JPH0138846B2 - - Google Patents

Info

Publication number
JPH0138846B2
JPH0138846B2 JP61104225A JP10422586A JPH0138846B2 JP H0138846 B2 JPH0138846 B2 JP H0138846B2 JP 61104225 A JP61104225 A JP 61104225A JP 10422586 A JP10422586 A JP 10422586A JP H0138846 B2 JPH0138846 B2 JP H0138846B2
Authority
JP
Japan
Prior art keywords
gas
heat treatment
concentration
atmosphere
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61104225A
Other languages
Japanese (ja)
Other versions
JPS62260013A (en
Inventor
Hitoshi Kabasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TEKUNO KK
Original Assignee
NIPPON TEKUNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TEKUNO KK filed Critical NIPPON TEKUNO KK
Priority to JP10422586A priority Critical patent/JPS62260013A/en
Publication of JPS62260013A publication Critical patent/JPS62260013A/en
Publication of JPH0138846B2 publication Critical patent/JPH0138846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、鉄系や非鉄系の金属材料から製作
した被処理材を雰囲気熱処理するにあたり、熱処
理時に要求される雰囲気ガス成分濃度に炉内雰囲
気を制御するのに利用される熱処理雰囲気制御方
法に関するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) This invention is directed to atmospheric heat treatment of a workpiece made from ferrous or non-ferrous metal materials, and to reduce the atmospheric gas required during the heat treatment. The present invention relates to a heat treatment atmosphere control method used to control the atmosphere in a furnace to the concentration of components.

(従来の技術) 鉄系や非鉄系の金属材料から製作した部品(素
材を含む。)は、熱処理を施すことによつてその
特性が著しく向上するものが多く、例えば耐摩耗
性や耐疲労性等を向上させるために浸炭焼入れを
施したりする。
(Prior art) Many parts (including raw materials) manufactured from ferrous and non-ferrous metal materials have their properties significantly improved by heat treatment, such as wear resistance and fatigue resistance. Carburizing and quenching may be applied to improve the properties.

従来、各種の部品に対して熱処理を行う場合、
ガス雰囲気としたり、液体雰囲気としたりする
が、液体雰囲気は取扱いや公害等の問題から、近
年ではガス雰囲気とすることが多い。この場合、
熱処理炉内の雰囲気ガス成分濃度を所定の値に保
つために、熱処理炉内にキヤリヤガスとエンリツ
チガスとを送給して均一な混合雰囲気を形成し、
前記キヤリヤガスとエンリツチガスの送給量を調
整して炉内の雰囲気ガス成分濃度を所定の値にす
ることが行われる。
Conventionally, when heat treating various parts,
A gas atmosphere or a liquid atmosphere may be used, but in recent years, a gas atmosphere is often used because liquid atmospheres pose problems such as handling and pollution. in this case,
In order to maintain the atmospheric gas component concentration in the heat treatment furnace at a predetermined value, a carrier gas and an enrichment gas are fed into the heat treatment furnace to form a uniform mixed atmosphere.
The feed rates of the carrier gas and enrichment gas are adjusted to bring the concentration of atmospheric gas components in the furnace to a predetermined value.

従来、このような雰囲気ガス成分濃度を生成さ
せる場合には、大別して変成炉方式と滴注方式と
がある。これらのうち、変成炉方式では、キヤリ
ヤガス(通常はRXガス)を生成させる変成炉の
操作が面倒であり、かなりの経験と熟練が要求さ
れると共に、ガス組成を安定に保つことが難かし
く、操作開始から安定したキヤリヤガスの送給ま
でにかなりの時間を要するため、経済的な方式で
あるとはいえない。
Conventionally, when generating such atmospheric gas component concentrations, there are two main methods: a shift furnace method and a dripping method. Among these, in the shift furnace method, the operation of the shift furnace that generates the carrier gas (usually RX gas) is troublesome, requires considerable experience and skill, and it is difficult to maintain a stable gas composition. Since it takes a considerable amount of time from the start of operation to the stable supply of carrier gas, it cannot be said to be an economical method.

