JPH0138983Y2 - - Google Patents

Info

Publication number
JPH0138983Y2
JPH0138983Y2 JP1981040596U JP4059681U JPH0138983Y2 JP H0138983 Y2 JPH0138983 Y2 JP H0138983Y2 JP 1981040596 U JP1981040596 U JP 1981040596U JP 4059681 U JP4059681 U JP 4059681U JP H0138983 Y2 JPH0138983 Y2 JP H0138983Y2
Authority
JP
Japan
Prior art keywords
plate
piezoelectric
rectangular
corner
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981040596U
Other languages
Japanese (ja)
Other versions
JPS57155825U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981040596U priority Critical patent/JPH0138983Y2/ja
Publication of JPS57155825U publication Critical patent/JPS57155825U/ja
Application granted granted Critical
Publication of JPH0138983Y2 publication Critical patent/JPH0138983Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

厚み滑り振動をする水晶板の形状は一般に第1
図の斜視図に示すような直径D、厚さtの円板状
のものが主に実用されている。併し乍ら水晶振動
子の多様化に伴い、形状は円板以外にも、第2図
a,b,c,d,e,f等の例のような長方形状
板の水晶板ABCDが使用される傾向にある。 第2図aは厚さt1の平板、b図は相対する二辺
の縁端をそれぞれ曲率半径rでベベルしたベベル
巾αのベベル平板、c図は表面が曲率半径rの球
面の一部、裏面が平板のプラノコンベツクス板、
d図は表裏面共に曲率半径rの球面の一部となつ
ているバイコンベツクス板、e図は表面が半径r
の円柱面の一部、裏面が平板の片かまぼこ板、f
図は表裏面共に半径rの円柱面の一部となつてい
る両かまぼこ板で、いずれも中心厚t1、端厚t2
ものの斜視図である。このほか、表面ベベル裏面
コンベツクスの如く、上記を組合せた形状のもの
もある。 一般に上記水晶板は所定の製造工程を経て、第
3図の斜視図に示すように、端子300,30
0′を有する所謂ハーメテイツク形保持器400
に組立てられケース100でカバーされ、外形寸
法L×H×Wの形状の水晶振動子を形成する。第
3図の振動子のケースの内部は、通常、厚み滑り
振動をする水晶板の支持に関しては、支持によつ
て生ずる振動損失(以下の記述では水晶板自体の
振動損失と併せて等価抵抗R1と言うことにする)
を極力小さくするために、所謂エネルギーとぢ込
め効果によつて、振動エネルギーが最も小さくな
る筈の水晶板の縁端近傍を支持部として、導電性
セメントにより、水晶板と支持機構とを固着する
構造になつている。 さて、第2図a〜fの平板、ベベル平板、プラ
ノコンベツクス板、バイコンベツクス板、片かま
ぼこ板、両かまぼこ板及びこれらの構造を相互に
組合せた構造の長方形状水晶板(以下の記述では
単に長方形状水晶板と言う)の利点の一つは円板
に比べて振動損失R1を大きく増すことなく、第
3図の高さHをある程度小さくなし得ることであ
る。即ち長方形状水晶板ABCDのBC又はADの
方向(以下ではBCとADは平行で等しいとし単
にBCの方向と言う)の端で支持するとき、BCの
寸法をある大きさに保つたままAB又はCDの方
向(以下ではABとCDも平行で等しいものとし
単にABの方向と言う)の寸法を小さくしても、
支持点と振動中心との距離はそれ程減少せず、振
動損失の増加は比較的小さいものに抑えられる。
併し従来の支持構造は概ね円板状水晶板に対する
ものであつて、上述の長方形状水晶板の利点を充
分に満足させることについては不完全である。 さて従来、広く使用されている小形ハーメテイ
ツクシール形の保持器の支持構造について述べる
と、これらはコイルばね式と板ばね式に大別され
る。第4図a,b,c,dは従来の支持構造の緒
例の斜視図で、a図はコイルばね1,1′の先端
のそれぞれのスリツト2,2′の間に水晶板を挿
入する構造、b図はa図のコイルばねの高さが低
いもの、c図は板ばね1,1′(長さh′1)の一部
に設けたスリツト2,2′(スリツトの長さ、巾
をそれぞれh′2,ω′)の間に水晶板を挿入する構
造のもの、d図はc図の高さが低いものでスリツ
トは斜めの立上り部の一部に設けられている。
a,b,c,d何れにも共通して、水晶板は1,
1′に導電性セメントによつて固着されて、端子
3,3′に接続されるようになつている。4は保
持器基部である。 さて、従来の支持構造の保持器に長方形状水晶
板を保持させるときは、振動子にいくつかの不具
合が生ずる。即ち、第4図a又はcの支持構造で
は、第3図の高さHを小さくしようとする時コイ
ルばね又は板ばねの高さで制限されるため不向き
である。 第4図b又はdの支持構造はB及びCコーナー
又はその近傍を支持部とするもので高さHを小さ
くする上で、上述のa又はcよりやゝ効果がある
がなお不満足の点を残す。これを明らかにするた
めに以下に水晶振動子の支持による一般的記述を
行い、b又はdの支持構造の不満足点を指摘す
る。通常水晶板が長方形状のときはBC/t1(t1
中心厚)が小さくなるに従い(これは振動子の小
形化をはかる場合もしくは振動周波数が比較的低
い場合(例えば基本波で約8MHz以下))、エネル
ギーとぢ込め効果が充分でなくなり、支持部にお
ける導電性セメントの接着位置(縁端から振動中
心(一般に水晶板の中心)に向う距離が重要)と
接着面積の僅少な差が著しく振動損失に影響する
(第7図、第8図の実測例で後述する)。第4図
b,dの支持構造に共通して云える欠点として (イ) 水晶板を挿入する際、水晶板の振動中心に対
し図の左右の対称ずれを調整することが難し
く、前出のBC/t1が小さい場合は導電性セメ
ントの接着位置ずれを生ずることとなるため
に、振動損失が増大し製品のばらつき巾が大き
くなる。 (ロ) 水晶板はB,Cコーナー又はその近傍の2点
支持によるため機械的衝撃に対して不安定で、
固着した後導電性セメントのひび割れを生じ易
く強い衝撃に対してはセメントの脱落更には水
晶板の脱落又は破損の恐れがある。そしてこれ
を防ぐためにセメントの固着面積を大きくすれ
ば振動損失を著しく増大させる結果となる。 そしてb図の支持構造には次の欠点がある。 (ハ) コイル部の直径を小さくするのに限界があり
(現行の最小のもの1mm)、通常行われているよ
うにコイルの内側でセメント固着をする際、固
着面積の調整が難しく、広がり易くなつて振動
損失が増大しばらつき巾が大きくなる。 d図の支持構造には次の欠点がある。 (ニ) セメント固着までの製造工程で、単に水晶板
を挿入しただけの状態では水晶板は落下し易く
極めて不安定で作業上不便がある。 上述のように、従来の支持構造で長方形状水晶
板を支持したときは多くの不具合を生じ、小形化
及び性能を充分に発揮することが難しく、特に振
動損失とそのばらつき巾並びに耐衝撃性に問題を
生ずる。この解決は重要な技術的課題である。 本考案は第4図dの支持構造をもとにして、こ
れを改善しこの技術的課題を解決するものであ
る。以下図によつて説明を進める。 第5図は長方形状水晶板を支持するための本考
案の支持構造を有する保持器の一例の正面、平
面、側面図であつて、板ばね11,11′は支持
方向BCに平行な水平部分の長さn1とこれに曲げ
角度θ゜1をもつて保持器基部41の反対側(外斜
上方)に折り曲げられた長さh1の折り曲げ部と更
にそれに続いて内斜上方に折り曲げた先端部5
1,51′を有しており、51,51′部の先端の
凹状スリツトで水晶板ABCDの側面を押え込む
構造になつている。この凹状スリツトは水晶板を
挿入した際水晶板の端厚t2(平板ではt1)の一部
に突き当るよう構成される。 51等の寸法と折り曲げ角は上述の目的に沿うよ
