as the anode, and an iron plate as the cathode, with a current-carrying area of 1 cm x 1 cm between the two electrodes.
An electrolytic chamber was formed by placing one 2 mm thick polyethylene plate with 100 cm openings. The electrolytic cell had an electrolytic solution inlet and an outlet, and the electrolytic solution was flowed at a flow rate of 2 m/sec, and electrolysis was performed for 2 hours at a current density of 10 A/dm 2 and an electrolysis temperature of 50°C. No PH adjustment was performed during electrolysis. The pH of the aqueous layer after electrolysis was 6.5. The average voltage was 3.2V.
The current efficiency of PIA was 92%. The p/o ratio of the iodoaniline produced was 25. Comparative Example 3 Of the electrolyte composition of Example 3, excluding phosphate,
Electrolysis was carried out for 2 hours in the same manner as in Example 3, except that an electrolytic solution containing 140 g of more water was used. No PH adjustment was performed during electrolysis. PH rose from 6.0 to 11.3. Average voltage is 4.4V and current efficiency is 32%
It was hot. Example 4 Ammonium dihydrogen phosphate 50 as electrolyte
A mixture of 50 g of ammonium hydrogen phosphate, 200 g of ammonium iodide, 300 g of aniline, and 1200 g of water was used and placed in an electrolyte tank. The pH of the water layer is 5.5
It was hot. The same electrolytic cell as in Example 3 was used, the electrolytic solution was flowed at a flow rate of 1.5 m/sec, and electrolysis was carried out for 2 hours at a current density of 10 A/dm 2 and an electrolysis temperature of 45°C. No PH adjustment was performed during electrolysis. The pH of the aqueous layer after electrolysis was 6.3. The average voltage was 3.2V. The current efficiency of PIA was 91%. p/o of generated iodoaniline
The ratio was 25.3. Comparative Example 4 The electrolyte composition of Example 4 except for phosphate,
Electrolysis was carried out for 2 hours in the same manner as in Example 4, except that an electrolytic solution containing 100 g of water was used. No PH adjustment was performed during electrolysis. PH rose from 5.5 to 9.1. The average voltage was 4.2V. The current efficiency of PIA is
It was 60%.

Claims (1)

【特許請求の範囲】 1 アニリンの存在下、ヨウ化アンモニウムまた
はヨウ化ナトリウムまたはヨウ化カリウムを電解
酸化してp−ヨードアニリンを製造するに際し、
電解液にリン酸アンモニウムまたはリン酸ナトリ
ウムまたはリン酸カリウムを添加し、電解液中の
水層のPHを5.5〜6.9に保持しながら電解すること
を特徴とするp−ヨードアニリンの製造方法。 2 リン酸アンモニウムまたはリン酸ナトリウム
またはリン酸カリウムと、ヨウ化アンモニウムま
たはヨウ化ナトリウムまたはヨウ化カリウムのカ
チオンが同一である特許請求の範囲第1項記載の
方法。 3 水層中のリン酸塩濃度が1〜20重量%である
特許請求の範囲第1項記載の方法。 4 電流密度が1〜30A/dm2である特許請求の
範囲第1項記載の方法。 5 電解温度が20〜60℃である特許請求の範囲第
1項記載の方法。
[Claims] 1. When producing p-iodoaniline by electrolytically oxidizing ammonium iodide, sodium iodide, or potassium iodide in the presence of aniline,
A method for producing p-iodoaniline, which comprises adding ammonium phosphate, sodium phosphate, or potassium phosphate to an electrolytic solution and carrying out electrolysis while maintaining the pH of an aqueous layer in the electrolytic solution at 5.5 to 6.9. 2. The method according to claim 1, wherein the cations of ammonium phosphate, sodium phosphate, or potassium phosphate and ammonium iodide, sodium iodide, or potassium iodide are the same. 3. The method according to claim 1, wherein the phosphate concentration in the aqueous layer is 1 to 20% by weight. 4. The method according to claim 1, wherein the current density is 1 to 30 A/ dm2 . 5. The method according to claim 1, wherein the electrolysis temperature is 20 to 60°C.
JP59226672A 1984-10-30 1984-10-30 Production of p-iodoaniline Granted JPS61106786A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59226672A JPS61106786A (en) 1984-10-30 1984-10-30 Production of p-iodoaniline
US06/791,121 US4666570A (en) 1984-10-30 1985-10-24 Process for producing aromatic compound with functional groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59226672A JPS61106786A (en) 1984-10-30 1984-10-30 Production of p-iodoaniline

Publications (2)

Publication Number Publication Date
JPS61106786A JPS61106786A (en) 1986-05-24
JPH0140112B2 true JPH0140112B2 (en) 1989-08-25

Family

ID=16848844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59226672A Granted JPS61106786A (en) 1984-10-30 1984-10-30 Production of p-iodoaniline

Country Status (1)

Country Link
JP (1) JPS61106786A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230783A (en) * 1991-05-15 1993-07-27 The Dow Chemical Company Electrolytic cell and process for the labeling of proteins and peptides
US20110308963A1 (en) * 2009-03-10 2011-12-22 Fumitoshi Kakiuchi Process for producing aromatic halogen compound utilizing electrolysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975439A (en) * 1973-07-26 1976-08-17 E. I. Du Pont De Nemours And Company Preparation and amination of iodoaniline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975439A (en) * 1973-07-26 1976-08-17 E. I. Du Pont De Nemours And Company Preparation and amination of iodoaniline

Also Published As

Publication number Publication date
JPS61106786A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
CA1153982A (en) Electrolytic production of alkali metal hypohalite and apparatus therefor
US5230779A (en) Electrochemical production of sodium hydroxide and sulfuric acid from acidified sodium sulfate solutions
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
NL8303997A (en) ELECTROLYTIC PROCESS AND ELECTROLYTIC CELL FOR THE PREPARATION OF ORGANIC COMPOUNDS.
JPH0343351B2 (en)
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
US20050011753A1 (en) Low energy chlorate electrolytic cell and process
Watson et al. The role of chromium II and VI in the electrodeposition of chromium nickel alloys from trivalent chromium—amide electrolytes
US5242552A (en) System for electrolytically generating strong solutions by halogen oxyacids
JPS61250187A (en) Electrolysis of alkali metal chloride brine
JPH0140112B2 (en)
US5716512A (en) Method for manufacturing salts of metals
US3592750A (en) Electrodes for use in aqueous alkali metal chloride electrolytes
EP1067215A1 (en) Method of operating alkali chloride electrolytic cell
US4507183A (en) Ruthenium coated electrodes
JPS6131192B2 (en)
US4615777A (en) Method and composition for reducing the voltage in an electrolytic cell
US4176020A (en) Process for electrolytic dimerization of N-substituted pyridinium salt
FI112382B (en) A method for using a membrane cell
JPH05179475A (en) Production of hypochlorite
JP3104704B1 (en) Continuous plating method of Ni-W alloy
Murase et al. Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel
JPS622036B2 (en)
JPH01184293A (en) Production of iodine and iodate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees