JPH0139280B2 - - Google Patents
Info
- Publication number
- JPH0139280B2 JPH0139280B2 JP15687281A JP15687281A JPH0139280B2 JP H0139280 B2 JPH0139280 B2 JP H0139280B2 JP 15687281 A JP15687281 A JP 15687281A JP 15687281 A JP15687281 A JP 15687281A JP H0139280 B2 JPH0139280 B2 JP H0139280B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light guide
- diaphragm
- guide path
- circular film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims 1
- 239000012528 membrane Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R23/00—Transducers other than those covered by groups H04R9/00 - H04R21/00
- H04R23/008—Transducers other than those covered by groups H04R9/00 - H04R21/00 using optical signals for detecting or generating sound
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Description
【発明の詳細な説明】
この発明はマイクロホンに関し、振動板の振幅
領域変化を直接光の強度変化に変換することので
きる小形・軽量で再生忠実度の高いマイクロホン
を提供することを目的とするものである。[Detailed Description of the Invention] The present invention relates to a microphone, and an object of the present invention is to provide a small, lightweight microphone with high reproduction fidelity that can directly convert changes in the amplitude range of a diaphragm into changes in the intensity of light. It is.
この発明の一実施例を第1図および第2図に示
す。すなわち、このマイクロホンは、メタクリル
樹脂などの透光性素材からなり周縁を支度固定し
た円形振動膜1の周縁の一部から中央部にかけて
の直線領域の屈折率を他部領域より大きくすると
ともに、この高屈折率直線領域の円形振動膜中央
部側の端部の他部領域との境界を円形振動膜の表
面に対し所定傾斜角度に設定して光反射面2aと
し、この高屈折率直線領域を導光路を導光路2と
する一方、前記導光路2の円形振動膜周縁側の端
部に対向する位置に光源3を配置し、前記光源3
より前記導光路2に投光された光が前記光反射面
2aより反射されて放射される前記円形振動膜1
の片面側の中央部に近い位置に前記光反射面2a
からの反射光を受光してこれを電気信号に変換す
るフオトトランジスタなどの光電変換素子4を配
設したものである。 An embodiment of the invention is shown in FIGS. 1 and 2. That is, this microphone has a circular diaphragm 1 made of a translucent material such as methacrylic resin and whose periphery is fixed, and has a linear region from a part of the periphery to the center that has a refractive index larger than other regions. The boundary between the high refractive canonical region and other regions at the end of the circular diaphragm center side is set at a predetermined inclination angle with respect to the surface of the circular diaphragm to form a light reflecting surface 2a, and this high refractive canonical region The light guide path is a light guide path 2, and a light source 3 is arranged at a position opposite to the end of the light guide path 2 on the peripheral edge side of the circular diaphragm.
The circular vibrating membrane 1 allows the light projected onto the light guide path 2 to be reflected from the light reflecting surface 2a and radiated.
The light reflecting surface 2a is located near the center of one side of the
A photoelectric conversion element 4, such as a phototransistor, is provided to receive reflected light from the mirror and convert it into an electrical signal.
このマイクロホンの動作を次に述べる。 The operation of this microphone will be described next.
前記高屈折率直線領域からなる導光路2は、円
形振動膜1の他部領域に比してその屈折率が高い
ので、第3図に示すように光源3より導光路2内
に投光された光は導光路2の他部領域との境界面
で反射し、同様に第4図に示すように円形振動膜
1の表裏面を包む空気5(屈折率は円形振動膜1
の素材より低い)との境界面でも反射しながら円
形振動膜1の中央部側に伝播して、光反射面2a
で反射され円形振動膜1の裏面側に放射される。
放射された光は光電変換素子4で受光されてその
受光量に相当する電気信号を出力する。 Since the light guide path 2 consisting of the high refractive straight line area has a higher refractive index than other areas of the circular diaphragm 1, light is projected into the light guide path 2 from the light source 3 as shown in FIG. The light is reflected at the interface with other areas of the light guide path 2, and similarly, as shown in FIG.
The light propagates toward the center of the circular diaphragm 1 while being reflected at the interface with the material (lower than the material of the
It is reflected and radiated to the back side of the circular vibrating membrane 1.