一方、滴注方式の中には大別して二つの方式が
あり、その一つは、キヤリヤガスに相当する有機
液体とエンリツチガスに相当する有機液体とをあ
らかじめ混合し、またはそれぞれ単独で熱処理炉
内に送給する方式であり、他の一つは、キヤリヤ
ガスに相当するガスの生成は有機液体の熱処理炉
内への送給で行い、炉内の炭素濃度を上げるのに
必要なエンリツチガス成分は、ガス体で直接炉内
へ送給する方式である。
On the other hand, there are two main types of dripping methods; one is to mix an organic liquid equivalent to a carrier gas and an organic liquid equivalent to an enrichment gas in advance, or to send them individually into a heat treatment furnace. The other method is to generate a gas equivalent to the carrier gas by feeding an organic liquid into the heat treatment furnace, and to generate the enrichment gas component necessary to increase the carbon concentration in the furnace. This is a method that directly feeds it into the furnace.

上記した滴注方式において採用された二つの方
式においてはいずれが有利であるかははつきりと
しており、当初は前者の方式が採用されていた
が、雰囲気制御が容易であつてしかも正確に行え
る後者の方式が主流となつてきている。
Of the two methods adopted for the above-mentioned dripping method, it is obvious which one is more advantageous, and the former method was initially adopted, but it is easy to control the atmosphere and can be done accurately. The latter method is becoming mainstream.

ところで、滴注方式における後者の方式は、あ
らかじめ炭素濃度が決定された有機液体(主にエ
タノール単体もしくはこれに水を添加したもの)
を熱処理炉内に送給し、上記有機液体を熱分解さ
せてキヤリヤガスとして、このキヤリヤガスにエ
ンリツチ用の有機気体を添加して炭素濃度を制御
するようにしている。
By the way, the latter method of dripping uses an organic liquid (mainly ethanol alone or water added to it) whose carbon concentration is determined in advance.
is fed into a heat treatment furnace, the organic liquid is thermally decomposed to form a carrier gas, and an enriching organic gas is added to the carrier gas to control the carbon concentration.

しかしながら、このような従来の熱処理雰囲気
制御方法では、炭素濃度の下限は有機液体により
定まつてしまうため、炭素濃度の下限が異なる要
求熱処理雰囲気ごとに対応して、炭素濃度の異な
る有機液体を用意しておかねばならないという問
題点があつた。また、この方式では、熱処理炉内
が著しくスーテイング(Sooting)していたり、
被処理材に油脂分が付着していたりするという外
的条件によつて、雰囲気の炭素濃度が予想以上に
上昇してしまう場合には、上記炭素濃度を所定値
までに下げるのにかなりの時間を必要とし、雰囲
気制御が困難になるという問題点があつた。
However, in such conventional heat treatment atmosphere control methods, the lower limit of carbon concentration is determined by the organic liquid, so organic liquids with different carbon concentrations are prepared for each required heat treatment atmosphere with a different lower limit of carbon concentration. There was a problem that I had to do something about it. Additionally, with this method, there is significant sooting inside the heat treatment furnace.
If the carbon concentration in the atmosphere rises more than expected due to external conditions such as oil or fat adhering to the material to be treated, it may take a considerable amount of time to reduce the carbon concentration to a predetermined value. There was a problem in that the atmosphere was difficult to control.

(発明の目的) この発明は、上記したような従来の問題点に着
目してなされさたもので、被処理材を雰囲気熱処
理するにあたり、必要とされる熱処理炉内雰囲気
を容易にかつ正確にしかも短時間のうちに制御す
ることが可能である熱処理雰囲気制御方法を提供
することを目的としている。
(Purpose of the Invention) The present invention has been made by focusing on the above-mentioned conventional problems, and it is possible to easily and accurately create the necessary atmosphere in a heat treatment furnace when performing atmospheric heat treatment on a material to be treated. Moreover, it is an object of the present invention to provide a heat treatment atmosphere control method that can be controlled within a short time.