う適宜定められる。 mを端子31,31′の間隔とすれば11,1
1′の最短距離lはm+2n1であり、BCよりやゝ
小さくなるように選ぶ。又板ばね11等にはその
h1部とn1部にそれぞれ長さh2,n2、巾wのスリツ
トが設けられ、h2とn2は連続している。スリツト
n2は水晶板のコーナーをスリツトh2に押し込む必
要のあるとき、wが僅かに広げられ易くなること
を考慮して設けられたものであり、水晶板が平板
のときなどではn2はなくても特に差しつかえな
い。同じ意味からスリツトh2はh1を超えて51等の
内部にまで延びていてもよい。また板ばね11等
と端子31等は一体構造としてもよい。 第6図は本考案の第5図の支持構造を有する保
持器に例えば第2図aの長方形状平板ABCDの
表裏面に金属薄膜電極61,61′を蒸着させて
B,Cコーナーをスリツトwに挿入し、導電性セ
メント71,71′で電極61等の端部と共に板
ばね11等に固着し、端子31等に接続して組立
てた例の斜視図である。(第6図のハツチングは
電極膜を示す)。第6図の他の部分は第5図と同
じである。 第5,6図の本考案が従来の支持構造より優れ
た効果を示すことを前出のイ〜ニの各項と対比し
て次に示す。 (1) 第6図でスリツトwにB,Cコーナーを挿入
する際、板ばね11,11′の先端凹状スリツ
トの作用で左右の対称ずれが解消し、導電性セ
メントの接着位置が均一化され、そのために振
動損失とそのばらつきが改善される。 (2) 水晶板はB,Cコーナー近傍で2点支持され
る他に11,11′の先端凹状スリツトでも補
助的に支持されている。この際必要ある場合は
水晶板の端厚t2(平板の場合はt1)の側面と先
端凹部を極く少量の導電セメントで固着するこ
ともできる。この固着の影響は比較的小さい。
そしてこの固着を行うときは支持部B,Cコー
ナーの導電性セメントは従来より少量でよくな
り振動損失の減少をはかることができる。 先端凹状スリツトの補助支持を付加したこと
により前後、左右、上下特に前後、左右の耐衝
撃性は格段に向上する。 (3) 主支持部であるB,Cコーナー部における導
電性セメント固着の位置と面積は均一化し、振
動損失及びそのばらつきを改善することが出来
る。 (4) 主支持と補助支持の4点支持構造であるので
セメント固着までの製造工程でも水晶板の不安
定さ、がたつき、脱落等がない。 (5) 先端部51等が内斜上方に折れ曲つているの
で、ケース被覆の際妨げとならない。又水平部
n1部を設けてあるために、水晶板を挿入したと
き浮き上りが小さく、安定して装着される。 第7,8図は所謂AT板の基本波振動周波数
1843MHz,32768MHz,4MHz及び10MHzの各場
合、水晶板の主たる寸法を次に第1表のようにと
つたときを例とし、導電性セメントの固着の位置
及び面積によつて、振動損失R1が大巾に変化す
ること実測したものであるが、本考案の効果を明
らかにするため参考として述べる。第7図は横軸
に対角線BD及びCAの方向にそれぞれB,Cか
らの距離sの位置を示し、その位置で約0.3mmφ
の大きさの導電性セメントを固着させたときの
R1の変化を縦軸に示す。 第8図では、水晶板のB(又はC)コーナー近
傍が外斜上方へ折り曲げられたh1部と交る点を
P,Qとし、BからPQへの垂線の長さをxとし
たとき、x≒0.5,BP≒0.6,BQ≒0.9(単位mm)
の三角形の面積S0.5(≒0.27mm2)を基準1にとり、
y=固着面積/S0.5を変化させて横軸とし、縦軸
にR1の変化を示したものである。s及びyの零
値はセメントを固着していないことを意味する。
The shape of the crystal plate that undergoes thickness-shear vibration is generally
A disk-shaped one having a diameter D and a thickness t as shown in the perspective view of the figure is mainly used. However, with the diversification of crystal oscillators, rectangular-shaped crystal plates ABCD, such as the examples shown in Figure 2 a, b, c, d, e, and f, are being used in addition to the disk shape. It is in. Figure 2 a shows a flat plate with a thickness of t 1 , figure b shows a beveled flat plate with a bevel width α whose edges on two opposing sides are each beveled with a radius of curvature r, and figure c shows a part of a spherical surface with a radius of curvature r. , a planoconvex plate with a flat back surface,
Figure d shows a biconvex plate whose front and back surfaces are both part of a spherical surface with a radius of curvature r. Figure e shows a biconvex plate whose front surface has a radius r.
Part of the cylindrical surface of , a single-sided kamaboko board with a flat back surface, f
The figure is a perspective view of both semi-cylindrical boards whose front and back surfaces are part of a cylindrical surface with a radius r, each having a center thickness t 1 and an end thickness t 2 . In addition, there are also shapes that are a combination of the above, such as a front surface bevel and a back surface convex. Generally, the above-mentioned crystal plate goes through a predetermined manufacturing process, and as shown in the perspective view of FIG. 3, terminals 300, 30
A so-called hermetically sealed cage 400 having a
is assembled and covered with a case 100 to form a crystal resonator having external dimensions L×H×W. Inside the case of the vibrator shown in Figure 3, when supporting a crystal plate that vibrates through its thickness, the vibration loss caused by the support (in the following description, the equivalent resistance R in addition to the vibration loss of the crystal plate itself) (I will say 1 )
