JPH0139569B2 - - Google Patents

Info

Publication number
JPH0139569B2
JPH0139569B2 JP7260682A JP7260682A JPH0139569B2 JP H0139569 B2 JPH0139569 B2 JP H0139569B2 JP 7260682 A JP7260682 A JP 7260682A JP 7260682 A JP7260682 A JP 7260682A JP H0139569 B2 JPH0139569 B2 JP H0139569B2
Authority
JP
Japan
Prior art keywords
group
methacrylate
general formula
acrylate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7260682A
Other languages
Japanese (ja)
Other versions
JPS58189627A (en
Inventor
Kiichi Takemoto
Yoshiaki Inagi
Yoshuki Harita
Kentaro Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP7260682A priority Critical patent/JPS58189627A/en
Publication of JPS58189627A publication Critical patent/JPS58189627A/en
Publication of JPH0139569B2 publication Critical patent/JPH0139569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は感光材料に関するものである。更に詳
しくは遠紫外線を吸収して架橋する感光材料に関
するものである。 現在集積回路(IC)作製用に用いられるレジ
ストは殆んどがポリイソプレンを環化したいわゆ
る環化ゴムにビスアジド化合物を配合してなるネ
ガ型ホトレジストである。このレジストは近紫外
線(300nm以上)を吸収してビスアジド化合物が
ニトレンとなつて環化ゴムを架橋させる反応機構
を利用している。しかし、環化ゴムからなるレジ
ストは波長の長い近紫外線を架橋の手段に使用す
るため、シリコン基板上に塗布されたレジスト層
中での回折現象やシリコン基板表面で反射した光
の影響を受ける後方散乱現象等の問題からサブミ
クロンの解像力を持つことは不可能であるとされ
ている。この問題を解決するために、波長の短か
い遠紫外線で感光するレジスト用材料の開発が
すゝめられ、ポリメチルメタクリラート、ポリメ
チルイソプロペニルケトン、ポリ(グリシジルメ
タクリラート―メチルメタクリラート)などの重
合体が遠紫外線用レジストとして研究され、その
一部については既に上市されている。これらのレ
ジストは前述の環化ゴム系ホトレジストとは光に
対する作用機構が異なる。つまり、環化ゴム系ホ
トレジストは紫外線を吸収して架橋するのに対し
て、これらのレジストは分解して、重合体の分子
量が低下することによる溶剤への溶解度の向上を
パターニングに利用しているいわゆるポジ型ホト
レジストである。しかし、分解して低分子量化し
た重合体の溶解度を元の重合体のそれと極端に差
をつけるためにはかなり低分子量化せねばなら
ず、そのためには多量のエネルギーが必要とされ
る。例えば、ポリメチルメタクリラートは最もは
やく研究された材料であるが、解像力は良くとも
感度が悪いことについては既に知らされている事
実である。更にレジストの感光部と非感光部の現
像液への溶解度差を極端に変えるためには分解型
より架橋型の方が有利である。なぜならば、分解
型ではレジストを構成している素材を分解して非
感光部との分子量の差をつけようとしてもそれは
有限であるのに対して、架基型では感光部が三次
元化するため、分子量という概念からみると、非
感光部との分子量の差は無限と見做されるからで
ある。上述の遠紫外線用レジストはいずれも分解
型に属するポジ型レジストであり、架橋型いわゆ
るネガ型遠紫外線用レジストは殆んど知られてい
ないのが現状である。 本発明の目的は良好な解像力を有しかつ特に優
れた感度を有するネガ型遠紫外線用レジストとし
て好適な感光材料を提供することにある。 本発明に従つて、 一般式 (式中Rはシアノ基、カルボキシル基、アルコ
キシカルボニル基、アルキル基、ハロゲン原子ま
たはハロアルキル基である。) で表わされるピリミジン基を有する単量体を
(共)重合した構造を有する化合物からなる感光
材料が提供される。 本発明の感光材料は解像力が良好でしかも感度
がすぐれており、またシリコン、アルミニウムの
如き基板上に塗布され形成された薄膜は容易に剥
離しないという利点もある。 次に本発明を詳細に説明する。 本発明の感光材料である一般式で表わされる
ピリミジン基を有する単量体を(共)重合した構
造を有する化合物は例えば下記の方法により得る
ことができる: (1) 一般式で表わされるピリミジン基を有する
単量体またはこの単量体と他の共重合可能な単
量体とを(共)重合させる方法。 (2) α,β―エチレン性不飽和カルボン酸の重合
体、またはα,β―エチレン性不飽和カルボン
酸と共重合可能な他の単量体との共重合体に一
般式のピリミジン基を有する化合物を反応さ
せる方法。 上記(1)の(共)重合方法は特に限定するもので
はないが、ピリミジン基を有する単量体がエチレ
ン性不飽和結合を含有するものである場合は例え
ば溶液ラジカル重合方法を挙げることができ、こ
の場合の溶媒としてはジメチルホルムアミド、ジ
メチルスルホキシド、ヘキサメチルホスホルアミ
ド、テトラヒドロフランなどを、触媒としては
2,2′―アゾビスイソブチロニトリル、ベンゾイ
ルペルオキシドなどのラジカル重合開始剤を、ま
た重合温度としては40〜100℃を例示することが
できる。 またピリミジン基を有する単量体が開環重合性
エポキシ基を含有するものである場合は、例えば
触媒としては三フツ化ホウ素、四塩化スズ、四塩
化チタンなどの開環重合触媒を、溶媒としてはジ
クロルエタン、ジメチルスルホキシド、ジメチル
ホルムアミドなどを用いて、また重合温度として
は例えば−50℃〜150℃で(共)重合することが
できる。 上記(2)の反応方法も特に限定するものではない
が、例えば溶液重合法、乳化重合法等で重合した
α,β―エチレン性不飽和カルボン酸の(共)重
合体をジメチルホルムアミド、ジメチルスルホキ
シド、ヘキサメチルホスホルアミド、テトラヒド
ロフラン等の溶媒に溶解し、更に一般式のピリ
ミジン基を有する化合物を添加溶解し、共重合体
のカルボキシル基と一般式のピリミジン基を有
する化合物を加熱反応させる方法を示すことがで
きる。この場合の加熱反応温度は40〜100℃が好
ましい。 上記(1)の方法における一般式で表わされるピ
リミジン基を有する単量体としては、例えば一般
(式中Rはシアノ基、カルボキシル基、メトキ
シカルボニル基、エトキシカルボニル基、プロポ
キシカルボニル基などのアルコキシカルボニル
基、メチル基、エチル基、プロピル基などのアル
キル基、塩素原子、臭素原子などのハロゲン原子
またはクロロメチル基、ブロモメチル基などのハ