[発明の構成] (問題点を解決するための手段) この発明は、鉄系や非鉄系の金属材料から製作
された部品および素材すなわち被処理材を雰囲気
熱処理するにあたり、熱処理炉内にキヤリヤガス
とエンリツチガスまたはレデユースガスを送給し
て均一な混合雰囲気を形成し、熱処理時に要求さ
れる雰囲気ガス成分濃度に炉内雰囲気を制御する
方法であつて、前記キヤリヤガスを生成する有機
液体および/または有機気体の送給と同時にもし
くは単独に、熱処理時に要求される所定の雰囲気
ガス成分濃度が得られるように適宜、前記エンリ
ツチガスとしてメタン、プロパン、ブタン等の単
体もしくは混合ガスからなる炭化水素系ガスを送
給し、前記レデユースガスとしてCO2および/ま
たは空気を主体とする希釈ガスを送給して、当該
熱処理時に要求される雰囲気ガス成分濃度に相当
するガス濃度を測定することにより前記被処理材
に要求される雰囲気ガス成分濃度に炉内雰囲気を
制御するようにしたことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method for using a carrier gas in a heat treatment furnace when performing atmospheric heat treatment on parts and materials manufactured from ferrous or non-ferrous metal materials, that is, materials to be treated. A method of supplying enrichment gas or reduced use gas to form a uniform mixed atmosphere and controlling the furnace atmosphere to the concentration of atmospheric gas components required during heat treatment, the method comprising: Simultaneously with the feeding or independently, a hydrocarbon gas consisting of a single gas or a mixture of methane, propane, butane, etc. is fed as the enrichment gas as appropriate so as to obtain a predetermined atmospheric gas component concentration required during heat treatment. , by supplying a diluent gas mainly composed of CO 2 and/or air as the redeuse gas and measuring the gas concentration corresponding to the atmospheric gas component concentration required during the heat treatment, It is characterized in that the atmosphere inside the furnace is controlled to the concentration of atmospheric gas components.

この発明において、キヤリヤガスを生成するた
めの有機液体としては、熱処理炉内に送給された
際に分解しやすいもの、例えばメタノール
(CH3OH)が使用される。この場合、有機液体
をそのまま熱処理炉内に送給したり、熱処理炉内
に送給する前の段階で熱分解させて有機気体の状
態で熱処理炉内に送給したりできるが、有機液体
のまま送給して熱処理炉内の熱により分解させる
方が簡便であつて種々の利点が得られる。
In this invention, the organic liquid used to generate the carrier gas is one that easily decomposes when fed into the heat treatment furnace, such as methanol (CH 3 OH). In this case, the organic liquid can be fed into the heat treatment furnace as it is, or it can be thermally decomposed before being fed into the heat treatment furnace and fed into the heat treatment furnace in the form of an organic gas. It is easier to feed the material as is and decompose it using the heat in the heat treatment furnace, and various advantages can be obtained.

そして、前記キヤリヤガスを生成する有機液体
および/または有機気体の送給と同時にもしくは
単独に、熱処理時に要求される所定の雰囲気ガス
成分濃度が得られるように適宜必要に応じて、エ
ンリツチガスまたはレデユースガスを送給するこ
とにより、炉内雰囲気を所定の雰囲気ガス成分濃
度に制御する。例えば、前記キヤリヤガスを生成
する有機液体および/または有機気体を常時一定
流量流し、炉内雰囲気の炭素濃度を高めたいとき
には前記エンリツチガスを前記キヤリヤガスと同
時にもしくは単独に送給し、逆に炭素濃度を下げ
たいときには前記レデユースガスを前記キヤリヤ
ガスと同時にもしくは単独に送給することによ
り、炉内雰囲気の炭素濃度を幅広く制御する。
Simultaneously with or independently of feeding the organic liquid and/or organic gas that generates the carrier gas, enrich gas or reduced use gas is fed as appropriate to obtain a predetermined atmospheric gas component concentration required during heat treatment. By supplying the gas, the atmosphere in the furnace is controlled to a predetermined concentration of atmospheric gas components. For example, when it is desired to constantly flow the organic liquid and/or organic gas that generates the carrier gas at a constant flow rate, and to increase the carbon concentration in the furnace atmosphere, the enrichment gas is fed simultaneously or independently with the carrier gas, and conversely, the carbon concentration is lowered. When necessary, the carbon concentration in the furnace atmosphere can be controlled over a wide range by feeding the redeuse gas together with the carrier gas or separately.

ところで、上記したエンリツチガス用の有機気
体としては、パラフイン系の炭化水素ガスが望ま
しく、これらのうちでも熱分解が容易であつて比
較的廉価なメタンガス、プロパンガス、ブタンガ
スなどが適している。
Incidentally, as the organic gas for the enrichment gas described above, paraffin-based hydrocarbon gas is desirable, and among these, methane gas, propane gas, butane gas, etc., which are easily thermally decomposed and relatively inexpensive, are suitable.