The emitted light is received by the photoelectric conversion element 4 and outputs an electric signal corresponding to the amount of received light.
一方、前記円形振動膜1は音圧Pを受けて振動
するため、振幅の大きい円形振動膜1の中央部に
位置する前記導光路2の光反射面2aは、円形振
動膜1の振動に伴ない前記光電変換素子4に対す
る角度が大きく変動する。そして、円形振動膜1
の振幅が大きくなるほど前記光反射面2aより放
射される光は光電変換素子4を逸れるため、それ
だけ光電変換素子4の受光量は減少し、逆に振幅
が小さくなると受光量が増大して、光電変換素子
4より出力される電気信号は円形振動膜1の振動
に比例したものとなる。 On the other hand, since the circular diaphragm 1 vibrates in response to the sound pressure P, the light reflecting surface 2a of the light guide path 2 located at the center of the circular diaphragm 1 having a large amplitude is affected by the vibration of the circular diaphragm 1. The angle with respect to the photoelectric conversion element 4, which does not exist, varies greatly. And circular vibrating membrane 1
As the amplitude increases, the light emitted from the light reflecting surface 2a deviates from the photoelectric conversion element 4, so the amount of light received by the photoelectric conversion element 4 decreases accordingly, and conversely, as the amplitude decreases, the amount of light received increases, causing photoelectric conversion. The electrical signal output from the conversion element 4 is proportional to the vibration of the circular vibrating membrane 1.
このように構成したため、次のような効果が得
られる。 With this configuration, the following effects can be obtained.
(1) 円形振動膜1の振動を直接光強度に変換する
ことができ、再生忠実度の高いマイクロホンと
することができる。(1) The vibration of the circular diaphragm 1 can be directly converted into light intensity, resulting in a microphone with high reproduction fidelity.
(2) 円形振動膜1の一部領域を高屈折率にして、
これを導光路2としたため、導光路2が円形振
動膜1と一体化され、質量の増大を招くことが
なく、一層再生忠実度を向上させることがで
き、全体形状も小形化することができる。(2) By making a part of the circular diaphragm 1 have a high refractive index,
Since this is used as the light guide path 2, the light guide path 2 is integrated with the circular diaphragm 1, and the reproduction fidelity can be further improved without causing an increase in mass, and the overall shape can be made smaller. .
(3) また、前記導光路2内への投光を、導光路2
の前記円形振動膜周縁側の端部に直接光源3を
配置するかわりに光フアイバを介して行い、同
様に導光路2より放射される光を直接光電変換
素子4で受光するかわりに光フアイバを介して
行うことにより、光源3および光電変換素子4
の電気配線をマイクロホンの円形振動膜1を含
む主要部より引き離すことができ
長距離延長が可能となる。(3) Also, the light emitted into the light guide path 2 is
Instead of directly arranging the light source 3 at the edge of the circular diaphragm periphery, an optical fiber is used, and similarly, instead of directly receiving the light emitted from the light guide path 2 by the photoelectric conversion element 4, an optical fiber is used. The light source 3 and the photoelectric conversion element 4 are
The electrical wiring of the microphone can be separated from the main part including the circular diaphragm 1 of the microphone, making it possible to extend it over a long distance.
配線の接続不良などによる故障を低減化で
きる。 Failures caused by poor wiring connections can be reduced.
耐ノイズ性が向上する。 Improves noise resistance.
安全性(とくに防爆性)が向上する。 Safety (especially explosion-proofness) is improved.
小形・軽量化が可能になる。 It becomes possible to make it smaller and lighter.