ロアルキル基であり、 R1
The present invention relates to a photosensitive material. More specifically, it relates to a photosensitive material that absorbs deep ultraviolet rays and crosslinks. Most of the resists currently used for manufacturing integrated circuits (ICs) are negative photoresists made by blending a bisazide compound with so-called cyclized rubber, which is made by cyclizing polyisoprene. This resist utilizes a reaction mechanism in which a bisazide compound absorbs near-ultraviolet light (300 nm or more), converts into nitrene, and crosslinks the cyclized rubber. However, since resists made of cyclized rubber use near-ultraviolet rays with long wavelengths as a means of crosslinking, they are susceptible to diffraction phenomena in the resist layer coated on the silicon substrate and the effects of light reflected from the silicon substrate surface. It is considered impossible to achieve submicron resolution due to problems such as scattering phenomena. In order to solve this problem, the development of resist materials that are sensitive to short-wavelength deep ultraviolet rays has progressed, including polymethyl methacrylate, polymethyl isopropenyl ketone, and poly(glycidyl methacrylate-methyl methacrylate). Polymers are being researched as far-UV resists, and some of them are already on the market. These resists have a different mechanism of action against light than the cyclized rubber photoresists described above. In other words, whereas cyclized rubber-based photoresists absorb ultraviolet light and crosslink, these resists decompose and utilize the improved solubility in solvents due to a decrease in the molecular weight of the polymer for patterning. This is a so-called positive photoresist. However, in order to make the solubility of a polymer that has been decomposed and reduced to a low molecular weight extremely different from that of the original polymer, the molecular weight must be reduced considerably, and a large amount of energy is required for this purpose. For example, polymethyl methacrylate is the material most rapidly studied, but it is already known that it has good resolution but poor sensitivity. Furthermore, in order to drastically change the solubility difference in the developing solution between the exposed and non-exposed areas of the resist, the cross-linked type is more advantageous than the decomposed type. This is because in the decomposition type, even if you try to decompose the material that makes up the resist to create a difference in molecular weight between the non-exposed area and the non-exposed area, the difference in molecular weight is limited, whereas in the cross-based type, the exposed area becomes three-dimensional. Therefore, from the concept of molecular weight, the difference in molecular weight from the non-photosensitive area is considered to be infinite. All of the above-mentioned far ultraviolet resists are positive type resists that belong to the decomposition type, and at present, almost no crosslinked type, so-called negative type, far ultraviolet resists are known. An object of the present invention is to provide a photosensitive material suitable as a negative-type deep ultraviolet resist, which has good