In order to minimize this, the support mechanism is fixed to the crystal plate using conductive cement, using the area near the edge of the crystal plate where the vibration energy should be minimized due to the so-called energy entrapment effect. It's structured. Now, the flat plates, beveled plates, planoconvex plates, biconvex plates, single semicircular plates, double semicircular plates shown in Fig. 2 a to f, and rectangular crystal plates having a structure in which these structures are mutually combined (described below) One of the advantages of the rectangular crystal plate (hereinafter simply referred to as a rectangular crystal plate) is that the height H in FIG. 3 can be reduced to a certain extent without significantly increasing the vibration loss R 1 compared to a circular plate. In other words, when supporting the rectangular crystal plate ABCD at the end in the BC or AD direction (below, BC and AD are parallel and equal, and simply referred to as the BC direction), the AB or AD direction is supported while keeping the BC dimension at a certain size. Even if you reduce the dimension in the CD direction (hereinafter simply referred to as the AB direction, assuming that AB and CD are parallel and equal),
The distance between the support point and the center of vibration does not decrease significantly, and the increase in vibration loss is suppressed to a relatively small value.
However, conventional support structures are generally for disk-shaped quartz plates, and are incomplete in fully satisfying the advantages of the rectangular quartz plates described above. Now, let us talk about the support structures for small hermetically sealed cages that have been widely used in the past.These are broadly divided into coil spring types and leaf spring types. Figures 4a, b, c, and d are perspective views of examples of conventional support structures, and Figure a shows a crystal plate inserted between the respective slits 2 and 2' at the tips of the coil springs 1 and 1'. Structure, Figure b shows the coil spring of Figure A with a lower height, Figure C shows the slits 2, 2 ' (length of the slit, The structure is such that a crystal plate is inserted between the widths h' 2 and ω'), and the height of figure d is lower than that of figure c, and the slit is provided in a part of the diagonal rising part.
Common to all a, b, c, and d, the crystal plate is 1,
1' with conductive cement, and is connected to terminals 3 and 3'. 4 is the cage base. Now, when a rectangular crystal plate is held in a holder with a conventional support structure, several problems occur in the vibrator. That is, the support structure shown in FIG. 4a or c is not suitable for reducing the height H shown in FIG. 3 because it is limited by the height of the coil spring or leaf spring. The support structure shown in Fig. 4 b or d uses the B and C corners or their vicinity as support parts, and is somewhat more effective than the above a or c in reducing the height H, but still has some unsatisfactory points. leave. In order to clarify this, a general description will be made below regarding the support of the crystal resonator, and the unsatisfactory points of the support structure b or d will be pointed out. Normally, when the crystal plate is rectangular, as BC/t 1 (t 1 is the center thickness) becomes smaller (this is true when the resonator is made smaller or when the vibration frequency is relatively low (for example, the fundamental wave is about 8 MHz). (below)), the energy-containing effect is no longer sufficient, and the slight difference between the adhesion position of the conductive cement on the support part (the distance from the edge to the vibration center (generally the center of the crystal plate) is important) and the adhesion area This significantly affects vibration loss (described later with actual measurement examples shown in FIGS. 7 and 8). The common drawbacks of the support structures shown in Figures 4b and d are (a) When inserting the crystal plate, it is difficult to adjust the left-right symmetry of the figure with respect to the vibration center of the crystal plate, and the above-mentioned If BC/t 1 is small, the adhesion position of the conductive cement will shift, resulting in increased vibration loss and product variation. (b) Since the crystal plate is supported at two points at or near the B and C corners, it is unstable against mechanical shock.
