JPH0140044B2 - - Google Patents

Info

Publication number
JPH0140044B2
JPH0140044B2 JP55183324A JP18332480A JPH0140044B2 JP H0140044 B2 JPH0140044 B2 JP H0140044B2 JP 55183324 A JP55183324 A JP 55183324A JP 18332480 A JP18332480 A JP 18332480A JP H0140044 B2 JPH0140044 B2 JP H0140044B2
Authority
JP
Japan
Prior art keywords
polymerization
reactor
mercaptan
degree
vac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55183324A
Other languages
Japanese (ja)
Other versions
JPS57105410A (en
Inventor
Takuji Okaya
Toshiaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP18332480A priority Critical patent/JPS57105410A/en
Publication of JPS57105410A publication Critical patent/JPS57105410A/en
Publication of JPH0140044B2 publication Critical patent/JPH0140044B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は均一な重合度分布を有する低重合度ポ
リ酢酸ビニル(以下PVAcと略記する)及び低重
合度ポリビニルアルコール(以下PVAと略記す
る)の連続的製造方法に関する。 更に詳しくはn個の反応器(ただしn1)か
らなる多段式連続重合装置による酢酸ビニル(以
下VAcと略記する)のメタノール溶液重合にお
いて、各段の反応器に対してメルカプタンを次式
(1)に従つて連続的に供給し、かつ最終反応器の出
口以降、ストリツピング工程に入るまでの間にお
いて重合を僅かに進めることを特徴とする、均一
な重合度分布を有する低重合度ポリ酢酸ビニルの
連続的製造方法、および該PVAcを常法によりケ
ン化することからなる均一な重合度分布を有する
低重合度ポリビニルアルコールの連続的製造方法
に関する。 0〔X〕m/〔X〕m=xn−xn-1/1−xn・Cx+1− 〔X〕m−1/〔X〕m ……(1) (ただし、〔X〕はメルカプタンのモル濃度、x
は重合率、Cxはメルカプタンへの連鎖移動定数
をそれぞれ表わし、添字mはm番目の反応器を意
味し、0〔X〕mはm番目の反応器に供給するメル
カプタンの第1反応器に供給するVAcとメタノ
ールの総量に対するモル濃度を、〔X〕mはm番
目の反応器におけるメルカプタンのモル濃度を意
味し、mは1mnであり、m=1の場合には
xn-1=x0=0、〔X〕m-1=〔X〕0=0である。) 従来よりメルカプタンをVAcの重合系に応用
することは知られてはいるが、そのいずれもがい
わゆるバツチ式重合法によるものであり、しかも
これらの方法により均一な重合度分布を有する低
重合度PVAcが得られているか否かについては明
らかにされておらず、ましてや多段式連続重合法
に応用された例は未だ存在しない。かかる連続重
合系にメルカプタンを供給するという概念それ自
体は特に目新しいとは言えないが目的とする重合
度、しかもその分布の均一なものを得るためには
如何なる割合でメルカプタンを各段に供給すべき
かについては当業者といえどもそう容易に設定で
きるものではない。また本発明において使用され
るメタノールの如き連鎖移動定数の小さい溶媒中
での連続溶液重合においては、重合度500以下の
PVAcを効率よく製造することは極めて困難であ
り、通常はVAcの濃度を50%以下に下げたりあ
るいは反応液中のPVAcの濃度を著しく高めるた
めの工夫をこらしたりすることが常識であり、こ
れらは生産性の低下を来たすという点で望ましい
ものではなかつた。またたとえ、かかる方法によ
つても重合度300以下、とりわけ200以下の
PVAc、ひいてはPVAを製造することは至難の
業であり、工業的には不可能といつても過言では
ない。 VAcの重合溶剤として連鎖移動定数が20×
10-4以上であるアルコール(例えばエタノール、
イソプロパノールetc)を用いることにより低重
合度PVAを製造する方法が提案されているが重
合溶剤としてメタノールを使用することは以下の
理由により極めて有利であり、メタノール以外の
利用を工業的に行なうことはPVAの製造コスト
を著しく高めることになる。即ちメタノールの役
割は第1に重合温度制御であり、VAcとメタノ
ールの共沸によつて重合熱の除去が行なわれ、し
かも共沸温度が約60℃という、得られたPVAの
性状にとつて好ましい温度を与えるものである。
第2には重合終了後のPVAcのメタノール溶液に
は多量の未重合VAcが残存しているが、その
VAcの除去にもメタノールとの共沸が有効に使
われているのである。第3にもつとも重要な点と
して、PVAcからケン化によつてPVAが製造さ
れる時にはPVAcのメタノール溶液であることが
必須条件であることである。何故ならばケン化反
応はPVAc中のアセチル基のメタノールによるメ
タノーリシスであり、アルカリは触媒の役割を果
しているだけであるからである。従つて重合溶媒
としてメタノール以外の溶媒を使用すればケン化
時には前記溶媒とメタノールとの溶媒置換などは
ん雑な操作を必要とすることになる。このように
PVAを工業的に製造する場合、VAcの重合時に
メタノール以外の溶媒を使用することは明らかに
不利である。 一般にメルカプタンのように激しい連鎖移動を
引きおこす物質を重合系に加えると重合度が激し
く低下することはよく知られている事実である。
しかしながらVAcの重合の場合には全く意外な
ことに重合度は計算通りには低下しないことを本
発明者らは認めた。例えばバツチ重合法でn−ブ
チルメルカプタンを用いて重合度100のPVAcを
製造するには、n−ブチルメルカプタンの連鎖移
動定数(以下Cxと略記する)50(文献値)を用い
ると、メルカプタンとVAcとのモル比を約2×
10-4とすればよいことは理論の教えるところであ
る。そこでその濃度のn−ブチルメルカプタンを
VAcとメタノール(70/30重量比)に加え、ア
ゾビスイソブチロニトリル(以下AIBNと略記す
る)を0.016重量%を加え、60℃で重合を行ない、
3時間後に重合を停止し、常法によりポリマーを
取り出して(重合率51%)、重合度を測定したと
ころ、実に1772であつた。n−ブチルメルカプタ
ンのCxは50よりも22の方が正しいというのが本
発明者等の測定結果であるがそれを考慮しても上
の条件では重合度は230程度となるはずである。
確かにメルカプタン非存在下での重合度1900に比
べれば重合度は低下しているがその程度は僅かで
あり、目標重合度100(又は230)に対する差は大
きすぎて問題外である。 ラジカル重合で理論と実際とを比べる場合は重
合率を10%以下に抑えるのが常套手段である。そ
こで本発明者等も重合時間を短縮して30分間と
し、同様にして重合度を測定したところ1382であ
つた。この場合は若干は理論値に近づいたには違
いないが理論値100(もしくは230)との差には余
りにも大きいと言わざるを得ない。本発明者等は
このようにして生じたポリマーについて検討を加
えた結果、重合率2%まではかなり理論に近い重
合度で、末端にn−ブチルメルカプタン残基を有
するポリマーが得られていること、重合率10%を
越えるともはやn−ブチルメルカプタンは重合系
に殆んど存在せず、生成ポリマーの末端にはn−
ブチルメルカプタン残基が殆んど入らないこと、
従つて重合率51%のものは約80%程度がメルカプ
タンの影響をうけない(末端にメルカプタン残基
を含まず重合度も低下していない)ポリマーであ
り、低重合度物を僅かに含んでいるに過ぎないこ
となどが明らかになつた。重合系で最も簡単なバ
ツチ重合でさえ、このようにメルカプタンの影響
は複雑であることに注目されなければならない。 本発明はかかる複雑な挙動をとるメルカプタン
を連続重合系に応用し、目的の重合度を有し、所