resolution and particularly excellent sensitivity. According to the invention, the general formula (In the formula, R is a cyano group, a carboxyl group, an alkoxycarbonyl group, an alkyl group, a halogen atom, or a haloalkyl group.) Materials provided. The photosensitive material of the present invention has good resolution and excellent sensitivity, and also has the advantage that a thin film formed by coating on a substrate such as silicon or aluminum does not peel off easily. Next, the present invention will be explained in detail. The photosensitive material of the present invention, a compound having a structure obtained by (co)polymerizing a monomer having a pyrimidine group represented by the general formula, can be obtained, for example, by the following method: (1) A pyrimidine group represented by the general formula or a method of (co)polymerizing this monomer and other copolymerizable monomers. (2) A pyrimidine group of the general formula is added to a polymer of α,β-ethylenically unsaturated carboxylic acid or a copolymer of α,β-ethylenically unsaturated carboxylic acid and other monomers that can be copolymerized. A method of reacting a compound with The (co)polymerization method in (1) above is not particularly limited, but if the monomer having a pyrimidine group contains an ethylenically unsaturated bond, for example, a solution radical polymerization method may be used. In this case, the solvent is dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide, tetrahydrofuran, etc., the catalyst is a radical polymerization initiator such as 2,2'-azobisisobutyronitrile, benzoyl peroxide, etc. An example of the temperature is 40 to 100°C. In addition, when the monomer having a pyrimidine group contains a ring-opening polymerizable epoxy group, for example, a ring-opening polymerization catalyst such as boron trifluoride, tin tetrachloride, or titanium tetrachloride is used as a solvent. can be (co)polymerized using dichloroethane, dimethylsulfoxide, dimethylformamide, etc., and at a polymerization temperature of, for example, -50°C to 150°C. The reaction method in (2) above is not particularly limited, but for example, a (co)polymer of α,β-ethylenically unsaturated carboxylic acid polymerized by solution polymerization method, emulsion polymerization method, etc. is mixed with dimethylformamide or dimethyl sulfoxide. , hexamethylphosphoramide, tetrahydrofuran, or other solvent, furthermore, a compound having a pyrimidine group of the general formula is added and dissolved, and the carboxyl group of the copolymer and the compound having a pyrimidine group of the general formula are heated to react. can be shown. The heating reaction temperature in this case is preferably 40 to 100°C. In the method (1) above, monomers having a pyrimidine group represented by the general formula include, for example, (In the formula, R is an alkoxycarbonyl group such as a cyano group, a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, or a propoxycarbonyl group, an alkyl group such as a methyl group, an ethyl group, or a propyl group, or a halogen atom such as a chlorine atom or a bromine atom. or a haloalkyl group such as a chloromethyl group or a bromomethyl group, and R 1 is