などの利点が生じる。Benefits such as:
この発明の他の実施例を第5図ないし第7図に
示す。すなわち、このマイクロホンは、前記実施
例における光電変換素子4の配設位置に、この光
電変換素子4に替えて反射ミラー6を設置すると
ともに、前記円形振動膜1′の前記導光路2に対
向する周縁の一部から中央部にかけての直線領域
の屈折率を前記導光路2と同様に円形振動膜1′
の他部領域より大きくし、この第2の高屈折率直
線領域の円形振動膜中央部側の他部領域との境界
を、前記導光路2の光反射面2aより放射され
て、前記反射ミラー6で反射される光を入射しう
る所定傾斜角度に設定し光入射面7aとして、こ
の第2の高屈折率直線領域を集光用導光路7とす
る一方、この集光用導光路7の円形振動膜周縁側
に対向する位置に光電変換素子4′を配置したも
のであり、そのほかの構成は前記実施例と同様で
ある。 Other embodiments of the invention are shown in FIGS. 5-7. That is, in this microphone, a reflection mirror 6 is installed in place of the photoelectric conversion element 4 in the position of the photoelectric conversion element 4 in the above embodiment, and the reflection mirror 6 is placed opposite to the light guide path 2 of the circular vibrating membrane 1'. Similar to the light guide path 2, the refractive index of the linear region from a part of the periphery to the center is determined by the circular vibrating membrane 1'.
The boundary between the second high refractive straight line area and the other area on the central side of the circular diaphragm is set so that the light emitted from the light reflecting surface 2a of the light guide path 2 is made larger than the other area, and the reflection mirror 6 is set at a predetermined inclination angle that allows the light to be incident thereon, and this second high-refraction canonical line area is used as a light guide path 7 for condensing light. A photoelectric conversion element 4' is arranged at a position facing the peripheral edge of a circular vibrating membrane, and the other configurations are the same as those of the previous embodiment.
第7図は、前記実施例でも述べたように、光源
3および光電変換素子4′を直接円形振動膜1′の
近傍に配置せず、光フアイバ8,9を介して投
光・受光をはかるようにした一変形例を示すもの
である。 FIG. 7 shows that, as described in the previous embodiment, the light source 3 and the photoelectric conversion element 4' are not placed directly in the vicinity of the circular diaphragm 1', but emit and receive light via optical fibers 8 and 9. This figure shows a modified example.
このマイクロホンでは、前記導光路2の光反射
面2aより放射された光は直接光電変換素子4′
で受光されるのではなく、一旦反射ミラー6で受
けられ、その反射光は光入射面7aより集光用導
光路7に入射して、集光用導光路7の円形振動膜
周縁側の端部より放射されて、ここではじめて光
電変換素子4′に受けられ電気信号に変換される。
そのため、円形振動膜1′の振幅が大きいとき、
前記導光路2の光反射面2aより放射される光の
前記反射ミラー6で受光量が減少するとともに、
この反射ミラー6から前記集光用導光路7の光入
射面7aへの入光比率は振幅が小さいときよりも
一層減少して、集光用導光路7を経て集光される
光の前記円形振動膜1′の振動に伴なう強度変化
が一層増幅される。 In this microphone, the light emitted from the light reflecting surface 2a of the light guide path 2 is directly transmitted to the photoelectric conversion element 4'.
Rather than being received by the reflection mirror 6, the reflected light enters the condensing light guide path 7 from the light incidence surface 7a and reaches the end of the condensing light guide path 7 on the circular vibrating membrane peripheral side. It is then received by the photoelectric conversion element 4' for the first time and converted into an electrical signal.
Therefore, when the amplitude of the circular diaphragm 1' is large,
The amount of light emitted from the light reflecting surface 2a of the light guide path 2 received by the reflecting mirror 6 decreases, and
The incidence ratio of light from this reflection mirror 6 to the light incident surface 7a of the light guide path 7 for condensing is further reduced than when the amplitude is small, and the light that is condensed through the light guide path 7 for condensing is circular. The intensity change accompanying the vibration of the vibrating membrane 1' is further amplified.
このように構成したため、感度が増し再生忠実
度が一層向上する。そのほかの効果については前
記実施例と同様である。 With this configuration, sensitivity is increased and reproduction fidelity is further improved. Other effects are the same as in the previous embodiment.