定の割合で末端にメルカプタン残基を有する
PVAを充分量含み、かつ重合度分布の狭いPVA
を製造する方法を最終的には提供するものであ
る。 本発明はn個の反応器(ただしn1)を有す
る多段式連続重合装置によるVAcのメタノール
溶液重合において、連鎖移動剤としてメルカプタ
ン類を使用して均一な重合度分布を有する低重合
度PVAcを、更には該PVAcを常法によりケン化
することにより均一な重合度分布を有する低重合
度PVAを製造する方法において、各段の反応器
に対してメルカプタンを次式(1)によつて連続的に
供給し、かつ最終反応器の出口以降、ストリツピ
ング工程に入るまでの間において重合を僅かに進
めることを特徴とするものである。 0〔X〕m/〔X〕m=xn−xn-1/1−xn・Cx+1−〔
X〕m−1/〔X〕m (ただし、〔X〕はメルカプタンのモル濃度、x
は重合率、Cxはメルカプタンへの連鎖移動定数
を表わし、添字mはm番目の反応器を意味し、0
〔X〕mはm番目の反応器に供給するメルカプタ
ンの第1反応器に供給する酢酸ビニルとメタノー
ルの総量に対するモル濃度を、〔X〕mはm番目
の反応器におけるメルカプタンのモル濃度を意味
し、mは1mmであり、m=1の場合には
xn-1=x0=0、〔X〕m-1=〔X〕0=0である。) いま、連続重合で第1反応器での重合率をx1
第2反応器での重合率をx2、第m反応器での重合
率をxnのように表現すると、それぞれの反応器
中で連続重合されて製造されるPVAcの重合度P
は次式(2)で書き表わすことができる故、これより
メルカプタンの濃度(〔X〕1、〔X〕2、〔X〕mで
表わすものとする)はそれぞれ計算可能である。 1/P=CM+xn/1−xnCP+1/1−xnCS〔S〕/〔M
0 +1/1−xnCX〔X〕m/〔M〕0 ……(2) (ただしCM、CP、CSはそれぞれモノマー、ポリ
マーおよび溶媒への連鎖移動定数であり、〔S〕
は溶媒の濃度、〔M〕0は仮想的なVAcモノマーの
初濃度、〔X〕mはm番目の反応器中でのメルカ
プタンの濃度である。) しかしながら、各反応器での濃度がわかつたと
しても、かかる濃度を常に一定に維持するための
各反応器に対するメルカプタンの供給条件を定め
ることは容易なことではない。 本発明者等はこの点に関し鋭意研究の結果(1)式
に従つてメルカプタンを供給すれば目的が達せら
れることを見出し本発明に到達したものである。
(1)式をより具体的に書き直すと次のようになる。 第1反応器 0〔X〕1/〔X〕1=x1/1−x1・Cx+
1 (1−1) 第2反応器 0〔X〕2/〔X〕2=x2−x1/1−x2・Cx
+1− 〔X〕1/〔X〕2 (1−2) 第m反応器 0〔X〕m/〔X〕m=xn−xn-1/1−xn・Cx+1−〔
X〕m−1/〔X〕m (1−3) 例えば第1反応器の重合率を30%、第2反応器
のそれを60%とし、Cx=22とすると、0 〔X〕1/〔X〕1=10.4、0〔X〕2/〔X〕2=15.5の
ように計算され、 (ただし、〔X〕1/〔X〕2=2とした)、(2)式から
決定される〔X〕1および〔X〕2の濃度を維持する
ためのメルカプタンの連続供給量はこれらの値の
それぞれ10.4倍および15.5倍であることがわか
る。このように目標の重合度を達成するため、メ
ルカプタンの連続的供給量を(1)式により決定し、
均一な重合度分布をもつた低重合度PVAc又は
PVAを多段式連続重合法により製造することは
従来全く知られていなかつたことである。 また本発明でn個の多段式連続重合装置による
VAcのメタノール溶液重合を行なう場合、各段
の反応器に対してメルカプタンを前式(1)に従つて
連続的に供給すると共に、最終反応器の出口以
降、ストリツピング工程に入るまでの間において
重合を僅かに進めることが極めて重要である。 これは殆んど完全にメルカプタンの消費を起さ
せ、回収率にメルカプタンが混入すること及び製
品にメルカプタンが混入することを防止するため
である。例えば反応器が1個の連続重合の場合を
例にとつて説明すると、反応器に連続的に供給さ
れるメルカプタンは大部分は消費されてはいるが
その一部は出口からVAcのストリツピング工程
に入ることになり、好ましくないことが起る。そ
のためこの場合は反応器出口からストリツピング
装置に入るまでの間で例えば配管中の滞留時間を
やや長くとり、この間で重合が僅かに進むように
することが必要である。 この場合の重合率は表示しにくいが残留する
VAcモノマーに対する重合率で表わすと5%以
上が必要である。より好ましくは10%以上とする
のがよい。この処理で残留するメルカプタンは激
減する。 本発明方法において使用される連続重合装置で
は反応器内の撹拌が十分に行なわれていることが
重要であるが、撹拌速度などは装置の容量、形態
などにより異なるものの通常工業的に行われてい
る方法では十分な撹拌速度下に反応液の還流が十
分に行われているので撹拌は十分になされている
ものと見て差し支えない。 本発明で用いられるメルカプタンはアルキルメ
ルカプタン、置換アルキルメルカプタンなどがあ
る。これらを例示するとn−プロピルメルカプタ
ン、sec−プロピルメルカプタン、n−ブチルメ
ルカプタン、sec−ブチルメルカプタン、t−ブ
チルメルカプタン、n−ベンチルメルカプタン、
n−ヘキシルメルカプタン、n−オクチルメルカ
プタン、n−デシルメルカプタン、n−ドデシル
メルカプタン、t−ドデシルメルカプタン、n−
ヘキサデシルメルカプタン、n−オクタデシルメ
ルカプタン、2−メルカプトエタノール、チオグ
リセロール、チオグリコール酸及びその塩、2−
メルカプトプロピオン酸及びその塩、3−メルカ
プトプロピオン酸及びその塩などがある。低沸点
のためやや制御しにくいがメチルメルカプタン、
エチルメルカプタンも使用可能である。これらは
1種又は2種以上が使用され得る。これらのメル
カプタンは単独又は重合溶剤などの不活性溶剤で
希釈されて連続的に供給される。ここでいう連続
とは必ずしも厳密な意味での連続である必要はな
く、脈流として加えられることなども包含され
る。上記メルカプタンは連鎖移動を受ける結果、
PVAcあるいはPVAの片末端に末端基として導
入されるので、導入されたメルカプタン残基を有
効に利用することもできる。かかる観点からはア
ルキル鎖長のできるだけ長いものを使用すると有
利な場合がある。又、メルカプタン残基が最終目
的生成物であるPVAの性質を損なつてはならな
い場合にはアルキル鎖長の短かいメルカプタン或
いは親水基で置換された置換アルキルメルカプタ
ンが有利に使用される。 本発明において溶媒としてメタノールが用いら
れる理由は前述した通り、VAcとの共沸による
蒸発潜熱で重合熱を制御しやすいこと、重合終了
後の脱VAc工程でメタノール蒸気を吹き込み、
PVAcのメタノール溶液としてケン化反応に供す
るのに有利であることなどの理由による。VAc
とメタノールの比率はとくに規定されるものでは
ないが、通常VAcが50重量%以上で連続的に供
給するのが有利である。重合開始剤はとくに規定
されるものではないがアゾビスイソブチロニトリ
ル(以下AIBNと略記することがある)のような
アゾ型開始剤が有利である。開始剤の量は当然の
ことながら重合速度に合せて適当量使用されるが
第1反応器に供給するのみでなく、重合速度によ
つては第2反応器以降に連続的に供給してもよ
い。 (1)式において〔X〕m、0〔X〕mは前述したよ
うに、それぞれ、m番目の反応器におけるメルカ
プタンのモル濃度及びm番目の反応器に供給され
るメルカプタンの第1反応器に供給するVAcと
メタノールとの総量に対するモル濃度を表わすが
この単位は重量であつてもよいことは無論であ
る。〔X〕mは(2)式で重合率xnを決めればCM
CP、CS、CXは定数であるからVAcモノマーの仮
想的初濃度との比で出てくる。VAcの仮想的初
濃度とは重合率0の時(連続重合ではこれは存在
しないのだが)のVAcの濃度のことであり、こ
れは実質的にはVAcと溶剤からなる溶液を考慮
した場合の値として計算されうる。したがつて
〔X〕mはこの仮想的VAc初濃度とのモル比とし
て計算され、続いて0〔X〕mが同様にして仮想的
VAc初濃度とのモル比として計算され、これら
は当然重量表示その他の方法で表示されることも
可能である。本発明で使用されるメルカプタンへ
の連鎖移動定数Cxはその文献値の数が少なく、
その値の信頼性にも問題がないとはいえないので
あらかじめ常法により求めておくことが望まし