【式】又は[Formula] or

【式】であ り、R2は水素原子、メチル基、エチル基、プロ
ピル基などの低級アルキル基又は塩素原子、臭素
原子などのハロゲン原子であり、R3は水素原子
又はメチル基、エチル基、プロピル基などの低級
アルキル基である。) で表わされる化合物を挙げることができる。特に
一般式で表わされる化合物においてRがシアノ
基、R2が水素原子またはメチル基、R3が水素原
子またはメチル基である化合物が好適に使用する
ことができる。これらの化合物としては、例え
ば、N―2―アクリロイルオキシエチル―6―シ
アノウラシル、N―2―メタクリロイルオキシエ
チル―6―シアノウラシルなどを挙げることがで
きる。 また、一般式で表わされるピリミジン基を有
する単量体と共重合可能な他の単量体としては例
えばラジカル重合性のものとしてはエチルメタク
リレート、プロピルメタクリレート、ブチルメタ
クリレート、イソブチルメタクリレート、アミル
メタクリレート、オクチルメタクリレート、2―
エチルヘキシルメタクリレート、デシルメタクリ
レート、ドデシルメタクリレートなどのメタクリ
ル酸アルキルエステル、メチルアクリレート、エ
チルアクリレート、プロピルアクリレート、ブチ
ルアクリレート、イソブチルアクリレート、アミ
ルアクリレート、オクチルアクリレート、2―エ
チルヘキシルアクリレート、デシルアクリレー
ト、ドデシルアクリレートなどのアクリル酸アル
キルエステル、シクロヘキシルメタクリレート、
シクロヘキシルアクリレートなどのメタクリル酸
またはアクリル酸の環状アルキルエステル、ベン
ジルメタクリレート、フエニルエチルメタクリレ
ート、ベンジルアクリレート、フエニルエチルア
クリレートなどのメタクリル酸またはアクリル酸
のアリールエステル、マレイン酸ジエチル、フマ
ル酸ジエチル、イタコン酸ジエチルなどのα,β
―エチレン性不飽和ジカルボン酸のジアルキルエ
ステル、2―ヒドロキシエチルメタクリレート、
2―ヒドロキシプロピルメタクリレート、2―ヒ
ドロキシエチルアクリレート、2―ヒドロキシプ
ロピルアクリレートなどのメタクリル酸またはア
クリル酸のヒドロキシアルキルエステル、スチレ
ン、ビニルトルエン、アクリロニトリル、塩化ビ
ニル、塩化ビニリデン、酢酸ビニルなどのモレオ
レフイン系不飽和化合物、ブタジエン、イソプレ
ン、クロロプレン、ジメチルブタジエンなどの共
役ジオレフイン化合物などを挙げることができ、
開環重合性のものとしてはエピクロルヒドリン、
グリシドール、エチレンオキシド、プロピレンオ
キシド、イソブチレンオキシド、スチレンオキシ
ド、2,3―エポキシブタンなどを挙げることが
できる。 上記(2)の方法におけるα,β―エチレン性不飽
和カルボン酸としては、例えばアクリル酸、メタ
クリル酸、マレイン酸、フマル酸、イタコン酸、
マレイン酸モノエチル、フマル酸モノエチル、イ
タコン酸モノエチルなどを挙げることができ、
α,β―エチレン性不飽和カルボン酸と共重合可
能な他の単量体としては、上記一般式で表わさ
れるピリミジン基を有する単量体と共重合可能な
ラジカル重合性の単量体と同様のものを挙げるこ
とができる。 また上記(2)の方法における一般式のピリミジ
ン基を有する化合物は例えば一般式 (式中Rは前記Rと同様の置換基を示す) で表わすことができ、具体的には1,2―O―エ
タノ―6―シアノウラシル、1,2―O―エタノ
―6―クロロメチルウラシル、1,2―O―エタ
ノ―6―トリクロロメチルウラシルなどを挙げる
ことができる。 本発明における一般式で表わされるピリミジ
ン基を有する単量体を(共)重合した構造を有す
る化合物中におけるピリミジン基を有する単量体
の(共)重合構造単位の割合は、感度及び溶媒溶
解性の面から全(共)重合構造単位数の5〜95%
が好ましく、特に15〜90%が好ましい。 また、特に共役ジオレフイン化合物と一般式
で表わされるピリミジン基を有する単量体とを共
重合した構造を有する化合物からなる感光材料は
基板との接着性が特に優れたものになる。この場
合の共役ジオレフイン化合物単位の含有割合は全
(共)重合体構造単位の5〜95%が好ましく、さ
らに好ましくは10〜85%、特に好ましくは10〜50
%である。 なお一般式で表わされるピリミジン基を有す
る単量体を(共)重合した構造を有する化合物の
分子量は特に限定するものではないが、レジスト
として使用する場合にはポリスチレン換算の数平
均分子量で5000〜1000000、特に10000〜500000の
ものが好ましい。 上記(1)または(2)などの方法によつて得られる一
般式で表わされるピリミジン基を有する単量体
を(共)重合した構造を有する化合物はアセトン
等の沈殿剤で再沈殿させるなどの方法により精製
し感光材料とする。 本発明の感光材料をレジストとして使用する場
合は例えばジメチルホルムアミド、ジメチルスル
ホキシド、ヘキサメチルホスホルアミド、テトラ
ヒドロフランなどの溶媒に溶解し溶液として基板
に塗布する方法が一般的である。また、本発明の
感光材料に光架橋剤、増感剤を添加することも可
能である。 次に実施例をあげて本発明を更に具体的に説明
するが、本発明はこれらの実施例によつて何ら制
約されるものではない。 実施例 1 2.2g(0.012モル)のN―エタノオキシ―6―
シアノウラシルを15mlのピリジンに溶解し、3.7
mlの無水メタクリル酸を加えて室温で15時間反応
させた。反応終了後ピリジンと過剰のメタクリル
酸を減圧蒸留により留去し、残留物をエタノール
から再結晶すると2.5gのN―2―メタクロイル
オキシエチル―6―シアノウラシルが収率83%で
無色針状結晶として得られた。このものとブタジ
エンを6:4の割合(モル比)で水とエタノール
の混合溶媒(重量比=1:1)に溶解し、過硫酸
カリウムをラジカル開始剤として用い、60℃で18
時間反応させることによりポリスチレン換算の数
平均分子量約10000のポリマーを60重量%の収率
で得た。このポリマーはピリミジン基を有する単
量体の(共)重合構造単位の割合は、全(共)重
合構造単位数の52%であつた。 上記により得られた反応生成物1gをジメチル
ホルムアミド5mlに溶解した後孔径0.45μmのミ
リポアフイルターでろ過して感光液を作製した。
シリコンウエハー上にスピンナーでこの感光液を
塗布し、窒素気流中室温で1時間乾燥した後、日
本分光(株)製照射分光器で分光感度を測定したとこ
ろ、250〜310nmの遠紫外領域にあることが確認
された。またシリコンウエハーに塗布したレジス
ト膜に石英製マスクを密着し、キヤノン(株)製露光
装置PLA521Fにて遠紫外線を1分間照射した後、
ジメチルホルムアミドで現像したところ、膜剥れ
もなく、マスクに忠実なフアインパターンを再現
することができた。このウエハーを窒素気流中
120℃、30分間ポストベークした後、フツ化水
素/フツ化アンモニウム水溶液でエツチングした
ところ、しみ込みのほとんどないパターンを作製
することができた。