また、レデユースガスとしては、CO2ガスが最
も適しているが、多少の誤差を覚悟しかつ安全を
確保することができれば空気を使用することもで
きる。
Furthermore, CO 2 gas is most suitable as a redeuse gas, but air can also be used if you are prepared for some errors and ensure safety.

そして、前記キヤリヤガスを生成する有機液体
および/または有機気体の送給と同時にもしくは
単独に、雰囲気調整用のエンリツチガスまたはレ
デユースガスを送給して、当該熱処理時に要求さ
れる雰囲気ガス成分濃度に相当するガス濃度
(CO2,O2,H2O等)を測定することにより、前
記被処理材に要求される雰囲気ガス成分濃度に炉
内雰囲気を制御する。
Simultaneously or independently with the feeding of the organic liquid and/or organic gas that generates the carrier gas, an enrich gas or reduced use gas for atmosphere adjustment is fed to provide a gas corresponding to the atmospheric gas component concentration required during the heat treatment. By measuring the concentration (CO 2 , O 2 , H 2 O, etc.), the atmosphere in the furnace is controlled to the concentration of atmospheric gas components required for the material to be treated.

このような熱処理雰囲気制御では、前記キヤリ
ヤガスを生成する有機液体はさほど厳しく管理さ
れたものでなくともよく、また従来のように炭素
濃度の下限値に応じていくつかの種類の有機液体
を容易しておく必要もなく、一種類だけ用意すれ
ば十分であり、したがつて有機液体の管理範囲が
広くなつたことにより安価な工業用アルコールや
再生アルコールを使用することができ、コストダ
ウンが可能となる。そして、制御用気体の送給量
を調整することによつて、炉内雰囲気ガス成分濃
度を自由に制御することが可能である。
In such heat treatment atmosphere control, the organic liquid that generates the carrier gas does not have to be so strictly controlled, and unlike conventional methods, several types of organic liquids can be easily controlled depending on the lower limit of carbon concentration. There is no need to store alcohol, and it is sufficient to prepare only one type of alcohol. Therefore, by expanding the control range of organic liquids, it is possible to use inexpensive industrial alcohol or recycled alcohol, which makes it possible to reduce costs. Become. By adjusting the feed rate of the control gas, it is possible to freely control the concentration of gas components in the furnace atmosphere.

また、有機液体や有機気体はCO2や空気の送給
によつて燃焼させることも可能であるため、当該
有機液体や有機気体を送給する部分のスーテイン
グ(Sootig)発生を抑えることができ、このよう
なスーテイングの抑制によつてガスの欠乏を防ぐ
ことが可能となり、それぞれガス欠乏時に外気を
吸い込むことによる爆発の危険性をなくすことが
できるようになる。
In addition, since organic liquids and organic gases can be combusted by supplying CO 2 or air, it is possible to suppress the occurrence of sootig in the part where the organic liquids and organic gases are supplied. By suppressing such sooting, it becomes possible to prevent gas shortage, and it becomes possible to eliminate the risk of explosion due to intake of outside air during gas shortage.