く、この作業は当業者であればさほど困難なこと
ではない。 本発明方法においては0〔X〕m/〔X〕mは計
算され数値化されてしまうがその数値を極めて正
確に採用した場合のみが本発明の範囲に入るとい
うわけではない。この計算値からずれた場合には
目標とする重合度がずれることは当然であるが、
さらに重合度分布にも影響を与えることになる。
一定速度で供給さるべき0〔X〕mを意図的ないし
は偶然に変化させられた場合も同様に重合度及び
その分布が変化する。しかしながら高分子化学に
おいて採用している重合度及び重合度分布は綿密
な意味ではないので常識の範囲での重合度のず
れ、或いは重合度分布の変化は当然、本発明にお
いても考慮されて然るべきである。 本発明では重合の結果、得られるPVAcは公知
の方法でケン化され、PVAとなる。ケン化は完
全ケン化、部分ケン化いずれであつてもよく、と
くに制限されるものではない。 以下実施例をあげて本発明を具体的に説明する
が、本発明はこれらの実施例により何等制限され
るものではない。 実施例 1 一段式連続重合装置によるVAcのメタノール
溶液重合において、重合度200を目標として、条
件の設定を行なつた。即ち、VAc80重量%、メ
タノール約20重量%、AIBN0.05重量%(対
VAc)、重合率70%(x1=0.70)とすると(2)式よ
り〔X〕1/〔M〕0=0.530×10-4となる。(但しCx
=22とした)。(1−1)式より0〔X〕1/〔X〕1
52.3となり、連続添加するn−ドデシルメルカプ
タンとVAcとの重量比は65.1×10-4となる。以上
の設定に基づいて以下の実験を行なつた。VAc
を200部/時間、メタノールを50部/時間、
AIBNを0.100部/時間およびn−ドデシルメル
カプタン1.30部/時間を連続的に還流状態の反応
器中に導入し、液量を一定に保ちながら反応器外
に抜き出した重合率は70%に保つた。生成した
PVAcの重合度はアセトン中の粘度測定より186
であつた。反応器外で残留VAcを除去するため
にメタノール蒸気を吹き込んでPVAcのメタノー
ル溶液としたが、この操作に先立ち、重合系から
抜きとつた反応液を約60℃で15分間加熱状態にお
くことにより、残留するn−ドデシルメルカプタ
ンの消費操作を行なつた。この間の重合率は約4
%(残留するVAcに対して13.3%)であつた。
PVAcおよび常法によつてケン化して得たPVA
(重合度195)ではメルカプタン臭は感じられなか
つた。 比較例 1 実施例1におけるn−ドデシルメルカプタンの
連続供給量を1.2倍にする以外は実施例1と同様
にして酢酸ビニルの重合を行つた。結果を表1に
示す。 比較例 2 実施例1におけるn−ドデシルメルカプタンの
連続供給量を0.8倍にする以外は実施例1と同様
にして酢酸ビニルの重合を行つた。結果を表1に
併せて示す。
The present invention relates to a continuous method for producing low polymerization degree polyvinyl acetate (hereinafter abbreviated as PVAc) and low polymerization degree polyvinyl alcohol (hereinafter abbreviated as PVA) having a uniform polymerization degree distribution. More specifically, in the methanol solution polymerization of vinyl acetate (hereinafter abbreviated as VAc) using a multi-stage continuous polymerization apparatus consisting of n reactors (n1), mercaptan is determined by the following formula for each stage of the reactor.
A low polymerization degree polymer having a uniform degree of polymerization distribution is supplied continuously according to (1), and the polymerization is slightly advanced after the exit of the final reactor until entering the stripping process. The present invention relates to a method for continuously producing vinyl acetate, and a method for continuously producing polyvinyl alcohol with a uniform degree of polymerization, which comprises saponifying the PVAc by a conventional method. 0[X]m/[X]m=x n −x n-1 /1−x n・Cx+1− [X]m−1/[X]m ...(1) (However, [X] is mercaptan molar concentration, x
is the polymerization rate, Cx is the chain transfer constant to the mercaptan, the subscript m means the m-th reactor, and 0 [X]m is the amount of mercaptan supplied to the first reactor that is supplied to the m-th reactor. [X] m means the molar concentration of mercaptan in the m-th reactor, m is 1 mn, and when m = 1,
x n-1 = x 0 = 0, [X] m -1 = [X] 0 = 0. ) It has been known for some time that mercaptans can be applied to VAc polymerization systems, but all of them are based on the so-called batch polymerization method, and these methods have been used to achieve low polymerization degrees with a uniform polymerization degree distribution. It is not clear whether PVAc has been obtained or not, and there are no examples yet of it being applied to a multistage continuous polymerization method. The concept of supplying mercaptan to such a continuous polymerization system cannot be said to be particularly new, but in what proportion should mercaptan be supplied to each stage in order to obtain the desired degree of polymerization and a uniform distribution? This cannot be easily set even by those skilled in the art. In addition, in continuous solution polymerization in a solvent with a small chain transfer constant such as methanol used in the present invention, the degree of polymerization is less than 500.
