JPH0138661B2 - - Google Patents

Info

Publication number
JPH0138661B2
JPH0138661B2 JP58158107A JP15810783A JPH0138661B2 JP H0138661 B2 JPH0138661 B2 JP H0138661B2 JP 58158107 A JP58158107 A JP 58158107A JP 15810783 A JP15810783 A JP 15810783A JP H0138661 B2 JPH0138661 B2 JP H0138661B2
Authority
JP
Japan
Prior art keywords
film
less
weight
particles
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58158107A
Other languages
Japanese (ja)
Other versions
JPS5982629A (en
Inventor
Yasuki Miura
Masahiko Mogi
Kazuo Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58158107A priority Critical patent/JPS5982629A/en
Publication of JPS5982629A publication Critical patent/JPS5982629A/en
Publication of JPH0138661B2 publication Critical patent/JPH0138661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73935Polyester substrates, e.g. polyethylene terephthalate characterised by roughness or surface features, e.g. by added particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明はポリエステルを主体とする主に磁気記
録用の改良された二軸延伸テンシライズタイプの
ベースフイルムに関するものである。 [従来の技術] 磁気記録用ベースフイルムの素材としては二軸
に配向させ熱固定されたポリエステル、特にポリ
エチレンテレフタレート(以下、PETと略称す
る)を主成分とするフイルムを使用するのが普通
であり、タテ・ヨコ二軸の配向、機械特性が比較
的近似しているバランスタイプと主にタテ方向へ
の配向、機械特性がヨコ方向に比べて顕著に大き
いテンシライズタイプの2タイプに分類される。
バランスタイプは通常タテ・ヨコの2方向への延
伸倍率をほぼ同程度にし製造され5%延び時の強
度(F−5値)はタテ・ヨコ共に15Kg/mm2以下、
更に一般的には13Kg/mm2以下が普通である。一方
テンシライズタイプはタテ方向へのトータル延伸
培率をヨコ方向よりもかなり高めにし製造されタ
テ方向のF−5値は15Kg/mm2を越えるのが普通で
あり、17〜20Kg/mm2のものが多い。これらのバラ
ンスおよびテンシライズタイプはフイルムのステ
イフネス、寸法安定性、製造の容易さ、コストな
どの点で一長一短あり必要に応じて使い分けられ
ている。 磁気記録用ベースフイルムに要求される特性に
は磁性剤塗布層の均一性、平坦性をもたらすため
のフイルム表面突起の微細・均一性および繰り返
しの使用に耐える走行性、耐摩耗性が挙げられ
る。これらの表面突起は一般にフイルム中に無機
物や触媒残渣からなるポリマ不溶解物(以下、内
部粒子と略称する)などの突起形成粒子を内在さ
せることで達成されるが、一般的には走行性・耐
摩耗性と表面突起の微細・均一性(以下、表面性
と略称する)とは相反する特性である。例えば大
きな粒子を数多くフイルム中に内在させると確か
に走行性等は改良されるが表面突起は粗大化し磁
気テープでの記録欠落(ドロツプアウト)、出力
低下、ノイズ増大などの致命的な欠点を生じ、ま
た逆に微細粒子が内在する場合は、微細表面突起
が形成されテープの出力、ドロツプアウト等は良
好であるが、滑りが悪く走行性、耐摩耗性が劣る
という欠点を生じていた。 [発明の目的] 本発明は、かかる従来技術の相反する欠点を解
消せしめ、走行性および耐摩耗性と表面性とが共
に優れた磁気記録用ベースフイルムを提供せんと
するものである。 [発明の構成] 本発明は、上記目的を達成するため次の構成、
すなわち、ポリエステルが主成分で、内在粒子の
混入量が0.05〜0.5重量%である二軸延伸フイル
ムであつて、タテ方向のF−5値が15Kg/mm2を越
え20Kg/mm2以下で、ヨコ方向のF−5値が9〜15
Kg/mm2、表面突起平均高さ0.040μ以下であり、か
つ表面突起平均高さと内在粒子平均径の比が5.1
×10-3以下である磁気記録用ベースフイルムを特
徴とするものである。 本発明は、F−5値が前記の範囲のいわゆるテ