以上のように、この発明のマイクロホンは、振
動板と、前記振動板の固定部から大振幅領域にか
けて形成され、固定部側からの入射光を伝播して
大振幅領域側より振動板表面に向けて放射する導
光路と、前記導光路の固定部側に対向する位置に
設けられ導光路内に投光する光源と、前記導光路
の大振幅領域側からの放射光を前記振動板の表面
に近い所定位置で受け前記振動板の振動に伴う受
光量変化を電気信号に変換する光電変換手段を備
えたものであるため、小形・軽量化が可能となり
再生忠実度の向上をはかることができ、またこの
発明のマイクロホンは、振動板と、前記振動板の
第1固定部から大振幅領域にかけて形成され前記
第1固定部側からの入射光を伝播して大振幅領域
側より振動板表面に向け放射する第1導光路と、
前記第1導光路の第1固定部側に対向する位置に
設けられ第1導光路内に投光する光源と、前記第
1導光路の大振幅領域側からの放射光を振動板表
面に近い所定位置で受け前記振動板の振動に伴い
変化する受光量に比例した光量を反射する反射ミ
ラーと、前記振動板の大振幅領域から第2固定部
にかけて形成され前記反射ミラーの反射光を大振
幅領域側で受け第2固定部側に伝播する第2導光
路と、前記第2導光路の第2固定部側からの放射
光を受けて受光量変化を電気信号に変換する光電
変換手段とを備えたものであるため、振動板の振
動に伴う光電変換手段の受光量変化率が一層大き
くなり、再生忠実度がさらに向上するなどの効果
を有する。 As described above, the microphone of the present invention is formed from a diaphragm and a fixed part of the diaphragm to a large amplitude region, and propagates incident light from the fixed part side toward the surface of the diaphragm from the large amplitude region side. a light guide that emits light from the large amplitude area side of the light guide, a light source that is provided at a position opposite to the fixed part side of the light guide and projects light into the light guide, and a light source that emits light from the large amplitude region side of the light guide onto the surface of the diaphragm. Since it is equipped with a photoelectric conversion means that converts the change in the amount of received light caused by the vibration of the diaphragm into an electrical signal at a nearby predetermined position, it is possible to reduce the size and weight and improve the reproduction fidelity. Further, the microphone of the present invention includes a diaphragm, and a structure formed from a first fixed part of the diaphragm to a large amplitude region, and propagates incident light from the first fixed part side toward the surface of the diaphragm from the large amplitude region side. a first light guide path that emits light;
a light source provided at a position facing the first fixed part side of the first light guide path and projecting light into the first light guide path; and a light source that emits light from the large amplitude region side of the first light guide path close to the surface of the diaphragm. a reflective mirror that receives at a predetermined position and reflects an amount of light proportional to the amount of received light that changes with the vibration of the diaphragm; a second light guide path that receives light on the area side and propagates to the second fixing part side; and a photoelectric conversion means that receives emitted light from the second fixing part side of the second light guide path and converts a change in the amount of received light into an electrical signal. As a result, the rate of change in the amount of light received by the photoelectric conversion means due to the vibration of the diaphragm is further increased, and reproduction fidelity is further improved.
第1図はこの発明の一実施例を示す側面図、第
2図はその斜視図、第3図および第4図はそれぞ
れその動作を示す要部平面図および要部側面図、
第5図はこの発明の他の実施例を示す側面図、第
6図はその斜視図、第7図はその一変形例を示す
側面図である。
1,1′…円形振動膜(振動板)、2…導光路、
2a…光反射面、3…光源、4,4′…光電変換
素子、6…反射ミラー、7…集光用導光路、7a
…光入射面。
FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a perspective view thereof, and FIGS. 3 and 4 are a plan view and a side view of a main part showing its operation, respectively.
FIG. 5 is a side view showing another embodiment of the invention, FIG. 6 is a perspective view thereof, and FIG. 7 is a side view showing a modification thereof. 1, 1'...Circular diaphragm (diaphragm), 2...Light guide path,
2a...Light reflecting surface, 3...Light source, 4, 4'...Photoelectric conversion element, 6...Reflecting mirror, 7... Light guide path for condensing light, 7a
...Light incidence surface.