It is extremely difficult to efficiently produce PVAc, and it is common knowledge that the concentration of VAc must be lowered to 50% or less, or that the concentration of PVAc in the reaction solution must be significantly increased. This was not desirable because it caused a decline in productivity. Even if such a method is used, the degree of polymerization is less than 300, especially less than 200.
It is no exaggeration to say that manufacturing PVAc, and by extension PVA, is extremely difficult and industrially impossible. As a polymerization solvent for VAc, the chain transfer constant is 20×
10 -4 or higher (e.g. ethanol,
A method has been proposed for producing low polymerization degree PVA by using isopropanol, etc.) However, using methanol as a polymerization solvent is extremely advantageous for the following reasons, and it is difficult to industrially use anything other than methanol. This will significantly increase the manufacturing cost of PVA. That is, the role of methanol is primarily to control the polymerization temperature, and the heat of polymerization is removed by azeotroping between VAc and methanol, and the azeotropic temperature is about 60°C, which is important for the properties of the obtained PVA. It provides a preferred temperature.
Second, a large amount of unpolymerized VAc remains in the methanol solution of PVAc after polymerization.
Azeotropy with methanol is also effectively used to remove VAc. The third and most important point is that when PVA is produced from PVAc by saponification, a methanol solution of PVAc is an essential condition. This is because the saponification reaction is methanolysis of the acetyl group in PVAc with methanol, and the alkali only plays the role of a catalyst. Therefore, if a solvent other than methanol is used as the polymerization solvent, complicated operations such as replacing the solvent with methanol will be required during saponification. in this way
When producing PVA industrially, it is clearly disadvantageous to use solvents other than methanol during the polymerization of VAc. It is a well-known fact that when a substance that causes severe chain transfer, such as a mercaptan, is added to a polymerization system, the degree of polymerization is generally drastically reduced.
However, in the case of polymerization of VAc, the inventors have quite surprisingly found that the degree of polymerization does not decrease as calculated. For example, to produce PVAc with a degree of polymerization of 100 using n-butyl mercaptan in a batch polymerization method, if the chain transfer constant (hereinafter abbreviated as Cx) of n-butyl mercaptan is 50 (literature value), the mercaptan and VAc The molar ratio of
Theory teaches that it is sufficient to set the value to 10 -4 . So, with that concentration of n-butyl mercaptan,
In addition to VAc and methanol (70/30 weight ratio), 0.016% by weight of azobisisobutyronitrile (hereinafter abbreviated as AIBN) was added, and polymerization was carried out at 60°C.
After 3 hours, the polymerization was stopped, and the polymer was taken out by a conventional method (polymerization rate: 51%), and the degree of polymerization was measured, and it was found to be 1772. The inventors have measured that the Cx of n-butyl mercaptan is more correct when it is 22 than 50, but even taking this into account, the degree of polymerization should be about 230 under the above conditions.
It is true that the degree of polymerization is lower than the degree of polymerization of 1900 in the absence of mercaptan, but the degree is small, and the difference from the target degree of polymerization of 100 (or 230) is too large to be a problem. When comparing theory and practice in radical polymerization, it is common practice to keep the polymerization rate below 10%. Therefore, the present inventors also shortened the polymerization time to 30 minutes and measured the degree of polymerization in the same manner, and found that it was 1382. In this case, it must have come a little closer to the theoretical value, but it must be said that the difference from the theoretical value of 100 (or 230) is too large. The present inventors investigated the polymer thus produced, and found that a polymer having a polymerization degree of up to 2%, which is quite close to the theoretical level, and having n-butyl mercaptan residues at the terminals was obtained. When the polymerization rate exceeds 10%, almost no n-butyl mercaptan exists in the polymerization system, and n-butyl mercaptan is present at the ends of the resulting polymer.
Almost no butyl mercaptan residues are present,
Therefore, approximately 80% of a polymer with a polymerization rate of 51% is a polymer that is not affected by mercaptan (it does not contain mercaptan residues at the terminals and the degree of polymerization has not decreased), and it contains only a small amount of low polymerization degree substances. It has become clear that there are only a few. It must be noted that even in the simplest polymerization system, batch polymerization, the influence of mercaptans is thus complex. The present invention applies a mercaptan that exhibits such complicated behavior to a continuous polymerization system, has a desired degree of polymerization, and has mercaptan residues at the terminals in a predetermined proportion.
PVA that contains a sufficient amount of PVA and has a narrow polymerization degree distribution
The goal is to ultimately provide a method for manufacturing. In the methanol solution polymerization of VAc using a multi-stage continuous polymerization apparatus having n reactors (n1), the present invention uses mercaptans as a chain transfer agent to produce low polymerization degree PVAc with a uniform degree of polymerization distribution. Furthermore, in a method for producing low polymerization degree PVA having a uniform degree of polymerization distribution by saponifying the PVAc by a conventional method, mercaptan is continuously added to each stage of the reactor according to the following formula (1). It is characterized in that the polymerization is carried out slightly after the exit of the final reactor and before entering the stripping process. 0[X]m/[X]m=x n −x n-1 /1−x n・Cx+1−[
X]m-1/[X]m (where, [X] is the molar concentration of mercaptan, x
is the polymerization rate, Cx is the chain transfer constant to mercaptan, the subscript m means the m-th reactor, and 0
[X]m means the molar concentration of the mercaptan supplied to the m-th reactor relative to the total amount of vinyl acetate and methanol supplied to the first reactor, and [X]m means the molar concentration of the mercaptan in the m-th reactor. Then, m is 1 mm, and when m=1,
x n-1 = x 0 = 0, [X] m -1 = [X] 0 = 0. ) Now, in continuous polymerization, the polymerization rate in the first reactor is x 1 ,
If the polymerization rate in the second reactor is expressed as x 2 and the polymerization rate in the m-th reactor is expressed as x n , then the degree of polymerization P of PVAc produced by continuous polymerization in each reactor is
can be expressed by the following equation (2), and from this, the concentrations of mercaptans (expressed as [X] 1 , [X] 2 , and [X]m) can be calculated. 1/P=C M +x n /1-x n C P +1/1-x n C S [S]/[M
] 0 + 1 / 1 x n C S]
is the concentration of the solvent, [M] 0 is the initial concentration of the hypothetical VAc monomer, and [X]m is the concentration of mercaptan in the mth reactor. ) However, even if the concentration in each reactor is known, it is not easy to determine the conditions for supplying mercaptan to each reactor in order to keep the concentration constant. As a result of intensive research on this point, the present inventors have discovered that the object can be achieved by supplying mercaptan according to formula (1), and have arrived at the present invention.