(実施例) この実施例においては、被処理材として、ニツ
ケルクロム鋼(SNC 415)を素材としたものを
選択し、熱処理の操業を開始した。この操業にお
いては、添付図面に示すように、熱処理路内に、
キヤリヤガスを生成する有機液体として工業用メ
タノールを2000m/hrの流量で送給した。そし
て、熱処理炉内温度を920℃に保持し、保持後30
分経過したところで、エンリツチガスとしてプロ
パンガス(100%)を3l/minの流量で熱処理炉
内に送給すると同時に、スーパーエンリツチガス
として同じくプロパンガス(100%)を5l/min
の流量で熱処理炉内に送給した。そこで、送給後
約15分経過したところで雰囲気ガス成分濃度が所
定値に到達し(カーボンセンサーで測定)たの
で、スーパーエンリツチガスの送給を停止すると
ともに、エンリツチガスの送給量を次第に減らす
ことによつて、雰囲気ガス成分濃度が所定値に維
持されるようにした。これによつて、従来よりも
かなり短時間のうちに炉内雰囲気を所定のガス成
分濃度に設定することができると共に、当該ガス
成分濃度を安定して維持することができた。次い
で、プロパンガス送給開始後90分経過したところ
で前記プロパンガスの送給を停止すると共に、雰
囲気調整のためにレデユースガスとしてCO2ガス
を3l/minの流量で熱処理炉内に送給すると同時
にスーパーレデユースガスとして同じくCO2ガス
を3l/minの流量で熱処理炉内に送給し、送給後
約30分経過したところでスーパーレデユースガス
の送給を停止するとともに、レデユースガスの送
給量を次第に減らすことによつて、雰囲気ガス成
分濃度が所定値となるようにし、このCO2ガス送
給量の制御の間に熱処理炉内温度を830℃まで降
下させたのち恒温保持し、保持60分経過直前で前
記CO2ガスの送給を停止して、830℃の温度から
油槽内に被処理材を装入して焼入れを行つた。
(Example) In this example, a material made of nickel chrome steel (SNC 415) was selected as the material to be treated, and heat treatment was started. In this operation, as shown in the attached drawing, in the heat treatment path,
Industrial methanol was fed at a flow rate of 2000 m/hr as the organic liquid to generate the carrier gas. Then, the temperature inside the heat treatment furnace was maintained at 920℃, and after holding it for 30
After a minute has elapsed, propane gas (100%) is fed into the heat treatment furnace as an enrich gas at a flow rate of 3 l/min, and at the same time, propane gas (100%) is fed as a super enrich gas at a flow rate of 5 l/min.
It was fed into the heat treatment furnace at a flow rate of . Approximately 15 minutes after the supply, the atmospheric gas component concentration reached a predetermined value (measured with a carbon sensor), so we stopped supplying the super enrichment gas and gradually reduced the amount of enrichment gas supplied. In particular, the concentration of atmospheric gas components is maintained at a predetermined value. As a result, the atmosphere in the furnace can be set to a predetermined gas component concentration in a considerably shorter time than conventionally, and the gas component concentration can be stably maintained. Next, 90 minutes after the start of propane gas supply, the supply of propane gas is stopped, and at the same time, CO 2 gas is supplied as redundant gas into the heat treatment furnace at a flow rate of 3 l/min to adjust the atmosphere. CO 2 gas is also fed into the heat treatment furnace as redeuse gas at a flow rate of 3 l/min, and approximately 30 minutes after feeding, the supply of super redeuse gas is stopped and the amount of redeuse gas fed is reduced. By gradually reducing the amount, the concentration of atmospheric gas components was maintained at a predetermined value, and during this control of the CO 2 gas supply rate, the temperature inside the heat treatment furnace was lowered to 830°C, and then the temperature was maintained at a constant temperature for 60 minutes. Immediately before the end of the process, the supply of the CO 2 gas was stopped, and the material to be treated was charged into the oil bath at a temperature of 830° C. and quenched.

その後、得られた被処理材の硬度および組織を
調べたところ、表面における硬度分布は著しく良
好であると共に、表面は十分良好なマルテンサイ
ト組織となつており、所望の表面焼入れ組織を得
ることができた。
After that, the hardness and structure of the obtained treated material were examined, and it was found that the hardness distribution on the surface was extremely good, and the surface had a sufficiently good martensitic structure, making it possible to obtain the desired surface-hardened structure. did it.