Claims (1)
域にかけて形成され、固定部側からの入射光を伝
播して大振幅領域側より振動板表面に向けて放射
する導光路と、前記導光路の固定部側に対向する
位置に設けられ導光路内に投光する光源と、前記
導光路の大振幅領域側からの放射光を前記振動板
の表面に近い所定位置で受け前記振動板の振動に
伴う受光量変化を電気信号に変換する光電変換手
段とを備えたマイクロホン。 2 前記振動板は、透光性素材からなり周縁を固
定した円形膜であり、前記導光路は、他部領域に
比して高い屈折率に設定された前記円形膜周縁の
一部から中央部にかけての高屈折率直線領域から
なりこの高屈折率直線領域の円形膜中央部側と低
屈折率他部領域との境界を円形膜表面に対し所定
傾斜角度をなす光反射面としたものであり、前記
光電変換手段は、前記高屈折率直線領域で形成さ
れる導光路の前記光反射面からの反射光を受光し
うる円形膜表面に近い所定位置に設けた光電変換
素子である特許請求の範囲第1項記載のマイクロ
ホン。 3 振動板と、前記振動板の第1固定部から大振
幅領域にかけて形成され前記第1固定部側からの
入射光を伝播して大振幅領域側より振動板表面に
向け放射する第1導光路と、前記第1導光路の第
1固定部側に対向する位置に設けられ第1導光路
内に投光する光源と、前記第1導光路の大振幅領
域側からの放射光を振動板表面に近い所定位置で
受け前記振動板の振動に伴い変化する受光量に比
例した光量を反射する反射ミラーと、前記振動板
の大振幅領域から第2固定部にかけて形成され前
記反射ミラーの反射光を大振幅領域側で受け第2
固定部側に伝播する第2導光路と、前記第2導光
路の第2固定部側から放射光を受けて受光量変化
を電気信号に変換する光電変換手段とを備えたマ
イクロホン。 4 前記振動板は、透光性素材からなり周縁を固
定した円形膜であり、前記第1導光路は、他部領
域に比して高い屈折率に設定された前記円形膜周
縁の一部から中央部にかけての第1の高屈折率直
線領域からなりこの第1の高屈折率直線領域の円
形膜中央部側と低屈折率他部領域との境界を円形
膜表面に対し所定傾斜角度をなす光反射面とした
ものであり、前記反射ミラーは、前記第1導光路
の前記光反射面からの反射光を受光しうる円形膜
表面に近い所定位置に設けたものであり、前記第
2導光路は、前記低屈折率他部領域に比して高い
屈折率に設定され前記第1導光路に対向する前記
円形膜周縁の他部から中央部にかけての第2の高
屈折率直線領域からなりこの第2の高屈折率直線
領域の円形膜中央部側と低屈折率他部領域との境
界を前記反射ミラーからの反射光を受光しうる所
定傾斜角度をなす光入射面としたものであり、前
記光電変換手段は、前記第2導光路の円形膜周縁
側に対向する位置に設けられ前記第2導光路から
の放射光を受光して光電変換する光電変換素子で
ある特許請求の範囲第3項記載のマイクロホン。[Scope of Claims] 1. A diaphragm, and a guide formed from a fixed part of the diaphragm to a large amplitude region, which propagates incident light from the fixed part side and radiates it from the large amplitude region side toward the surface of the diaphragm. a light path, a light source provided at a position facing the fixed part side of the light guide and projecting light into the light guide, and a light source emitted from the large amplitude region side of the light guide at a predetermined position close to the surface of the diaphragm. A microphone comprising photoelectric conversion means for converting changes in the amount of received light caused by vibrations of the diaphragm into an electrical signal. 2. The diaphragm is a circular film made of a translucent material and has a fixed periphery, and the light guide path extends from a part of the periphery of the circular film, which is set to have a higher refractive index than other areas, to a central part. The boundary between the circular film center side of the high refractive canonical region and the other low refractive index region is a light reflecting surface that forms a predetermined inclination angle with respect to the circular film surface. , the photoelectric conversion means is a photoelectric conversion element provided at a predetermined position close to a circular film surface capable of receiving reflected light from the light reflecting surface of the light guide path formed in the high refractive straight line area. A microphone according to scope 1. 3. A diaphragm, and a first light guide path formed from a first fixed part of the diaphragm to a large amplitude region, which propagates incident light from the first fixed part side and radiates it toward the surface of the diaphragm from the large amplitude region side. a light source provided at a position facing the first fixed part side of the first light guide path and projecting light into the first light guide path, and a light source that emits light from the large amplitude region side of the first light guide path to the diaphragm surface. a reflecting mirror that receives light at a predetermined position close to the diaphragm and reflects an amount of light proportional to the amount of received light that changes as the vibration of the diaphragm; 2nd receiving on large amplitude area side