Equation (1) can be rewritten more specifically as follows. First reactor 0 [X] 1 / [X] 1 = x 1 / 1-x 1・Cx+
1 (1-1) Second reactor 0 [X] 2 / [X] 2 = x 2 - x 1 / 1 - x 2・Cx
+1- [X] 1 / [X] 2 (1-2) mth reactor 0 [X] m / [X] m = x n -x n-1 /1-x n・Cx + 1- [
X]m-1/[X]m (1-3) For example, if the polymerization rate in the first reactor is 30% and that in the second reactor is 60%, and Cx = 22, then 0 [X] 1 / It is calculated as [X] 1 = 10.4, 0 [X] 2 / [X] 2 = 15.5 (however, [X] 1 / [X] 2 = 2), and determined from equation (2). It can be seen that the continuous feed rate of mercaptan to maintain the concentrations of [X] 1 and [X] 2 is 10.4 and 15.5 times these values, respectively. In order to achieve the target degree of polymerization, the continuous supply amount of mercaptan is determined by formula (1),
Low polymerization degree PVAc with uniform polymerization degree distribution or
It was completely unknown in the past to produce PVA by a multi-stage continuous polymerization method. In addition, in the present invention, n multi-stage continuous polymerization devices are used.
When performing methanol solution polymerization of VAc, mercaptan is continuously supplied to each stage of the reactor according to the above formula (1), and the polymerization is carried out after the exit of the final reactor until entering the stripping process. It is extremely important to make slight advances in This is to cause almost complete consumption of the mercaptan and to prevent mercaptan from contaminating the recovery rate and the product. For example, in the case of continuous polymerization with one reactor, most of the mercaptan that is continuously supplied to the reactor is consumed, but some of it is sent from the outlet to the VAc stripping process. You will enter, and something undesirable will happen. Therefore, in this case, it is necessary to allow, for example, a slightly longer residence time in the piping from the reactor outlet to the stripping device, so that polymerization can proceed slightly during this time. The polymerization rate in this case is difficult to display, but it remains.
Expressed as a polymerization rate with respect to VAc monomer, it is necessary to have a polymerization rate of 5% or more. More preferably, it is 10% or more. This treatment drastically reduces the amount of mercaptan remaining. In the continuous polymerization apparatus used in the method of the present invention, it is important that the inside of the reactor be sufficiently stirred. Although the stirring speed etc. differ depending on the capacity and form of the apparatus, it is not normally carried out industrially. In the method described above, the reaction solution is sufficiently refluxed at a sufficient stirring speed, so it can be considered that the stirring is sufficient. Mercaptans used in the present invention include alkyl mercaptans and substituted alkyl mercaptans. Examples of these include n-propyl mercaptan, sec-propyl mercaptan, n-butyl mercaptan, sec-butyl mercaptan, t-butyl mercaptan, n-bentyl mercaptan,
n-hexyl mercaptan, n-octyl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-
Hexadecyl mercaptan, n-octadecyl mercaptan, 2-mercaptoethanol, thioglycerol, thioglycolic acid and its salts, 2-
Examples include mercaptopropionic acid and its salts, 3-mercaptopropionic acid and its salts, and the like. Methyl mercaptan, which is somewhat difficult to control due to its low boiling point,
Ethyl mercaptan can also be used. These may be used alone or in combination of two or more. These mercaptans are continuously supplied alone or diluted with an inert solvent such as a polymerization solvent. Continuity here does not necessarily have to be continuous in the strict sense, but also includes being added as a pulsating flow. As a result of the above mercaptan undergoing chain transfer,
Since it is introduced as a terminal group at one end of PVAc or PVA, the introduced mercaptan residue can be effectively utilized. From this point of view, it may be advantageous to use an alkyl chain having as long a length as possible. Furthermore, when the mercaptan residue must not impair the properties of the final target product, PVA, a mercaptan with a short alkyl chain length or a substituted alkyl mercaptan substituted with a hydrophilic group is advantageously used. As mentioned above, methanol is used as a solvent in the present invention because it is easy to control the polymerization heat due to the latent heat of vaporization due to azeotropy with VAc, and because methanol vapor is blown in during the VAc removal step after polymerization,
This is because it is advantageous for saponification reaction as a methanol solution of PVAc. VAc
Although the ratio of VAc and methanol is not particularly specified, it is usually advantageous to continuously supply VAc at 50% by weight or more. Although the polymerization initiator is not particularly limited, an azo type initiator such as azobisisobutyronitrile (hereinafter sometimes abbreviated as AIBN) is advantageous. Naturally, the appropriate amount of initiator is used depending on the polymerization rate, but it can be supplied not only to the first reactor but also continuously to the second and subsequent reactors depending on the polymerization rate. good. In equation (1), [X]m, 0 [X]m are the molar concentration of mercaptan in the m-th reactor and the mercaptan in the first reactor supplied to the m-th reactor, respectively, as described above. Although it represents the molar concentration relative to the total amount of VAc and methanol to be supplied, it goes without saying that the unit may be weight. [X]m is C M if the polymerization rate x n is determined by equation (2),
Since C P , C S , and C X are constants, they are expressed as a ratio to the virtual initial concentration of VAc monomer. The hypothetical initial concentration of VAc is the concentration of VAc when the polymerization rate is 0 (this does not exist in continuous polymerization), and this is essentially the concentration of VAc when considering a solution consisting of VAc and solvent. It can be calculated as a value. Therefore, [X]m is calculated as the molar ratio with this virtual VAc initial concentration, and then 0 [X]m is similarly calculated as the virtual VAc initial concentration.
It is calculated as a molar ratio to the initial concentration of VAc, and these can of course be expressed by weight or other methods. The chain transfer constant Cx to the mercaptan used in the present invention has a small number of literature values;
Since the reliability of this value is not without problems, it is desirable to obtain it in advance using a conventional method, and this task is not very difficult for those skilled in the art. In the method of the present invention, 0 [X]m/[X]m is calculated and converted into a numerical value, but the scope of the present invention does not necessarily apply only when this numerical value is employed extremely accurately. It is natural that the target degree of polymerization will deviate if it deviates from this calculated value, but
Furthermore, it will also affect the polymerization degree distribution.
If 0 [X]m, which should be supplied at a constant rate, is changed intentionally or by chance, the degree of polymerization and its distribution will similarly change. However, the degree of polymerization and the distribution of the degree of polymerization adopted in polymer chemistry do not have a precise meaning, so deviations in the degree of polymerization or changes in the degree of polymerization within the range of common sense should naturally be taken into consideration in the present invention. be. In the present invention, PVAc obtained as a result of polymerization is saponified by a known method to become PVA. Saponification may be either complete saponification or partial saponification, and is not particularly limited. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited in any way by these Examples. Example 1 In the methanol solution polymerization of VAc using a one-stage continuous polymerization apparatus, conditions were set with the aim of achieving a degree of polymerization of 200. That is, VAc 80% by weight, methanol approximately 20% by weight, AIBN 0.05% by weight (relative to
VAc), and the polymerization rate is 70% (x 1 =0.70), then from equation (2), [X] 1 /[M] 0 =0.530×10 -4 . (However, Cx
= 22). From formula (1-1), 0 [X] 1 / [X] 1 =
52.3, and the weight ratio of continuously added n-dodecyl mercaptan to VAc is 65.1×10 −4 . The following experiment was conducted based on the above settings. VAc
200 parts/hour, methanol 50 parts/hour,
0.100 parts/hour of AIBN and 1.30 parts/hour of n-dodecyl mercaptan were continuously introduced into the reactor under reflux, and the polymerization rate was maintained at 70% while keeping the liquid volume constant. . generated
The degree of polymerization of PVAc is 186 from viscosity measurement in acetone.