[Formula], R 2 is a hydrogen atom, a lower alkyl group such as a methyl group, an ethyl group, or a propyl group, or a halogen atom such as a chlorine atom or a bromine atom, and R 3 is a hydrogen atom or a methyl group, an ethyl group, It is a lower alkyl group such as propyl group. ) can be mentioned. In particular, compounds represented by the general formula in which R is a cyano group, R 2 is a hydrogen atom or a methyl group, and R 3 is a hydrogen atom or a methyl group can be suitably used. Examples of these compounds include N-2-acryloyloxyethyl-6-cyanouracil and N-2-methacryloyloxyethyl-6-cyanouracil. Other monomers that can be copolymerized with the monomer having a pyrimidine group represented by the general formula include ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, amyl methacrylate, and octyl methacrylate. Methacrylate, 2-
Methacrylic acid alkyl esters such as ethylhexyl methacrylate, decyl methacrylate, dodecyl methacrylate, acrylic acids such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, amyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, dodecyl acrylate Alkyl ester, cyclohexyl methacrylate,
Cyclic alkyl esters of methacrylic acid or acrylic acid such as cyclohexyl acrylate, aryl esters of methacrylic acid or acrylic acid such as benzyl methacrylate, phenylethyl methacrylate, benzyl acrylate, phenylethyl acrylate, diethyl maleate, diethyl fumarate, itaconic acid α, β such as diethyl
-Dialkyl ester of ethylenically unsaturated dicarboxylic acid, 2-hydroxyethyl methacrylate,
Hydroxy alkyl esters of methacrylic acid or acrylic acid such as 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, and 2-hydroxypropyl acrylate; moreolefin-based non-containers such as styrene, vinyltoluene, acrylonitrile, vinyl chloride, vinylidene chloride, and vinyl acetate; Examples include saturated compounds, conjugated diolefin compounds such as butadiene, isoprene, chloroprene, dimethylbutadiene, etc.
Examples of ring-opening polymerizable substances include epichlorohydrin,
Examples include glycidol, ethylene oxide, propylene oxide, isobutylene oxide, styrene oxide, and 2,3-epoxybutane. Examples of the α,β-ethylenically unsaturated carboxylic acid in the method (2) above include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid,
Monoethyl maleate, monoethyl fumarate, monoethyl itaconate, etc.
Other monomers that can be copolymerized with α,β-ethylenically unsaturated carboxylic acid include the same radically polymerizable monomers that can be copolymerized with the monomer having a pyrimidine group represented by the general formula above. I can list the following. In addition, in the method (2) above, a compound having a pyrimidine group of the general formula, for example, (In the formula, R represents the same substituent as R.) Specifically, 1,2-O-ethano-6-cyanouracil, 1,2-O-ethano-6-chloromethyl Examples include uracil, 1,2-O-ethano-6-trichloromethyluracil, and the like. In the present invention, the proportion of (co)polymerized structural units of the monomer having a pyrimidine group in a compound having a structure obtained by (co)polymerizing a monomer having a pyrimidine group represented by the general formula is determined by sensitivity and solvent solubility. 5 to 95% of the total number of (co)polymerized structural units in terms of
is preferable, particularly preferably 15 to 90%. In particular, a photosensitive material made of a compound having a structure obtained by copolymerizing a conjugated diolefin compound and a monomer having a pyrimidine group represented by the general formula has particularly excellent adhesion to a substrate. In this case, the content of conjugated diolefin compound units is preferably 5 to 95% of the total (co)polymer structural units, more preferably 10 to 85%, particularly preferably 10 to 50%.
