JPH0139571B2 - - Google Patents

Info

Publication number
JPH0139571B2
JPH0139571B2 JP57108340A JP10834082A JPH0139571B2 JP H0139571 B2 JPH0139571 B2 JP H0139571B2 JP 57108340 A JP57108340 A JP 57108340A JP 10834082 A JP10834082 A JP 10834082A JP H0139571 B2 JPH0139571 B2 JP H0139571B2
Authority
JP
Japan
Prior art keywords
bso
light
bgo
ppm
hologram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57108340A
Other languages
Japanese (ja)
Other versions
JPS59151A (en
Inventor
Koji Tada
Miki Kuhara
Masami Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10834082A priority Critical patent/JPS59151A/en
Publication of JPS59151A publication Critical patent/JPS59151A/en
Publication of JPH0139571B2 publication Critical patent/JPH0139571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/725Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Holo Graphy (AREA)

Description

【発明の詳細な説明】 本発明は高感度で書き替え可能なホログラム記
録材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly sensitive and rewritable hologram recording material.

ArレーザやHe―Neレーザを用いたホログラ
ムの記録再生は、高密度の画像処理や画像メモリ
ーとして有用であり、主として写真乾板を用いて
行われている。しかし写真乾板は現象、定着の工
程が必要であり、リアルタイムの画像処理には適
していない。また再使用できないことも欠点であ
る。
Recording and reproducing holograms using Ar lasers or He-Ne lasers is useful for high-density image processing and image memory, and is mainly performed using photographic plates. However, photographic plates require development and fixing processes, and are not suitable for real-time image processing. Another disadvantage is that it cannot be reused.

リアルタイムで再使用可能な材料として、サー
モプラスチツクを用いた記録材料が使用されてい
るが、熱的変形を利用するため、寿命が短く、湿
気に弱い等の欠点がある。
Recording materials using thermoplastics are used as materials that can be reused in real time, but because they utilize thermal deformation, they have short lifespans and are susceptible to moisture.

これに対して最近の研究によつて誘電体材料た
とえばLiNbO3,SBNなどの材料は不純物を添加
することにより、リアルタイムで使用可能なホロ
グラム記録材料となることが知られている。
On the other hand, recent research has revealed that by adding impurities to dielectric materials such as LiNbO 3 and SBN, they can be used as hologram recording materials that can be used in real time.

本発明のビスマス.シリコン.オキサイド
(Bi12SiO20,以下BSOと略す)、ビスマス.ゲル
マニウム.オキサイド(Bi12GeO20、以下BGOと
略す)は何ら元素を添加しなくとも顕著な光伝導
効果を示すものであり、BSOを例にとれば第1
図aに示すようにBSO1に参照光2と物体3の
物体光4が照射されると干渉縞5が書き込まれ、
その濃淡に応じて自由電子が発生する。特に
BSO,BGOは紫〜青色光に強い感度を持つ。
Bismuth of the present invention. silicon. Oxide (Bi 12 SiO 20 , hereinafter abbreviated as BSO), bismuth. germanium. Oxide (Bi 12 GeO 20 , hereinafter abbreviated as BGO) shows a remarkable photoconductive effect without adding any elements, and taking BSO as an example, it is the first
As shown in Figure a, when the BSO 1 is irradiated with the reference beam 2 and the object beam 4 of the object 3, interference fringes 5 are written,
Free electrons are generated depending on the density. especially
BSO and BGO have strong sensitivity to violet to blue light.

発生した自由電子は電源10によつて干渉縞と
直交する方向に印加された電界によりドリフトを
起こしトラツプレベルに捕獲され、残された正電
荷とともに干渉縞の濃淡に対応した空間電荷分布
を形成する。この空間電荷分布は、BSO,BGO
結晶の持つ電気光学効果により空間的な屈折率分
布を形成するため第1図bに示すように再生光6
を照射すれば、通常のホログラムと同様に再生像
7を得る。再生光6はBSO,BGOの光伝導効果
を生じさせない赤〜赤外光が良い。消去するため
には電源10の電圧を0にしてBSO全面に参照
光のみを照射すればよい。なお、8は透過光、9
は回折光である。
The generated free electrons drift due to the electric field applied by the power supply 10 in a direction perpendicular to the interference fringes and are captured at the trap level, and together with the remaining positive charges, form a space charge distribution corresponding to the density of the interference fringes. This space charge distribution is BSO, BGO
In order to form a spatial refractive index distribution due to the electro-optic effect of the crystal, the reproduction light 6 is
When irradiated with , a reconstructed image 7 is obtained in the same way as a normal hologram. The reproduction light 6 is preferably red to infrared light that does not cause the photoconductive effect of BSO and BGO. In order to erase, it is sufficient to turn the voltage of the power supply 10 to 0 and irradiate only the reference light onto the entire surface of the BSO. In addition, 8 is transmitted light, 9
is the diffracted light.

以上のプロセスは全く電子的なものであり、記
録再生消去をリアルタイムで繰り返し行うことが
できる。
The above process is completely electronic, and recording, reproducing and erasing can be repeated in real time.

このように本来高感度なBSO,BGOの感度を
さらに高めることは、リアルタイム処理の速度を
向上させる上で重要な技術である。
Further increasing the sensitivity of BSO and BGO, which are inherently highly sensitive, is an important technology for improving the speed of real-time processing.

発明者らは、BSO,BGOのホログラムとして
の動作機構について種々の検討を加えた結果、記
録光によつて発生した自由電子がある特別なトラ
ツプ準位において有効にトラツプされる確率が高
いほど感度Sと最大回折効率(ηmax)ともに向
上する可能性があるものとの指針を得た。
As a result of various studies on the operating mechanism of BSO and BGO as holograms, the inventors found that the higher the probability that free electrons generated by recording light will be effectively trapped at a particular trap level, the higher the sensitivity. A guideline was obtained that shows the possibility of improving both S and maximum diffraction efficiency (ηmax).