It was hot. In order to remove the residual VAc outside the reactor, methanol vapor was blown into the methanol solution of PVAc. Prior to this operation, the reaction solution removed from the polymerization system was heated at approximately 60°C for 15 minutes. , the remaining n-dodecyl mercaptan was consumed. The polymerization rate during this period was approximately 4
% (13.3% based on residual VAc).
PVAc and PVA obtained by saponification by conventional methods
(degree of polymerization: 195), no mercaptan odor was detected. Comparative Example 1 Vinyl acetate was polymerized in the same manner as in Example 1, except that the continuous supply amount of n-dodecylmercaptan was increased by 1.2 times. The results are shown in Table 1. Comparative Example 2 Vinyl acetate was polymerized in the same manner as in Example 1 except that the continuous supply amount of n-dodecylmercaptan was increased by 0.8 times. The results are also shown in Table 1.

【表】 比較例 3 実施例1のn−ドデシルメルカプタンを連続供
給する代わりに、全仕込み総量を5分割して間ケ
ツ的に供給する以外は実施例1と同様にして酢酸
ビニルを重合したところ、生成PVAcの重合度は
1200と極めて大きくなり、目標重合度200の低重
合度PVAcは得られなかつた。 実施例 2 二段式連続重合装置を用いて重合度100のPVA
を得ることを目標に以下の実験を行なつた。先ず
条件としてVAc70重量%、メタノール約30重量
%、第1反応器の重合率40%(x1=0.40)、第2
反応器の重合率80%(x2=0.80)と設定し、(2)式
を用いてn−ドデシルメルカプタンとVAcとの
モル比を計算すると、第1反応器では〔X〕1
〔M〕0=2.53×10-4、第2反応器では〔X〕2
〔M〕0=0.714×10-4となる。(1−1)式から第
1反応器に供給されるn−ドデシルメルカプタン
と第1反応器に存在するn−ドデシルメルカプタ
ンとの比(0〔X〕1/〔X〕1)は15.7と計算され、
同じく(1−2)式から第2反応器に供給される
n−ドデシルメルカプタンと第2反応器に存在す
るn−ドデシルメルカプタンとの比(0〔X〕2
〔X〕2)は41.5と計算される。これらより、0〔X〕
/〔M〕0=39.7×10-40〔X〕2/〔M〕0=29.7×
10-4(いずれもモル比)となり、重量比ではそれ
ぞれ93.3×10-4および69.5×10-4となる。 以上の設定条件に基づき、VAc200部/時間、
メタノール85.7部/時間、AIBN0.05部/時間及
びn−ドデシルメルカプタン1.87部/時間を連続
的に還流状態の第1反応器中に導入し、液量を一
定に保ちながら第2反応器に送液した。第2反応
器にはn−ドデシルメルカプタン1.39部/時間を
連続的に供給した。第1反応器、第2反応器出口
での重合度(アセトン中で測定したPVAcの)は
それぞれ97、93であり、反応の初期を除いて比較
的安定していた。 第2反応器から抜きとつた反応液を約60℃で20
分間加熱状態におくことにより、残留するn−ド
デシルメルカプタンの消費操作を行なつた。この
間の重合率は約3%(残留するVAcに対し15%)
であつた。残留VAcを除去するためにメタノー
ル蒸気を吹き込んでPVAcのメタノール溶液を
得、常法によりケン化してPVA(重合度103)を
えたが、メルカプタン臭は感じられなかつた。 実施例 3 一段式連続重合装置によるVAcのメタノール
溶液重合においてVAc75重量%、メタノール約
25重量%、AIBN0.037重量%(対VAc)の連続
仕込条件で重合度550のPVAを得るための実験を
行なつた。第1反応器の重合率を70%(x1
0.70)とした。(2)式から第1反応器の2−メルカ
プトエタノール(CX=22をあらかじめ求めた)
とVAcとのモル比を算出すると、0.078×10-4
なる(ただし、CM=CP=CS=2×10-4を用い
た)。(1−1)式より0〔X〕1/〔X〕1=52.3とな
り、これより第1反応器に連続仕込みされる2−
メルカプトエタノールと、第1反応器中のそれと
の比が求まるので、0.078×10-4×52.3=4.1×
10-4が供給されるVAcとのモル比となる。重量
換算するとVAcとの重量比は3.7×10-4となる。 以上の設定にしたがつて以下のようにして実験
を行なつた。第1反応器にVAcモノマーを440
部/時間、メタノールを147部/時間、AIBNを
0.163部/時間、2−メルカプトエタノールを
0.25部/時間(但しメタノールと混合して供給)
の速度で連続的に仕込み、液量を一定に保ちなが
ら第1反応器から反応液を系外に抜きとつた。 第1反応器の出口でのサンプリングの結果、滞
留時間の1〜1.5倍付近で重合率はほぼ一定とな
り70%となつた。重合度(PVAにしてからの粘
度測定による)は530であつた。反応器外で反応
終了後の反応液から残存するVAcを除去するた
めにメタノール蒸気を吹き込んでPVAcのメタノ
ール溶液としたが、この操作に先立ち、重合系か
ら抜きとつた反応液を約60℃で20分間加熱状態に
しておくことにより残留する2−メルカプトエタ
ノールの消費操作を行なつた。この間の重合率は
約3%(残留するVAcに対して10%)であつた。 PVAcおよび常法によつてケン化してえた
PVA(重合度560)ではメルカプタン臭は感じら
れなかつた。
[Table] Comparative Example 3 Vinyl acetate was polymerized in the same manner as in Example 1, except that instead of continuously supplying n-dodecyl mercaptan as in Example 1, the total charge was divided into 5 parts and supplied intermittently. , the degree of polymerization of the produced PVAc is
1200, which was extremely large, and a low polymerization degree PVAc of the target polymerization degree of 200 could not be obtained. Example 2 PVA with a polymerization degree of 100 using a two-stage continuous polymerization device
The following experiments were conducted with the aim of obtaining the following. First, the conditions are VAc 70% by weight, methanol approximately 30% by weight, polymerization rate of the first reactor 40% (x 1 = 0.40), second reactor
When the polymerization rate of the reactor is set to 80% (x 2 = 0.80) and the molar ratio of n-dodecyl mercaptan to VAc is calculated using equation (2), in the first reactor, [X] 1 /
[M] 0 = 2.53×10 -4 , [X] 2 / in the second reactor
[M] 0 = 0.714×10 -4 . From equation (1-1), the ratio ( 0 [X] 1 / [X] 1 ) of n-dodecyl mercaptan supplied to the first reactor and n-dodecyl mercaptan present in the first reactor is calculated to be 15.7. is,
Similarly, from equation (1-2), the ratio of n-dodecyl mercaptan supplied to the second reactor to n-dodecyl mercaptan present in the second reactor ( 0 [X] 2 /
[X] 2 ) is calculated as 41.5. From these, 0 [X]
1 / [M] 0 = 39.7×10 -4 , 0 [X] 2 / [M] 0 = 29.7×
10 -4 (both molar ratios), and the weight ratios are 93.3 x 10 -4 and 69.5 x 10 -4 , respectively. Based on the above setting conditions, VAc200 copies/hour,
85.7 parts/hour of methanol, 0.05 parts/hour of AIBN, and 1.87 parts/hour of n-dodecyl mercaptan were continuously introduced into the first reactor under reflux, and then sent to the second reactor while keeping the liquid volume constant. It liquefied. 1.39 parts/hour of n-dodecyl mercaptan was continuously fed to the second reactor. The degrees of polymerization (PVAc measured in acetone) at the exits of the first reactor and second reactor were 97 and 93, respectively, and were relatively stable except for the initial stage of the reaction. The reaction solution taken out from the second reactor was heated to about 60℃ for 20 minutes.