ンシライズタイプのものを対象とするもので、横
方向のF−5値が9Kg/mm2未満の場合、加工され
たテープは走行中のわずかの異常張力等により延
びが発生し好ましくない。 表面突起平均高さは、0.040μ以下でなければな
らない。この高さが、0.040μを越えると表面性が
悪く、例え表面突起平均高さと内在粒子平均径の
比(以下、粗さパラメータと略称する)が本発明
範囲を満足しても、走行性および耐摩耗性と表面
性とを共に改善(以下単に、両立化という)は不
可能である。なお、この高さは、好ましくは、
0.035μ以下、さらに好ましくは0.030μ以下、最も
好ましくは0.025μ以下である。 また、粗さパラメータは、5.1×10-3以下、好
ましくは4.6×10-3以下、さらに好ましくは4.1×
10-3以下が必要である。(粗さパラメータは通常
5.3×10-3〜5.7×10-3程度以上であるが、本発明
のごとく5.1×10-3以下に小さくすることは、表
面粗さを同一に保つ場合には内在粒子の大きさは
従来よりも大きくなることに当り、又内在粒子の
大きさを同一に保つ場合には表面粗さが細かくな
ることを意味する。)本発明では、この値が小さ
いほど両立化のレベルが高くなり、逆に5.1×
10-3を越える場合、両立化できたとはいえなくな
る。 なお、本発明のフイルムは、特に磁気記録用ベ
ースフイルムとしての機械特性等が増大された二
軸延伸ポリエステルフイルムに関するものであ
る。 以下、本発明のフイルムの製法の一例について
述べる。 本発明のフイルムは、微粒子を内在せしめたポ
リエステルをスリツト状口金から溶融押出して未
延伸フイルムを作り、または、その未延伸フイル
ムから実質的に配向を与えないスーパドロー延伸
したフイルムを作り、次いでそのフイルムをタ
テ、ヨコ各々2.0〜4.5倍、再タテ1.1〜5倍に延伸
して二軸配向させると共に、これらの延伸工程中
または延伸工程の後にカレンダー工程を設けてそ
のフイルムの表面突起を押し込め、フイルムの表
面状態を調整することにより製造されるものであ
る。この場合、延伸工程中にカレンダー処理を行
うのが好ましい。特にカレンダー処理は最初のタ
テ延伸工程に設けるのが好ましいが、これに限定
されるものではない。 この際に適用されるポリエステルは、ポリエス
テルおよびその共重合体ならびにこれらのポリエ
ステル系ポリマを主成分として少なくとも70%以
上含有する混合ポリマであり、特にポリエステル
系ポリマとしてはポリエチレンテレフタレート、
ポリエチレン2,6ナフタレートが好適である。 またフイルム中に内在せしめられている微粒子
(内在粒子)としては、CaCO3、SiO2、Al2O3
リン酸カルシウムなどの無機物からなる外部粒
子、Ca、Si、Pなどの成分を含む内部粒子のい
ずれであつてもよく、特に制限されないが、好ま
しい粒子としては、Ca−Li−P系の内部粒子と
外部粒子を組合せたものが用いられる。なお、粒
子径はフイルム中で暗視野照明法で測定した値と
して2〜8μが好ましい。また、内在粒子の混入
量は0.05〜0.5重量%である。混入量が0.05重量%
未満で走行性、耐久性に問題を生じ、一方、混入
量が0.5重量%を越えるとテープ出力、ドロツプ
アウトに問題を生じる。 カレンダーによる処理条件としては、ロール温
度を80〜150℃、線圧力300〜1000Kg/cm、処理回
数1〜5回程度が望ましい。 なお、本発明のフイルム表面状態の調整は、上
記のカレンダー法に限定されるものでなく、延
伸・熱処理の組合せによつて調整されたものをも
含むものである。 [発明の効果] 本発明は、上述したように、タテ・ヨコ方向の
F−5値、表面突起平均高さ、粗さパラメータ、
内在粒子の混入量を特定の値とした磁気記録用二
軸延伸ポリエステルフイルムとしたので、両立
化、すなわち、走行性および耐摩耗性と平面性の
相反する両特性を共に改善せしめるという優れた
効果を奏するものである。 なお、本発明の特定値は次の方法により測定し
たものである。 (1) F−5値 ASTMD882による。 (2) 表面突起平均高さ DIN4768で規定される触針式表面粗さ計
HOMMEL TESTER T10型で測定するカツ
ト・オフ0.25mmでの平均粗さRaで表わす。 (3) 粗さパラメータ 上記Ra値と下記方法で測定する内在粒子平
均径の比で表わす。内在粒子径はフイルムをガ
ラスプレパラート間で薄膜に溶融・急冷させ、
顕微境により暗視野照明下の透過状態で直径
1μ以上の粒子を観察し評価する。拡大倍率は
128倍とし平均径は体積平均径で表わす。暗視
野照明下では通常の明視野照明下の本来の粒子
径に比べ2.4倍大きくでるが、本発明は暗視野
照明下の粒子径で規定する。 以下実施例で更に詳述するが、本発明はこれに
特に規制されない。 実施施例1、比較例1 粉砕・分級により無機物カオリンの粒度を調整
し、平均直径2.5μの粒子源を得た。これを0.2重
量%添加し、常法に従い重合し、〔η〕0.65の
PETを得た。比較例1は、この原料を用い溶融
成型しタテ・ヨコ・再タテ・熱処理により厚み
10μのフイルムを得た。下記条件を適用した。 タテ延伸 ;100℃、3.0倍 ヨコ延伸 ;120℃、3.6倍 再タテ延伸;150℃、1.6倍 実施例1は、比較例1においてタテ延伸時に温