%. Note that the molecular weight of the compound having a structure obtained by (co)polymerizing a monomer having a pyrimidine group represented by the general formula is not particularly limited, but when used as a resist, the number average molecular weight in terms of polystyrene is 5000 to 5000. 1,000,000, particularly preferably 10,000 to 500,000. A compound having a structure obtained by (co)polymerizing a monomer having a pyrimidine group represented by the general formula obtained by methods such as (1) or (2) above can be prepared by reprecipitation with a precipitating agent such as acetone, etc. It is purified by a method and made into a photosensitive material. When the photosensitive material of the present invention is used as a resist, it is generally dissolved in a solvent such as dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide, tetrahydrofuran, etc., and applied as a solution to a substrate. It is also possible to add a photocrosslinking agent and a sensitizer to the photosensitive material of the present invention. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 2.2 g (0.012 mol) of N-ethanooxy-6-
Dissolve cyanouracil in 15 ml of pyridine and add 3.7
ml of methacrylic anhydride was added and reacted at room temperature for 15 hours. After the reaction, pyridine and excess methacrylic acid were distilled off under reduced pressure, and the residue was recrystallized from ethanol to give 2.5 g of N-2-methacroyloxyethyl-6-cyanouracil in the form of colorless needles with a yield of 83%. Obtained as crystals. This product and butadiene were dissolved at a ratio (mole ratio) of 6:4 in a mixed solvent of water and ethanol (weight ratio = 1:1), and potassium persulfate was used as a radical initiator, and the mixture was heated to 18 °C at 60 °C.
By reacting for hours, a polymer having a number average molecular weight of about 10,000 in terms of polystyrene was obtained in a yield of 60% by weight. In this polymer, the proportion of (co)polymerized structural units of monomers having pyrimidine groups was 52% of the total number of (co)polymerized structural units. A photosensitive solution was prepared by dissolving 1 g of the reaction product obtained above in 5 ml of dimethylformamide and filtering through a Millipore filter with a pore size of 0.45 μm.
After applying this photosensitive solution on a silicon wafer with a spinner and drying it at room temperature in a nitrogen stream for 1 hour, the spectral sensitivity was measured using an irradiation spectrometer manufactured by JASCO Corporation, and it was found to be in the far ultraviolet region of 250 to 310 nm. This was confirmed. In addition, a quartz mask was closely attached to the resist film coated on the silicon wafer, and after irradiating it with far ultraviolet rays for 1 minute using a Canon Inc. exposure device PLA521F,
When developed with dimethylformamide, there was no film peeling and a fine pattern faithful to the mask could be reproduced. This wafer was placed in a nitrogen stream.
After post-baking at 120°C for 30 minutes, etching with a hydrogen fluoride/ammonium fluoride aqueous solution made it possible to create a pattern with almost no seepage.