The remaining n-dodecyl mercaptan was consumed by heating for a minute. The polymerization rate during this period is approximately 3% (15% relative to the remaining VAc)
It was hot. To remove residual VAc, methanol vapor was blown into the solution to obtain a methanol solution of PVAc, which was then saponified by a conventional method to obtain PVA (degree of polymerization 103), but no mercaptan odor was detected. Example 3 In methanol solution polymerization of VAc using a single-stage continuous polymerization device, VAc was 75% by weight and methanol was approx.
An experiment was conducted to obtain PVA with a degree of polymerization of 550 under continuous charging conditions of 25% by weight of AIBN and 0.037% by weight of AIBN (relative to VAc). The polymerization rate in the first reactor was set to 70% (x 1 =
0.70). 2-mercaptoethanol (C x = 22 was determined in advance) in the first reactor from equation (2)
The molar ratio between Vac and VAc is calculated to be 0.078×10 −4 (C M = C P = C S = 2×10 −4 was used). From formula (1-1), 0 [X] 1 / [X] 1 = 52.3, and from this, 2-
The ratio of mercaptoethanol to that in the first reactor is determined, so 0.078×10 -4 ×52.3=4.1×
10 -4 is the molar ratio to the supplied VAc. When converted to weight, the weight ratio to VAc is 3.7×10 -4 . In accordance with the above settings, an experiment was conducted as follows. Add 440% VAc monomer to the first reactor.
parts/hour, methanol 147 parts/hour, AIBN
0.163 parts/hour, 2-mercaptoethanol
0.25 parts/hour (supplied mixed with methanol)
The reaction solution was continuously charged at a rate of 1, and the reaction solution was drawn out of the system from the first reactor while keeping the amount of the solution constant. As a result of sampling at the outlet of the first reactor, the polymerization rate became almost constant at 70% around 1 to 1.5 times the residence time. The degree of polymerization (measured by viscosity measurement after conversion to PVA) was 530. In order to remove the remaining VAc from the reaction solution after the reaction was completed outside the reactor, methanol vapor was blown into the solution of PVAc in methanol. The remaining 2-mercaptoethanol was consumed by heating it for 20 minutes. The polymerization rate during this period was about 3% (10% based on the remaining VAc). Obtained by saponification using PVAc and conventional methods
No mercaptan odor was detected in PVA (degree of polymerization 560).

Claims (1)

【特許請求の範囲】 1 n個(ただしn1)の反応器からなる多段
式連続重合装置による酢酸ビニルのメタノール溶
液重合において、各段の反応器に対してメルカプ
タンを次式(1)に従つて連続的に供給し、かつ最終
反応器の出口以降、ストリツピング工程に入るま
での間において重合を僅かに進めることを特徴と
する、均一な重合度分布を有する低重合度ポリ酢
酸ビニルの連続的製造方法。 0〔X〕m/〔X〕m=xn−xn-1/1−xn・Cx+1− 〔X〕m−1/〔X〕m ……(1) ただし、〔X〕はメルカプタンのモル濃度、x
は重合率、Cxはメルカプタンへの連鎖移動定数
を表わし、添字mはm番目の反応器を意味し、0
〔X〕mはm番目の反応器に供給するメルカプタ
ンの第1反応器に供給する酢酸ビニルとメタノー
ルとの総量に対するモル濃度、〔X〕mはm番目
の反応器におけるメルカプタンのモル濃度を意味
し、mは1mnであり、m=1の場合には
xn-1=x0=0、〔X〕m-1=〔X〕0=0である。 2 最終反応器の出口以降、ストリツピング工程
に入るまでの間における重合が、最終反応器の出
口における未反応酢酸ビニルモノマーに対する重
合率で表わして5%以上である、特許請求の範囲
第1項に記載の均一な重合度分布を有する低重合
度ポリ酢酸ビニルの連続的製造方法。 3 n個(ただしn1)の反応器からなる多段
式連続重合装置による酢酸ビニルのメタノール溶
液重合において、各段の反応器に対してメルカプ
タンを次式(1)に従つて連続的に供給し、かつ最終
反応器の出口以降、ストリツピング工程に入るま
での間において重合を僅かに進めることによつて
均一な重合度分布を有する低重合度ポリ酢酸ビニ
ルを得、次いで常法によりケン化することからな
る均一な重合度分布を有する低重合度ポリビニル
アルコールの連続的製造方法。 0〔X〕m/〔X〕m=xn−xn-1/1−xn・Cx+1− 〔X〕m−1/〔X〕m ……(1) ただし、〔X〕はメルカプタンのモル濃度、x
は重合率、Cxはメルカプタンへの連鎖移動定数
を表わし、添字mはm番目の反応器を意味し、0
〔X〕mはm番目の反応器に供給するメルカプタ
ンの第1反応器に供給する酢酸ビニルとメタノー
ルとの総量に対するモル濃度、〔X〕mはm番目
の反応器におけるメルカプタンのモル濃度を意味
し、mは1mnであり、m=1の場合には
xn-1=x0=0、〔X〕m-1=〔X〕0=0である。 4 最終反応器の出口以降、ストリツピング工程
に入るまでの間における重合が、最終反応器の出
口における未反応酢酸ビニルモノマーに対する重
合率で表わして5%以上である、特許請求の範囲
第3項に記載の均一な重合度分布を有する低重合
度ポリビニルアルコールの連続的製造方法。
[Claims] 1 In methanol solution polymerization of vinyl acetate in a multi-stage continuous polymerization apparatus consisting of n reactors (n1), mercaptan is added to each stage of the reactor according to the following formula (1). Continuous production of low degree of polymerization polyvinyl acetate having a uniform degree of polymerization distribution, characterized by supplying continuously and slightly advancing polymerization after the exit of the final reactor until entering the stripping process. Method. 0[X]m/[X]m=x n −x n-1 /1−x n・Cx+1− [X]m−1/[X]m ...(1) However, [X] is the mercaptan. Molar concentration, x
is the polymerization rate, Cx is the chain transfer constant to mercaptan, the subscript m means the m-th reactor, and 0
[X]m means the molar concentration of the mercaptan supplied to the m-th reactor relative to the total amount of vinyl acetate and methanol supplied to the first reactor, and [X]m means the molar concentration of the mercaptan in the m-th reactor. Then, m is 1mn, and when m=1,
x n-1 = x 0 = 0, [X] m -1 = [X] 0 = 0. 2. According to claim 1, the polymerization after the exit of the final reactor until entering the stripping step is 5% or more, expressed as a polymerization rate with respect to unreacted vinyl acetate monomer at the exit of the final reactor. A method for continuously producing polyvinyl acetate having a uniform degree of polymerization as described above. 3. In methanol solution polymerization of vinyl acetate in a multi-stage continuous polymerization apparatus consisting of n (n1) reactors, mercaptan is continuously supplied to each stage of the reactor according to the following formula (1), In addition, by slightly advancing the polymerization after the exit of the final reactor until entering the stripping process, low polymerization degree polyvinyl acetate having a uniform degree of polymerization distribution is obtained, and then saponification is performed by a conventional method. A method for continuously producing low polymerization degree polyvinyl alcohol having a uniform degree of polymerization distribution. 0[X]m/[X]m=x n −x n-1 /1−x n・Cx+1− [X]m−1/[X]m ...(1) However, [X] is the mercaptan. Molar concentration, x
is the polymerization rate, Cx is the chain transfer constant to mercaptan, the subscript m means the m-th reactor, and 0
[X]m means the molar concentration of the mercaptan supplied to the m-th reactor relative to the total amount of vinyl acetate and methanol supplied to the first reactor, and [X]m means the molar concentration of the mercaptan in the m-th reactor. Then, m is 1mn, and when m=1,
x n-1 = x 0 = 0, [X] m -1 = [X] 0 = 0. 4. According to claim 3, the polymerization after the exit of the final reactor until entering the stripping step is 5% or more expressed as a polymerization rate with respect to unreacted vinyl acetate monomer at the exit of the final reactor. A method for continuously producing polyvinyl alcohol having a uniform degree of polymerization as described above.