After being fixed, the conductive cement tends to crack, and there is a risk that the cement may fall off or the crystal plate may fall off or be damaged if subjected to a strong impact. In order to prevent this, if the fixed area of cement is increased, the vibration loss will be significantly increased. The support structure shown in Figure b has the following drawbacks. (c) There is a limit to reducing the diameter of the coil part (the current minimum is 1 mm), and when cementing is done inside the coil as is usually done, it is difficult to adjust the cementing area and it tends to spread. As a result, vibration loss increases and the range of variation increases. The support structure shown in Figure d has the following drawbacks. (d) If the crystal plate is simply inserted during the manufacturing process up to cement fixation, the crystal plate is likely to fall, making it extremely unstable and inconvenient for work. As mentioned above, when supporting a rectangular crystal plate with the conventional support structure, many problems occur, making it difficult to downsize and fully demonstrate performance, especially in terms of vibration loss, its dispersion, and impact resistance. cause problems. Solving this problem is an important technical challenge. The present invention is based on the support structure shown in FIG. 4d and is an improvement on it to solve this technical problem. The explanation will be explained below with reference to the figures. FIG. 5 is a front, plan, and side view of an example of a cage having the support structure of the present invention for supporting a rectangular crystal plate, in which the leaf springs 11 and 11' are horizontal portions parallel to the support direction BC. A bent part of length n 1 and a bent part of length h 1 which is bent to the opposite side (externally upward) of the retainer base 41 at a bending angle θ° 1 , and then further bent internally diagonally upward. Tip part 5
1 and 51', and has a structure in which the concave slits at the ends of the portions 51 and 51' press down the side surface of the crystal plate ABCD. This concave slit is configured so that it abuts against a part of the edge thickness t 2 (t 1 in the case of a flat plate) of the quartz plate when the quartz plate is inserted. The dimensions and bending angle of 51 etc. are determined as appropriate to meet the above-mentioned purpose. If m is the distance between terminals 31 and 31', then 11,1
The shortest distance l of 1' is m+2n 1 , which is selected to be slightly smaller than BC. Also, the plate spring 11 etc.
Slits with lengths h 2 and n 2 and width w are provided in the h 1 and n 1 parts, respectively, and h 2 and n 2 are continuous. slit