Claims (1)

【特許請求の範囲】 1 一般式 (式中Rはシアノ基、カルボキシル基、アルコ
キシカルボニル基、アルキル基、ハロゲン原子ま
たはハロアルキル基である。) で表わされるピリミジン基を有する単量体を
(共)重合した構造を有する化合物からなる感光
材料。
[Claims] 1. General formula (In the formula, R is a cyano group, a carboxyl group, an alkoxycarbonyl group, an alkyl group, a halogen atom, or a haloalkyl group.) material.
JP7260682A 1982-04-30 1982-04-30 Photosensitive material Granted JPS58189627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7260682A JPS58189627A (en) 1982-04-30 1982-04-30 Photosensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7260682A JPS58189627A (en) 1982-04-30 1982-04-30 Photosensitive material

Publications (2)

Publication Number Publication Date
JPS58189627A JPS58189627A (en) 1983-11-05
JPH0139569B2 true JPH0139569B2 (en) 1989-08-22

Family

ID=13494214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7260682A Granted JPS58189627A (en) 1982-04-30 1982-04-30 Photosensitive material

Country Status (1)

Country Link
JP (1) JPS58189627A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116132A (en) * 1983-11-29 1985-06-22 Fujitsu Ltd Forming method of negative type resist pattern
JPS63165846A (en) * 1986-12-27 1988-07-09 Terumo Corp Method for exposing resist material
JPH0772798B2 (en) * 1988-02-17 1995-08-02 テルモ株式会社 Pattern formation method on substrate
US5455349A (en) * 1994-05-13 1995-10-03 Polaroid Corporation Vinylbenzyl thymine monomers
US5731127A (en) * 1995-04-11 1998-03-24 Dainippon Ink And Chemicals, Inc. Photosensitive composition and photosensitive planographic printing plate having a resin with urea bonds in the side chain
JP3863422B2 (en) * 2001-12-13 2006-12-27 コダックポリクロームグラフィックス株式会社 Photosensitive composition and photosensitive lithographic printing plate

Also Published As

Publication number Publication date
JPS58189627A (en) 1983-11-05

Similar Documents

Publication Publication Date Title
JP3220745B2 (en) Copolymer for photoresist, method for producing copolymer for photoresist, photoresist composition, method for forming photoresist pattern, and semiconductor device
US4939070A (en) Thermally stable photoresists with high sensitivity
JP3957409B2 (en) Copolymer resin and method for producing the same, photoresist containing the copolymer resin, method for producing the same, and semiconductor element
JP3847991B2 (en) Copolymer resin and method for producing the same, photoresist containing the copolymer resin, and semiconductor element
EP0254853B1 (en) Lithographic method employing thermally stable photoresists with high sensitivity forming a hydogen-bonded network
TW565739B (en) Resist composition suitable for short wavelength exposure and resist pattern forming method
JP3342888B2 (en) Radiation-sensitive mixture
JPH11286469A (en) Monomer, polymer, production of monomer, production of polymer, photoresist, production of photoresist and semiconductor element
KR100362937B1 (en) Novel photoresist crosslinkers, photoresist polymers and photoresist compositions comprising them
JP2648805B2 (en) Aqueous-processable photoresist composition for liquid application
JP3835506B2 (en) Copolymer resin for photoresist, photoresist composition, method for forming photoresist pattern, and method for manufacturing semiconductor device
JP4268249B2 (en) Copolymer resin and manufacturing method thereof, photoresist and manufacturing method thereof, and semiconductor element
US6132936A (en) Monomer and polymer for photoresist, and photoresist using the same
JPS63139343A (en) Resist composition
JP3536015B2 (en) Photoresist monomer and method for producing the same, copolymer for photoresist and method for producing the same, photoresist composition, method for forming photoresist pattern, and semiconductor device
JP3587770B2 (en) Copolymer for photoresist and method for producing the same, photoresist composition, method for forming photoresist pattern, and semiconductor device
JPH0139569B2 (en)
US6448352B1 (en) Photoresist monomer, polymer thereof and photoresist composition containing it
US6426171B1 (en) Photoresist monomer, polymer thereof and photoresist composition containing it
US6936402B2 (en) Monomers containing an oxepan-2-one group, photoresist compositions comprising polymers prepared from the monomers, methods for preparing the compositions, and methods for forming photoresist patterns using the compositions
US6271412B1 (en) Photosensitive monomer
US4262082A (en) Positive electron beam resists
KR100218743B1 (en) Arf photoresist having a good adhesion
KR100732284B1 (en) Novel photoresist monomer, polymer thereof and photoresist composition containing it
JP2648804B2 (en) Dry film type aqueous processable photoresist composition