[発明の効果] 以上説明してきたように、この発明は、鉄系や
非鉄系の金属材料から製作された部品および素材
すなわち被処理材を雰囲気熱処理するにあたり、
熱処理炉内にキヤリヤガスとエンリツチガスまた
はレデユースガスを送給して均一な混合雰囲気を
形成し、熱処理時に要求される雰囲気ガス成分濃
度に炉内雰囲気を制御する方法であつて、前記キ
ヤリヤガスを生成する有機液体および/または有
機気体の送給と同時にもしくは単独に、熱処理時
に要求される所定の雰囲気ガス成分濃度が得られ
るように適宜、前記エンリツチガスとしてメタ
ン、プロパン、ブタン等の単体もしくは混合ガス
からなる炭化水素系ガスを送給し、前記レデユー
スガスとしてCO2および/または空気を主体とす
る希釈ガスを送給して、当該熱処理時に要求され
る雰囲気ガス成分濃度に相当するガス濃度を測定
することにより前記被処理材に要求される雰囲気
ガス成分濃度に炉内雰囲気を制御するようにした
から、熱処理に際して必要とされる熱処理炉内雰
囲気を容易にかつ正確にしかも短時間のうちに制
御することが可能である。そのため、制御系に持
ち込まれるあらゆる外的要因の変動、例えばキヤ
リヤガスの炭素濃度の変動、ばらつきや、被処理
材の表面積の多少や、被処理材表面の酸化および
脱炭の有無ならびに油脂分の有無や、炉内のシー
ズニング状態の変動なども制御できるようになる
という著しく優れた効果が得られる。さらに、キ
ヤリアガスを生成する有機液体はさほど厳しい管
理が要求されないため、有機液体として比較的安
価なものを使用することが可能であると同時に、
従来のように炭素濃度の下限に応じていくつかの
種類のものを準備しておく必要がないため、管理
コストの低減をはかることができ、エンリツチガ
ス(および必要に応じてスーパーエンリツチガ
ス)とレデユースガス(および必要に応じてスー
パーレデユースガス)とから選ばれる雰囲気調整
用ガスの送給量を調整することによつて、熱処理
炉内雰囲気を自由にかつ著しく容易にしかも迅速
に制御することが可能であるという非常に優れた
効果がもたらされる。
[Effects of the Invention] As explained above, the present invention provides the following advantages when performing atmospheric heat treatment on parts and materials made from ferrous or non-ferrous metal materials, that is, materials to be treated.
A method of supplying a carrier gas and an enrichment gas or a redundant gas into a heat treatment furnace to form a uniform mixed atmosphere and controlling the atmosphere in the furnace to a concentration of atmospheric gas components required during heat treatment, the method comprising: an organic liquid that generates the carrier gas; and/or At the same time as or independently feeding an organic gas, a hydrocarbon consisting of a single gas or a mixed gas such as methane, propane, butane, etc. may be used as the enrichment gas, as appropriate, so as to obtain a predetermined atmospheric gas component concentration required during heat treatment. By supplying a system gas, supplying a dilution gas mainly composed of CO 2 and/or air as the redeuse gas, and measuring a gas concentration corresponding to the atmospheric gas component concentration required during the heat treatment, Since the atmosphere in the furnace is controlled to the concentration of atmospheric gas components required for the treated material, it is possible to easily and accurately control the atmosphere in the heat treatment furnace required for heat treatment in a short time. be. Therefore, fluctuations in all external factors introduced into the control system, such as fluctuations and variations in the carbon concentration of the carrier gas, the surface area of the material to be treated, the presence or absence of oxidation and decarburization on the surface of the material to be treated, and the presence or absence of oil and fat content. It is also possible to control fluctuations in the seasoning state inside the furnace, which is an extremely excellent effect. Furthermore, since the organic liquid that generates the carrier gas does not require very strict management, it is possible to use a relatively inexpensive organic liquid;
Since there is no need to prepare several types of gas depending on the lower limit of carbon concentration as in the past, management costs can be reduced, and enriched gas (and super enriched gas if necessary) can be used. By adjusting the feed rate of the atmosphere adjustment gas selected from redeuse gas (and super redeuse gas if necessary), the atmosphere inside the heat treatment furnace can be controlled freely, extremely easily, and quickly. A very good effect is brought about that is possible.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面はこの発明の実施例における浸炭焼入
れ時の炉内温度変化、キヤリヤガス生成用有機液
体、エンリツチガス生成用炭化水素ガス、レデユ
ースガス用炭酸ガスのそれぞれの送給量変化、お
よび炭素濃度変化を示す説明図である。
The attached drawings are explanations showing changes in the furnace temperature during carburizing and quenching, changes in the feed rates of organic liquid for carrier gas generation, hydrocarbon gas for enrichment gas generation, and carbon dioxide gas for redundant gas, and changes in carbon concentration during carburizing and quenching in an embodiment of the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 被処理材を雰囲気熱処理するにあたり、熱処
理炉内にキヤリヤガスとエンリツチガスまたはレ
デユースガスを送給して均一な混合雰囲気を形成
し、熱処理時に要求される雰囲気ガス成分濃度に
炉内雰囲気を制御する方法であつて、前記キヤリ
ヤガスを生成する有機液体および/または有機気
体の送給と同時にもしくは単独に、熱処理時に要
求される所定の雰囲気ガス成分濃度が得られるよ
うに適宜、前記エンリツチガスとしてメタン、プ
ロパン、ブタン等の単体もしくは混合ガスからな
る炭化水素系ガスを送給し、前記レデユースガス
としてCO2および/または空気を主体とするガス
を送給して、当該熱処理時に要求される雰囲気ガ
ス成分濃度に相当するガス濃度を測定することに
より前記被処理材に要求される雰囲気ガス成分濃
度に炉内雰囲気を制御することを特徴とする熱処
理雰囲気制御方法。
1. A method in which a carrier gas and an enrichment gas or reduced use gas are fed into a heat treatment furnace to form a uniform mixed atmosphere when performing atmospheric heat treatment on the material to be treated, and the atmosphere in the furnace is controlled to the concentration of atmospheric gas components required during heat treatment. At the same time or independently of feeding the organic liquid and/or organic gas that generates the carrier gas, methane, propane, or butane may be suitably added as the enrichment gas so as to obtain a predetermined atmospheric gas component concentration required during the heat treatment. A hydrocarbon-based gas consisting of a single gas or a mixture of gases, etc., is supplied, and a gas mainly consisting of CO 2 and/or air is supplied as the reused gas, so that the concentration of atmospheric gas components corresponds to the concentration of atmospheric gas components required during the heat treatment. A method for controlling a heat treatment atmosphere, comprising controlling an atmosphere in a furnace to a concentration of atmospheric gas components required for the material to be treated by measuring gas concentration.
JP10422586A 1986-05-06 1986-05-06 Controlling method for heat treatment atmosphere Granted JPS62260013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10422586A JPS62260013A (en) 1986-05-06 1986-05-06 Controlling method for heat treatment atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10422586A JPS62260013A (en) 1986-05-06 1986-05-06 Controlling method for heat treatment atmosphere