度100℃、線圧力300Kg/cmでフイルム表面突起を
押込めるカレンダー処理を施してフイルムを得
た。 得られたフイルムの表面状態を図面に基づいて
説明する。 第1〜第4図は、フイルム表面に形成された凹
凸部を拡大して模式的に示した平面図、第5図は
第3図のA−A′断面図、第6〜第9図は、その
凹凸部の顕著鏡写真(拡大倍率6000倍)である。 図において、1はフイルム、2は陥没部、3は
突起部、4は盛り上り部、5は凹凸部である。 次に、これらのフイルムに常法により4μの磁
性層を塗布し、ビデオテープ化した。表−1にフ
イルム品質およびテープ品質を示した。同表から
明らかなように、実施例1のテープ品質は優れた
ものであつた。 実施例 2 粉砕・分級により無機物シリカ(SiO2)の粒
度を調整し、平均直径0.7μの粒子源を得た。これ
を0.5重量%添加し、常法に従い重合し、〔η〕
0.65のPETを得た。この原料を用い、以下、実施
例1と同様に実施し、厚み10μのフイルムを得、
評価した。結果を表−1に示した。 比較例 2 実施例2において、粒子源を0.7重量%添加し
た以外は、実施例2と同様に実施した。 比較例 3 実施例2において、カレンダー処理を施さない
こと以外は、実施例2と同様に実施した。 実施例 3 粉砕・分級により無機物シリカ(SiO2)の粒
度を調整し、平均直径3.0μの粒子源を得た。これ
を0.05重量%添加し、常法に従い重合し、〔η〕
0.65のPETを得た。この原料を用い、以下、実施
例1と同様に実施し、厚み10μのフイルムを得、
評価した。結果を表−1に示した。 実施例 4 実施例3において、粒子源を0.2重量%添加し
た以外は、実施例3と同様に実施した。 実施例 5 実施例3において、粒子源を0.5重量%添加し
た以外は、実施例3と同様に実施した。 比較例 4 実施例3において、粒子源を0.02重量%添加し
た以外は、実施例3と同様に実施した。 比較例 5 実施例3において、粒子源を0.7重量%添加し
た以外は、実施例3と同様に実施した。 実施例 6 粉砕・分級により無機物炭酸カルシウム
(CaCO3)の粒度を調整し、平均直径2.0μの粒子
源を得た。これを2.0重量%添加し、常法に従い
重合し、〔η〕0.65のPETを得た。この原料を用
い、以下、実施例1と同様に実施し、厚み10μの
フイルムを得、評価した。結果を表−1に示し
た。 実施例 7 粉砕・分級により無機物炭酸カルシウム
(CaCO3)の粒度を調整し、平均直径2.5μの粒子
源を得た。以下、実施例6と同様に実施した。 比較例 6 実施例6において、カレンダー処理を施さない
こと以外は、実施例6と同様に実施した。 比較例 7 実施例6において、粒子源を0.02重量%添加し
た以外は、実施例6と同様に実施した。 比較例 8 実施例6において、粒子源を0.6重量%添加し
た以外は、実施例6と同様に実施した。 表−1に示されるとおり、添加量が0.05重量%
未満では、走行性、耐久性に問題を生じる(比較
例4、比較例7)。一方、添加量が0.5重量%を越
えると、テープ出力、ドロツプアウトに問題を生
じる(比較例5、比較例8)。 このように本願発明の構成要件を逸脱するとテ
ープ品質に何らかの問題を生じ、バランスのとれ
たテープを得ることができない。
[Technical Field of the Invention] The present invention relates to an improved biaxially stretched tensilized type base film mainly for magnetic recording, which is mainly made of polyester. [Prior Art] As a material for a base film for magnetic recording, it is common to use a film whose main component is biaxially oriented and heat-set polyester, especially polyethylene terephthalate (hereinafter abbreviated as PET). It is classified into two types: the balanced type, which has biaxial orientation in the vertical and horizontal directions and mechanical properties that are relatively similar, and the tensile type, which has orientation mainly in the vertical direction and mechanical properties that are significantly larger than that in the horizontal direction. .