JP18332480A 1980-12-23 1980-12-23 Continuous preparation of polyvinyl acetate and polyvinyl alcohol having low polymerization degree Granted JPS57105410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18332480A JPS57105410A (en) 1980-12-23 1980-12-23 Continuous preparation of polyvinyl acetate and polyvinyl alcohol having low polymerization degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18332480A JPS57105410A (en) 1980-12-23 1980-12-23 Continuous preparation of polyvinyl acetate and polyvinyl alcohol having low polymerization degree

Publications (2)

Publication Number Publication Date
JPS57105410A JPS57105410A (en) 1982-06-30
JPH0140044B2 true JPH0140044B2 (en) 1989-08-24

Family

ID=16133706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18332480A Granted JPS57105410A (en) 1980-12-23 1980-12-23 Continuous preparation of polyvinyl acetate and polyvinyl alcohol having low polymerization degree

Country Status (1)

Country Link
JP (1) JPS57105410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895770A1 (en) 2020-04-14 2021-10-20 Azone Co., Ltd. Connecting structure for plate members and assembly using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349023A (en) * 1991-12-12 1994-09-20 Kuraray Co., Ltd. Vinyl alcohol copolymer having terminal amino group
DE10215961A1 (en) 2002-04-11 2003-10-30 Wacker Polymer Systems Gmbh Process for the production of solid polyvinyl ester resin
CN104619730B (en) 2012-07-19 2016-06-15 株式会社可乐丽 The manufacture method of dispersion stabilizer for suspension polymerization and vinyl resin
TWI616458B (en) 2013-08-07 2018-03-01 Kuraray Co., Ltd. Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
CN105452308B (en) 2013-08-07 2017-03-15 株式会社可乐丽 Dispersion stabilizer for suspension polymerization and the manufacture method of vinyl resin
JP6292816B2 (en) * 2013-10-18 2018-03-14 東亞合成株式会社 Semiconductor wetting agent and polishing composition
CN104086682B (en) * 2014-07-03 2016-03-09 苏州大学 A kind of method of synthesizing the polyvinyl acetate (PVA) of high molecular and narrow molecular weight distributions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425990A (en) * 1977-07-28 1979-02-27 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinyl compound
JPS5728121A (en) * 1980-07-28 1982-02-15 Kuraray Co Ltd Production of low polymerization-degree polyvinyl acetate and low polymerization-degree polyvinyl alcohol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425990A (en) * 1977-07-28 1979-02-27 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinyl compound
JPS5728121A (en) * 1980-07-28 1982-02-15 Kuraray Co Ltd Production of low polymerization-degree polyvinyl acetate and low polymerization-degree polyvinyl alcohol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895770A1 (en) 2020-04-14 2021-10-20 Azone Co., Ltd. Connecting structure for plate members and assembly using the same
US11221035B2 (en) 2020-04-14 2022-01-11 Azone Co., Ltd. Connecting structure for plate members and assembly using the same

Also Published As

Publication number Publication date
JPS57105410A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
US5484850A (en) Copolymers crosslinkable by a free radical method
JP5032498B2 (en) Method for free radical polymerization of vinyl monomers
JPS6377909A (en) Production of molding material from monomer mixture
US5530080A (en) Polymethacrylate molding compound with high heat deflection temperature and stability against thermal degradation
JPH0140044B2 (en)
CN110198960B (en) Alkali-soluble resin, method for preparing the same, and emulsion polymer comprising the same
JP2007520584A (en) Production of vinyl alcohol copolymer
EP3655387B1 (en) Ch-acidic methacrylic esters for the preparation of aqueous polymer dispersions
US3547857A (en) Continuous emulsion polymerization of styrene and acrylonitrile by addition of monomers in plural stages with all of emulsifier added in first stage
JPH0140043B2 (en)
GB1365557A (en) Process for preparing graft copolymer emulsions
JPH0322401B2 (en)
JPS61247712A (en) Emulsion polymerization method and polymer formed by said method
JPH04226504A (en) Polymer of olefinically unsaturated monomer, solution of this polymer, and pressure-sensitive adhesive
US2570253A (en) Stable aqueous dispersions of copolymers of vinyl esters, neutral ethylenic polyesters, and acrylic acid, and method of making
EP0545947B1 (en) Process for making ethanol solutions of alkyl half-esters of copolymers of maleic anhydride and a c 1-c 4 alkyl vinyl ether
JPH0713094B2 (en) Method for producing ultra low molecular weight polyvinyl alcohol
US2422754A (en) Preparation of polyvinyl acetal resins
US2852499A (en) Process for making terpolymers of vinyl chloride, vinyl acetate, and vinyl alcohol
US4713429A (en) Method for production of copolymer of vinyl cyanide compound and aromatic vinyl compound
US3401153A (en) Polymerization process for preparing homogeneous vinylidene aromaticmaleic compound copolymers
JP2001233912A (en) Manufacturing method of methacrylic polymer
EP0466824A4 (en) Solution copolymerization process of maleic anhydride and alkyl vinyl ether
US20050148745A1 (en) Process for the preparation of a copolymer of maleic anhydride and an alkyl vinyl ether, copolymers of maleic anhydride and an alkyl vinyl ether and an apparatus
US2326048A (en) Process for preparing polyvinyl acetal resins