n 2 was provided in consideration of the fact that when it is necessary to push the corner of the crystal plate into the slit h 2 , w becomes easier to widen slightly, and when the crystal plate is a flat plate, n 2 is not present. However, there is no particular problem. From the same meaning, the slit h2 may extend beyond h1 to the inside of 51, etc. Further, the leaf spring 11 and the like and the terminal 31 and the like may have an integral structure. FIG. 6 shows metal thin film electrodes 61 and 61' deposited on the front and back surfaces of the rectangular flat plate ABCD shown in FIG. 2a, for example, on the cage having the support structure shown in FIG. FIG. 12 is a perspective view of an example in which the electrode 61 and the like are inserted into the plate spring 11 with conductive cement 71 and 71', and are connected to the terminal 31 and assembled. (The hatching in FIG. 6 indicates the electrode film). The other parts of FIG. 6 are the same as FIG. 5. The fact that the present invention shown in FIGS. 5 and 6 exhibits superior effects over the conventional support structure will be explained below in comparison with the above-mentioned items A to D. (1) When inserting the B and C corners into the slit w in Fig. 6, the concave slits at the tips of the leaf springs 11 and 11' eliminate left and right symmetry, and the adhesion position of the conductive cement is made uniform. Therefore, vibration loss and its dispersion are improved. (2) In addition to being supported at two points near the B and C corners, the crystal plate is also auxiliary supported by concave slits at the tips of 11 and 11'. At this time, if necessary, the side surface of the end thickness t 2 (t 1 in the case of a flat plate) of the quartz plate and the tip recess can be fixed with a very small amount of conductive cement. The effect of this sticking is relatively small.
When this fixing is performed, a smaller amount of conductive cement at the corners of the support portions B and C is required than in the past, and vibration loss can be reduced. By adding the auxiliary support of the concave slit at the tip, impact resistance in the front and rear, left and right, and top and bottom directions, especially in the front and rear and left and right directions, is significantly improved. (3) The position and area of conductive cement fixation at the B and C corners, which are the main support parts, are made uniform, and vibration loss and its dispersion can be improved. (4) Since it has a four-point support structure of main support and auxiliary support, there is no instability, rattling, or falling off of the crystal plate even during the manufacturing process up to cement fixation. (5) Since the tip portion 51 etc. is bent upward inwardly, it does not become a hindrance when covering the case. Also horizontal part
n 1 part is provided, so when the crystal plate is inserted, there is little lifting and it can be installed stably. Figures 7 and 8 show the fundamental wave vibration frequency of the so-called AT plate.
In the case of 1843MHz, 32768MHz, 4MHz, and 10MHz, assuming that the main dimensions of the crystal plate are taken as shown in Table 1 below, the vibration loss R 1 is calculated depending on the position and area of the conductive cement. Although we have actually measured a large change, we will mention it as a reference to clarify the effect of the present invention. In Figure 7, the horizontal axis shows the position at a distance s from B and C in the direction of diagonal lines BD and CA, respectively, and at that position approximately 0.3 mmφ
When a conductive cement of size is fixed
The change in R 1 is shown on the vertical axis. In Figure 8, let P and Q be the points where the vicinity of the B (or C) corner of the crystal plate intersects with the h1 section bent outwardly upward, and let x be the length of the perpendicular line from B to PQ. , x≒0.5, BP≒0.6, BQ≒0.9 (unit: mm)
Taking the area S0.5 (≒0.27mm 2 ) of the triangle as standard 1,
The horizontal axis shows changes in y=fixed area/S0.5, and the vertical axis shows changes in R1 . A zero value for s and y means no cement.