The balanced type is usually manufactured with approximately the same stretching ratio in the vertical and horizontal directions, and the strength (F-5 value) at 5% elongation is 15 kg/mm 2 or less in both the vertical and horizontal directions.
Furthermore, it is generally less than 13Kg/mm 2 . On the other hand, the tensilized type is manufactured by making the total stretching ratio in the vertical direction much higher than in the horizontal direction, and the F-5 value in the vertical direction is usually over 15Kg/ mm2 , and is 17 to 20Kg/ mm2 . There are many things. These balanced and tensile types have advantages and disadvantages in terms of film stiffness, dimensional stability, ease of manufacture, cost, etc., and are used depending on the need. Characteristics required of a base film for magnetic recording include uniformity of the magnetic agent coating layer, fineness and uniformity of the film surface protrusions to provide flatness, runnability to withstand repeated use, and abrasion resistance. These surface protrusions are generally achieved by incorporating protrusion-forming particles such as polymer insoluble matter (hereinafter abbreviated as internal particles) made of inorganic substances and catalyst residues into the film, but in general, running properties and Wear resistance and the fineness and uniformity of surface protrusions (hereinafter abbreviated as surface quality) are contradictory properties. For example, if a large number of large particles are included in the film, running properties will certainly be improved, but the surface protrusions will become coarser, resulting in fatal drawbacks such as dropouts on magnetic tape, decreased output, and increased noise. On the other hand, when fine particles are present, fine surface protrusions are formed and the tape has good output, dropout, etc., but has the disadvantage of poor slippage and poor running performance and abrasion resistance. [Object of the Invention] It is an object of the present invention to overcome the contradictory drawbacks of the prior art and to provide a base film for magnetic recording that is excellent in running properties, abrasion resistance, and surface properties. [Configuration of the Invention] In order to achieve the above object, the present invention has the following configuration,
That is, it is a biaxially stretched film mainly composed of polyester and the amount of internal particles mixed in is 0.05 to 0.5% by weight, and the F-5 value in the longitudinal direction is more than 15 Kg/mm 2 and less than 20 Kg/mm 2 , F-5 value in horizontal direction is 9 to 15
Kg/mm 2 , the average height of surface protrusions is 0.040μ or less, and the ratio of the average height of surface protrusions to the average internal particle diameter is 5.1
The magnetic recording base film is characterized by a magnetic recording base film having a magnetic flux of less than ×10 -3 . The present invention is directed to so-called tensilized type tapes having an F-5 value in the above-mentioned range.If the lateral F-5 value is less than 9 kg/ mm2 , the processed tape is Elongation occurs due to slight abnormal tension, which is undesirable. The average height of surface protrusions shall be 0.040μ or less. If this height exceeds 0.040μ, the surface properties will be poor, and even if the ratio of the average height of surface protrusions to the average diameter of internal particles (hereinafter referred to as the roughness parameter) satisfies the range of the present invention, the running properties will deteriorate. It is impossible to improve both wear resistance and surface properties (hereinafter simply referred to as compatibility). Note that this height is preferably
It is 0.035μ or less, more preferably 0.030μ or less, and most preferably 0.025μ or less. Further, the roughness parameter is 5.1×10 -3 or less, preferably 4.6×10 -3 or less, more preferably 4.1×
10 -3 or less is required. (The roughness parameter is usually
It is about 5.3×10 -3 to 5.7×10 -3 or more, but reducing it to 5.1×10 -3 or less as in the present invention means that if the surface roughness is kept the same, the size of the internal particles will be smaller than the conventional one. This means that the surface roughness becomes finer when the size of the internal particles is kept the same. ) In the present invention, the smaller this value, the higher the level of compatibility; conversely, 5.1 ×
If it exceeds 10 -3 , it cannot be said that both have been achieved. The film of the present invention particularly relates to a biaxially stretched polyester film that has improved mechanical properties and the like as a base film for magnetic recording. An example of the method for manufacturing the film of the present invention will be described below. The film of the present invention can be produced by melt-extruding polyester containing fine particles through a slit-shaped die to produce an unstretched film, or by producing a superdraw-stretched film with substantially no orientation from the unstretched film; The film is stretched 2.0 to 4.5 times vertically and horizontally, and 1.1 to 5 times vertically again to achieve biaxial orientation. During or after these stretching steps, a calendering step is provided to push in the surface protrusions of the film, and the film is It is manufactured by adjusting the surface condition of. In this case, it is preferable to perform calender treatment during the stretching process. In particular, it is preferable to carry out the calendering treatment in the first vertical stretching step, but the method is not limited thereto. The polyesters used in this case are polyesters, their copolymers, and mixed polymers containing at least 70% of these polyester polymers as main components. In particular, polyester polymers include polyethylene terephthalate, polyethylene terephthalate,