A microphone comprising: a second light guide path that propagates toward a fixed part; and a photoelectric conversion means that receives emitted light from the second fixed part side of the second light guide path and converts a change in the amount of received light into an electrical signal. 4. The diaphragm is a circular film made of a translucent material and has a fixed periphery, and the first light guide path extends from a part of the periphery of the circular film that is set to have a higher refractive index than other areas. Consisting of a first high refractive straight line region extending toward the center, the boundary between the first high refractive straight line region on the circular film center side and the other low refractive index region forms a predetermined inclination angle with respect to the circular film surface. The reflection mirror is provided at a predetermined position close to a circular film surface capable of receiving reflected light from the light reflection surface of the first light guide path, and The optical path includes a second high refractive straight line region from the other part of the peripheral edge of the circular film to the center part, which is set to have a higher refractive index than the other part region with a low refractive index and is opposite to the first light guide path. The boundary between the circular film center side of the second high refractive straight line area and the other low refractive index area is a light incident surface forming a predetermined inclination angle that can receive the reflected light from the reflecting mirror. , the photoelectric conversion means is a photoelectric conversion element that is provided at a position facing the circular film peripheral side of the second light guide path and receives and photoelectrically converts the emitted light from the second light guide path. Microphone according to item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15687281A JPS5857898A (en) | 1981-09-30 | 1981-09-30 | Microphone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15687281A JPS5857898A (en) | 1981-09-30 | 1981-09-30 | Microphone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5857898A JPS5857898A (en) | 1983-04-06 |
JPH0139280B2 true JPH0139280B2 (en) | 1989-08-18 |
Family
ID=15637229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15687281A Granted JPS5857898A (en) | 1981-09-30 | 1981-09-30 | Microphone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5857898A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL135282A0 (en) * | 2000-03-27 | 2001-05-20 | Phone Or Ltd | Thin optical microphone/sensor |
JP3951613B2 (en) * | 2001-02-09 | 2007-08-01 | 株式会社ケンウッド | Microphone |
WO2002089523A1 (en) * | 2001-04-26 | 2002-11-07 | Koninklijke Philips Electronics N.V. | Device for detecting pressure fluctuations, display device, recording device and sound reproduction system |
-
1981
- 1981-09-30 JP JP15687281A patent/JPS5857898A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5857898A (en) | 1983-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4912316A (en) | Detecting apparatus with resinous body | |
JP3522212B2 (en) | Small displacement detection device using sound, etc. | |
JPH0139280B2 (en) | ||
JPS6269111A (en) | Reflection type inclination detecting element | |
JP3828755B2 (en) | Displacement light quantity converter | |
JP2780300B2 (en) | Photodetector | |
US6906807B2 (en) | Membrane type optical transducers particularly useful as optical microphones | |
GB1584048A (en) | Optical transducers | |
JPH05113525A (en) | Optical coupling unit and fiber photoelectric sensor using the same | |
JPS58103292A (en) | Mfb loud speaker | |
JPH02190099A (en) | Optical microphone | |
JP3481179B2 (en) | Acoustic-electric converter | |
JPH063593A (en) | Optical reflecting element | |
JP2005045720A (en) | Optical microphone and its manufacturing method | |
JP2002195877A (en) | Vibration detector | |
JPH01277000A (en) | Acoustic sensor | |
JPH0431900U (en) | ||
JPS58165028A (en) | Photo diffraction type pressure sensor | |
JPH01135829U (en) | ||
JP2618003B2 (en) | Method for manufacturing optical semiconductor device | |
JP2001238293A (en) | Acoustoelectric transducer | |
JPS58162199A (en) | Oscillation pick-up microphone | |
JPH06838Y2 (en) | Optical coupling element | |
JPS6427628U (en) | ||
JPS5729912A (en) | Physical quantity measuring device |