Publications (2)

Publication Number Publication Date
JPS62260013A JPS62260013A (en) 1987-11-12
JPH0138846B2 true JPH0138846B2 (en) 1989-08-16

Family

ID=14375018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10422586A Granted JPS62260013A (en) 1986-05-06 1986-05-06 Controlling method for heat treatment atmosphere

Country Status (1)

Country Link
JP (1) JPS62260013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129324A (en) * 2014-01-07 2015-07-16 株式会社日本テクノ Gas carburization method and gas carburization apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372821A (en) * 1986-09-16 1988-04-02 Osaka Oxygen Ind Ltd Treatment of metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915964A (en) * 1982-07-19 1984-01-27 Canon Inc Image display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915964A (en) * 1982-07-19 1984-01-27 Canon Inc Image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129324A (en) * 2014-01-07 2015-07-16 株式会社日本テクノ Gas carburization method and gas carburization apparatus

Also Published As

Publication number Publication date
JPS62260013A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
CA1073325A (en) Atmosphere compositions and methods of using same for surface treating ferrous metals
US8293167B2 (en) Surface treatment of metallic articles in an atmospheric furnace
US4386972A (en) Method of heat treating ferrous metal articles under controlled furnace atmospheres
US4175986A (en) Inert carrier gas heat treating control process
JPH064906B2 (en) Carburizing of metal work
US2329896A (en) Method of and compound for carburizing
US4152177A (en) Method of gas carburizing
CA1189771A (en) Carburizing process utilizing atmosphere generated from nitrogen ethanol based mixtures
US4208224A (en) Heat treatment processes utilizing H2 O additions
JPH0138846B2 (en)
GB2092183A (en) Method of controlling furnace atmospheres
JPS61139620A (en) Method for controlling atmosphere for heat treatment
GB2044804A (en) Heat treatment method
JPS5915964B2 (en) Steel heat treatment method
ES8106559A1 (en) Method of heat treating ferrous workpieces.
EP0063655B1 (en) Process for carburizing ferrous metals
JPS6260818A (en) Heat treatment
SK285424B6 (en) Method and device for thermal treatment of parts
JP2002356763A (en) Gas carburizing method and its device
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
JP2015507096A (en) Simultaneous flow of activated gas in low-temperature carburizing.
US1817407A (en) Process for case carburizing and heat treating metals
SU1652375A1 (en) Method for carrying out gas carburizing of iron alloy parts
JPH03126859A (en) Gas carburizing method
JPH0217605B2 (en)