【表】 s及びyを如何に選択するかは良質な振動子を
得る上で極めて重要である。第2表、第3表は第
5図の本考案の支持構造のもの及び従来の第4図
bの支持構造のものに第1表のNo.1の1843MHz、
及びNo.2の32746MHzの振動子を適用した場合の
R1,R1のばらつき率ΔR1/R1、及び硬質木板上
30cm、3回の落下衝撃試験δR1/R1について、そ
れぞれ50ケの試料の実測平均値を対比して示した
ものである。 本考案の支持構造のものに対してはNo.1でx≒
0.08mm y≒1.0 No.2でx≒0.4,y=0.5、従来
構造のものではコイル直径1.0mm固着面積はコイ
ル内部コーナーよりコイル内部全面積の約0.7で
ある。
[Table] How to select s and y is extremely important in obtaining a high quality vibrator. Tables 2 and 3 show the support structure of the present invention shown in Fig. 5 and the conventional support structure shown in Fig. 4b, 1843MHz of No. 1 in Table 1,
And when applying No. 2 32746MHz resonator
R 1 , variation rate of R 1 ΔR 1 /R 1 , and on hard wood board
This shows a comparison of the measured average values of 50 samples for each 30cm drop impact test δR 1 /R 1 performed three times. For the support structure of this invention, x≒ No. 1
0.08mm y≒1.0 In No. 2, x≒0.4, y=0.5, with the conventional structure, the fixed area of the coil diameter 1.0mm is about 0.7 of the total area inside the coil from the inner corner of the coil.