従つて特定のドーパントを添加したBSOの露
光時間と回折効率の関係を測定したところ、第2
図に示すように、Feを10ppm添加することによ
り、感度が2倍向上し、最大の回折効率も2倍向
上することを発見した。さらにBGOについても
全く同じ効果があることを確認した。感度が2倍
になるということは処理時間を1/2に短縮できる
ことになり、システムの効率やコストパーホーマ
ンスが倍向上するという実用上の有用性を果すも
のである。
Therefore, when we measured the relationship between the exposure time and diffraction efficiency of BSO doped with a specific dopant, we found that the second
As shown in the figure, we discovered that by adding 10 ppm of Fe, the sensitivity was doubled and the maximum diffraction efficiency was also doubled. Furthermore, it was confirmed that BGO had exactly the same effect. Doubling the sensitivity means that the processing time can be cut in half, and this has practical utility in that the efficiency and cost performance of the system are doubled.

Feの濃度を10ppmとすることは、10ppmより
少ないと効果が小さく、10ppmより多いと結晶の
透過率が低下して再生像が極端に暗くなるからで
ある。
The Fe concentration is set to 10 ppm because if it is less than 10 ppm, the effect will be small, and if it is more than 10 ppm, the transmittance of the crystal will decrease and the reproduced image will become extremely dark.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はBSOホログラム記憶デバイスの動作
原理説明図でa図はホログラムの記憶説明図、b
図はホログラムの再生説明図、第2図はBSO無
添加とBSO―Fe(10ppm)ホログラム記憶デバイ
スの露光時間と回折効率の関係比較図表である。 1…BSO、2…参照光、3…物体、4…物体
光、5…干渉縞、6…再生光、7…再生像、8…
透過光、9…回折光、10…電源。
Figure 1 is a diagram explaining the operating principle of the BSO hologram storage device, Figure a is a diagram explaining hologram storage, and Figure b
The figure is an explanatory diagram of hologram reproduction, and Figure 2 is a comparison chart of the relationship between exposure time and diffraction efficiency for BSO-free and BSO-Fe (10 ppm) hologram storage devices. 1...BSO, 2...Reference light, 3...Object, 4...Object light, 5...Interference fringes, 6...Reproduction light, 7...Reproduction image, 8...
Transmitted light, 9... Diffracted light, 10... Power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 ビスマス.シリコン.オキサイド
(Bi12SiO20)もしくはビスマス.ゲルマニウム.
オキサイド(Bi12GeO20)に鉄元素を10ppm添加
したことを特徴とするホログラム記録材料。
1 Bismuth. silicon. Oxide (Bi 12 SiO 20 ) or bismuth. germanium.
A hologram recording material characterized by adding 10 ppm of iron to oxide (Bi 12 GeO 20 ).
JP10834082A 1982-06-25 1982-06-25 Hologram recording material Granted JPS59151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10834082A JPS59151A (en) 1982-06-25 1982-06-25 Hologram recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10834082A JPS59151A (en) 1982-06-25 1982-06-25 Hologram recording material

Publications (2)

Publication Number Publication Date
JPS59151A JPS59151A (en) 1984-01-05
JPH0139571B2 true JPH0139571B2 (en) 1989-08-22

Family

ID=14482203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10834082A Granted JPS59151A (en) 1982-06-25 1982-06-25 Hologram recording material

Country Status (1)

Country Link
JP (1) JPS59151A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536086B2 (en) * 1988-09-02 1996-09-18 味の素株式会社 Manufacturing method of tofu that can be stored at room temperature for a long time
JP4839100B2 (en) * 2006-03-08 2011-12-14 ヤマトプロテック株式会社 Fire extinguisher safety tap

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS *

Also Published As

Publication number Publication date
JPS59151A (en) 1984-01-05

Similar Documents

Publication Publication Date Title
Von der Linde et al. Photorefractive effects for reversible holographic storage of information
Staebler et al. Multiple storage and erasure of fixed holograms in Fe− doped LiNbO3
Burke et al. Volume phase holographic storage in ferroelectric crystals
Huignard et al. Real-time double-exposure interferometry with Bi 12 SiO 20 crystals in transverse electrooptic configuration
Chen et al. An overview of optical data storage technology
US3703328A (en) Devices utilizing improved linbo' holographic medium
US4138189A (en) Holography using a Bi12 SiO or Bi12 GeO20 recording medium
Huignard et al. Selective erasure and processing in volume holograms superimposed in photosensitive ferroelectrics
Kurz Photorefractive recording dynamics and multiple storage of volume holograms in photorefractive LiNbO 3
GB1334574A (en) Electro-optical memory
Bernal et al. Holographic-data-storage materials
Yeh et al. Landmark papers on photorefractive nonlinear optics
US6670079B1 (en) Photorefractive material
US4953924A (en) Enhanced nondestructive holographic reconstruction
Knight Interface devices and memory materials
JPH0139571B2 (en)
Shah et al. Volume holographic recording and storage in Fe‐doped LiNbO3 using optical pulses
Rupp et al. Diffraction by difference holograms in electrooptic crystals
Huignard et al. Optical storage in LiNbo3: Fe with selective erasure capability
CA1078514A (en) Ferroelectric information optical storage device with self-biasing
Xu et al. Ultraviolet photorefraction and the superionic phase transition of α-LiIO 3
Alphonse et al. Read-write holographic memory with iron-doped lithium niobate
Tubbs Reversible holographic recording materials for optical information storage
Kim et al. Photorefractive Materials for Optical Storage and Display
Von der Linde et al. Multiphoton processes for optical storage in pyroelectrics