【表】【table】

【表】 第2,3表で明らかなように、本考案の支持構
造による振動子は従来のものに比べて、R1及び
そのばらつき、耐衝撃性に優れており特にR1
おいては、No.1のもので約3倍、No.2のもので約
3.5倍改善されている。尚従来のもので第4図d
の支持構造のものは衝撃試験で水晶板が脱落する
ものであり、評価の対象しなかつた。第2表の本
考案によるものは第3図の外形H×L×Wが約13
×11×4.5mm3の所謂HC−18/U形、第3表の本
考案によるものはH×L×Wが約8×11×4.5mm3
でHC−18/U形より更にHを小さくしたもので
あるがR1等の性能に関しては従来の大形のもの
所謂HC−6/U形のH×L×Wが約19×19×8.8
mm3のものに比べて遜色のない値(通常1.8MHz帯
で100〜150Ω、3.2MHz帯で30〜50Ω)であること
は、本考案の支持構造が長方形状水晶板に対し
て、極めて適切な支持構造であることの証明であ
る。 第9図は第5図の本考案の応用例の正面図と平
面図である。 第9図は第5図のものに板ばね11、等が端子
31等の方向に、特にばね効果をもつように、支
持構造の基部で蛇腹状の折り曲げられた部分8
1,81′を有するようにしたもので、この支持
構造に組み立てられた水晶板ABCDの振動子は
端子方向の衝撃に対して、よりよい効果がある。
その他の部分は第5図と同じであるので説明を省
略する。 以上詳述したように、従来、厚み滑り振動をす
る長方形状水晶板に対しては、その性能(特に
R1)と形状の利点(外形でH方向の小形化)を
充分発揮出来るような支持構造を有する適切な保
持器がなく、長方形状水晶板の普及発展を遅らせ
ているが、本考案の支持構造の保持器及び、本保
持器に組立てた長方形状水晶板によつて、R1
そのばらつき及び耐衝撃性に優れた振動子を得る
ことができると同時にH方向の小形化に対して
も、容易に即応することが可能となり、又同一種
類の振動子の量産の場合、均一な品質の維持に著
しい効果を発揮し、歩止りの向上と作業能率を高
めることに寄与する。本考案の工業的価値は高
い。
[Table] As is clear from Tables 2 and 3, the vibrator with the support structure of the present invention has excellent R 1 , its variation, and impact resistance compared to conventional ones, and in particular, in R 1 , it is No. .1 is about 3 times as much, and No.2 is about 3 times as much.
This is a 3.5x improvement. In addition, the conventional one is shown in Figure 4 d.
The support structure of the one in which the crystal plate fell off during the impact test was not subject to evaluation. The device according to the present invention shown in Table 2 has an external dimension of approximately 13 cm (H x L x W) as shown in Figure 3.
The so-called HC-18/U type of ×11 × 4.5 mm 3 , and the one according to the present invention shown in Table 3, has a H × L × W of approximately 8 × 11 × 4.5 mm 3
Although it has a smaller H than the HC-18/U type, in terms of performance such as R1 , the conventional large size so-called HC-6/U type has a H x L x W of approximately 19 x 19 x 8.8.
mm 3 (normally 100 to 150 Ω in the 1.8 MHz band, 30 to 50 Ω in the 3.2 MHz band), which means that the support structure of the present invention is extremely suitable for rectangular crystal plates. This proves that it is a reliable support structure. 9 is a front view and a plan view of an application example of the present invention shown in FIG. 5. FIG. FIG. 9 shows a bellows-like bent portion 8 at the base of the support structure so that the leaf spring 11, etc. has a particularly spring effect in the direction of the terminal 31, etc., compared to the one shown in FIG.
1,81', and the vibrator of the quartz plate ABCD assembled in this support structure has a better effect against impact in the direction of the terminals.
The other parts are the same as those in FIG. 5, so their explanation will be omitted. As detailed above, conventionally, the performance (especially
There is no suitable cage with a support structure that can fully utilize the advantages of R 1 ) and shape (smaller external shape in the H direction), which has delayed the spread and development of rectangular crystal plates. By using the structure of the cage and the rectangular crystal plate assembled to this cage, it is possible to obtain a vibrator with excellent resistance to R1 , its variation, and impact, and at the same time, it is also possible to reduce the size in the H direction. , it becomes possible to respond easily and quickly, and in the case of mass production of the same type of vibrators, it exhibits a remarkable effect on maintaining uniform quality, contributing to improving yield and work efficiency. The industrial value of this invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円板状水晶板の斜視図、第2図、a,
b,c,d,e,fはそれぞれ長方形状水晶板
ABCDの平板、ベベル平板、プラノコンベツク
ス板、バイコンベツクス板、片かまぼこ板、及び
両かまぼこ板の斜視図、第3図は所謂ハーメテイ
ツク形保持器の水晶振動子の外形構造を示す斜視
図、第4図a,b,c、及びdは所謂ハーメテイ
ツク形保持器の従来の支持構造の例でそれぞれコ
イルばねのもの、コイルばねの高さが低いもの、
及び板ばねのもの及び板ばねの高さが低い構造の
ものである。第5図は長方形状水晶板を支持する
ための本考案の支持構造の保持器の例の正面、平
面及び側面図、第6図は第5図の本考案の保持器
に長方形状平板ABCDを組立てたものの斜視図、
第7図及び第8図はAT板振動子の基本波振動周
波数1.84MHz,3.28MHz,4MHz,10MHzの場合
を例とし、それぞれ導電性セメントによる固着の
位置及び面積を横軸としたとき、等価抵抗R1
変化を縦軸に示したもの、第9図は本考案の応用
例で、支持構造の基部を蛇腹式ばね構造としたも
のである。 ABCD……長方形状水晶板、11,11′……
板ばね、21,21′……空隙、51,51′……
板ばね先端部、31,31′……端子、41……
保持器基部、81,81′……板ばね蛇腹部、6
1,61′……水晶板電極膜。
Figure 1 is a perspective view of a disk-shaped crystal plate, Figure 2, a,
b, c, d, e, f are rectangular crystal plates, respectively.
A perspective view of ABCD's flat plate, bevel flat plate, planoconvex plate, biconvex plate, single semicylindrical plate, and double semicylindrical plate; FIG. 3 is a perspective view showing the external structure of a crystal resonator in a so-called hermetically sealed cage; Figures 4a, b, c, and d are examples of conventional support structures for so-called hermetically sealed cages, including one with a coil spring, one with a low height coil spring, and one with a low height coil spring, respectively.
and those with leaf springs and those with a structure in which the height of the leaf spring is low. Fig. 5 is a front, plan and side view of an example of the cage of the present invention for supporting a rectangular crystal plate, and Fig. 6 is a rectangular flat plate ABCD in the cage of the invention shown in Fig. 5. A perspective view of the assembled product,
Figures 7 and 8 show examples of fundamental wave vibration frequencies of 1.84 MHz, 3.28 MHz, 4 MHz, and 10 MHz of the AT plate vibrator, and when the horizontal axis represents the position and area of fixation by conductive cement, the equivalent FIG. 9, which shows the change in resistance R 1 on the vertical axis, is an application example of the present invention, in which the base of the support structure has a bellows type spring structure. ABCD……Rectangular crystal plate, 11, 11′……
Leaf spring, 21, 21'...Gap, 51, 51'...
Leaf spring tip, 31, 31'...terminal, 41...
Retainer base, 81, 81'... leaf spring bellows part, 6
1,61'... Quartz plate electrode film.

Claims (1)

【実用新案登録請求の範囲】 (1) 金属板ばね部を有する二つの端子の夫々がそ
の金属板ばね部を用いて、表裏に電極を具える
長方形状厚み滑り振動圧電板ABCDの該表裏
の電極を電気的に導出するとともに該圧電板を
その一方の長辺BCの両端のコーナー部B,C
で保持し、該圧電板の短辺AB,DCの方向に
振動子保持器基部を貫通して支持する構成の厚
み滑り圧電振動子において、 該二つの金属板ばね部が次のa,b,c,d
の部分を具えることを特徴とする長方形状板厚
み滑り圧電振動子。 a 該貫通部に続く部分に、板ばねの板面を圧
電板の板面に対し垂直に保ち、該長辺BCに
対して交叉して進み、圧電板の板面に対して
平行に且つ両板ばねが互いに離反してゆく方
向と向きに延長される、コーナー保持部分を
具える。 b 更にこのコーナー保持部分に続く部分に、
板ばねの板面を圧電板の板面ABCDに対し
垂直に保ち、圧電板の板面に対し平行に且つ
両板ばねが互いに接近する方向と向きに延長
され、その夫々が圧電板の短辺AB,CDの
夫々と交叉する、先端部分を具える。 c 該コーナー保持部分にスリツトを設けてそ
の夫々に該コーナーの夫々を挿入する。 d 該先端部分には凹状スリツトを設けてその
夫々に短辺AB,CD即ち圧電板の側端を
夫々を挿入する。 (2) 該両金属板ばねが夫々、該貫通部と該コーナ
ー保持部分との間に、該長辺BCに対して平行
な部分を具えていることを特徴とする実用新案
登録請求範囲第1項記載の長方形状板厚み滑り
圧電振動子。 (3) 該両金属板ばねの夫々が、該長辺BCに対し
平行な部分に、蛇腹状の折り曲げ部分を具えて
いることを特徴とする実用新案登録請求範囲第
2項記載の長方形状板厚み滑り圧電振動子。
[Claims for Utility Model Registration] (1) Two terminals each having a metal plate spring part use the metal plate spring part to connect the front and back sides of a rectangular thick-slide vibrating piezoelectric plate ABCD, which has electrodes on the front and back sides. The electrodes are electrically led out, and the piezoelectric plate is connected to corner portions B and C at both ends of one long side BC.
In a thickness-slip piezoelectric vibrator configured to be supported by penetrating the base of the vibrator holder in the direction of the short sides AB and DC of the piezoelectric plate, the two metal plate spring parts have the following a, b, c, d
A rectangular plate-thickness sliding piezoelectric vibrator characterized by comprising a part. a In the part following the penetration part, keep the plate surface of the leaf spring perpendicular to the plate surface of the piezoelectric plate, cross the long side BC, and extend parallel to the plate surface of the piezoelectric plate and on both sides. A corner retaining portion is provided which extends in the direction in which the leaf springs move away from each other. b Furthermore, in the part following this corner holding part,
The plate surface of the leaf spring is kept perpendicular to the plate surface ABCD of the piezoelectric plate, and is extended parallel to the plate surface of the piezoelectric plate in the direction in which both leaf springs approach each other, and each of the plate springs is extended along the short side of the piezoelectric plate. It has a tip that intersects AB and CD. c. Provide a slit in the corner holding portion and insert each corner into each of the slits. d) A concave slit is provided at the tip, and the short sides AB and CD, that is, the side ends of the piezoelectric plate, are inserted into each of the concave slits. (2) Utility model registration claim 1, characterized in that each of the metal plate springs has a portion parallel to the long side BC between the penetrating portion and the corner holding portion. Rectangular plate thickness sliding piezoelectric vibrator as described in Section 1. (3) The rectangular plate according to claim 2 of the utility model registration claim, wherein each of the metal plate springs has a bellows-shaped bent portion in a portion parallel to the long side BC. Thickness sliding piezoelectric vibrator.
JP1981040596U 1981-03-23 1981-03-23 Expired JPH0138983Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981040596U JPH0138983Y2 (en) 1981-03-23 1981-03-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981040596U JPH0138983Y2 (en) 1981-03-23 1981-03-23

Publications (2)

Publication Number Publication Date
JPS57155825U JPS57155825U (en) 1982-09-30
JPH0138983Y2 true JPH0138983Y2 (en) 1989-11-21

Family

ID=29837707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981040596U Expired JPH0138983Y2 (en) 1981-03-23 1981-03-23

Country Status (1)

Country Link
JP (1) JPH0138983Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112548U (en) * 1983-01-19 1984-07-30 御代田精密株式会社 Crystal piece processing equipment
JP5028061B2 (en) * 2006-10-05 2012-09-19 日本電波工業株式会社 Crystal oscillator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314493Y2 (en) * 1978-04-24 1988-04-22

Also Published As

Publication number Publication date
JPS57155825U (en) 1982-09-30

Similar Documents

Publication Publication Date Title
JPS6146609A (en) Piezoelectric vibrator
JPH0138983Y2 (en)
JPS6138645B2 (en)
JP4281451B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JPS5827548Y2 (en) crystal oscillator
JPS5838654Y2 (en) Support structure of piezoelectric ceramic resonator
JP3416805B2 (en) Quartz resonator disk holder
JPS6314493Y2 (en)
JPS5846572Y2 (en) Atsumisuberiketsushiyoushindoushinoshijikousou
JPS6246335Y2 (en)
JPS6121861Y2 (en)
JPS5838653Y2 (en) Tuning fork piezoelectric vibrator
JPS6119554Y2 (en)
JPS5838652Y2 (en) Tuning fork piezoelectric vibrator
JPH0336104Y2 (en)
JPS5827549Y2 (en) Crystal oscillator support structure
JPS6130335Y2 (en)
JPH0117859Y2 (en)
JPS6314494Y2 (en)
JPS6318174Y2 (en)
JPS5844649Y2 (en) Thin profile slip oscillator
JPH0144047B2 (en)
JPS58225715A (en) Thickness sliding crystal oscillator
JPH0352314A (en) Piezoelectric resonator
JPH0215391Y2 (en)