Polyethylene 2,6 naphthalate is preferred. In addition, fine particles (intrinsic particles) contained in the film include CaCO 3 , SiO 2 , Al 2 O 3 ,
They may be external particles made of an inorganic material such as calcium phosphate, or internal particles containing components such as Ca, Si, or P. Preferred particles are Ca-Li-P internal particles and external particles, although they are not particularly limited. A combination of particles is used. Incidentally, the particle diameter is preferably 2 to 8 μm as measured in a film using a dark field illumination method. Further, the amount of incorporated particles is 0.05 to 0.5% by weight. Contamination amount is 0.05% by weight
If the amount is less than 0.5% by weight, problems will occur in runnability and durability, while if the amount exceeds 0.5% by weight, problems will occur in tape output and dropout. The conditions for the calender treatment are preferably a roll temperature of 80 to 150°C, a linear pressure of 300 to 1000 Kg/cm, and a treatment frequency of about 1 to 5 times. Note that the adjustment of the surface condition of the film according to the present invention is not limited to the above-mentioned calendering method, but also includes adjustment by a combination of stretching and heat treatment. [Effects of the Invention] As described above, the present invention provides F-5 values in the vertical and horizontal directions, average height of surface protrusions, roughness parameters,
Since we created a biaxially stretched polyester film for magnetic recording with a specific amount of internal particles mixed in, we achieved the excellent effect of improving both of the conflicting properties of runnability, abrasion resistance, and flatness. It is something that plays. Note that the specific values of the present invention were measured by the following method. (1) F-5 value According to ASTMD882. (2) Average height of surface protrusions Stylus type surface roughness meter specified by DIN4768
It is expressed as the average roughness Ra at a cut-off of 0.25 mm measured with HOMMEL TESTER T10 type. (3) Roughness parameter Expressed as the ratio of the above Ra value to the average internal particle diameter measured by the method below. The intrinsic particle size is determined by melting and rapidly cooling the film into a thin film between glass preparations.
Diameter in transmission state under dark field illumination due to microscopic boundary
Observe and evaluate particles larger than 1μ. The magnification is
The average diameter is expressed as the volume average diameter at a magnification of 128 times. Although the particle size under dark field illumination is 2.4 times larger than the original particle size under normal bright field illumination, the present invention is defined by the particle size under dark field illumination. Examples will be described in more detail below, but the present invention is not particularly limited thereto. Example 1, Comparative Example 1 The particle size of inorganic kaolin was adjusted by crushing and classification to obtain a particle source with an average diameter of 2.5 μm. Add 0.2% by weight of this, polymerize according to the usual method, and obtain a [η] of 0.65.
Obtained PET. Comparative Example 1 uses this raw material and melts and molds, and then increases the thickness by vertical, horizontal, re-vertical, and heat treatment.
A 10μ film was obtained. The following conditions were applied. Vertical stretching; 100°C, 3.0 times horizontal stretching; 120°C, 3.6 times vertical stretching; 150°C, 1.6 times A film was obtained by calendering to compress the film. The surface condition of the obtained film will be explained based on the drawings. Figures 1 to 4 are enlarged plan views schematically showing the uneven portions formed on the film surface, Figure 5 is a sectional view taken along line A-A' in Figure 3, and Figures 6 to 9 are , is a mirror photograph (magnification: 6000x) of the concavo-convex portion. In the figure, 1 is a film, 2 is a depressed portion, 3 is a protrusion, 4 is a raised portion, and 5 is an uneven portion. Next, a 4μ magnetic layer was coated on these films using a conventional method, and a video tape was produced. Table 1 shows the film quality and tape quality. As is clear from the table, the tape quality of Example 1 was excellent. Example 2 The particle size of inorganic silica (SiO 2 ) was adjusted by crushing and classification to obtain a particle source with an average diameter of 0.7μ. Add 0.5% by weight of this and polymerize according to the usual method, [η]
A PET of 0.65 was obtained. Using this raw material, the following procedure was carried out in the same manner as in Example 1 to obtain a film with a thickness of 10μ,
evaluated. The results are shown in Table-1. Comparative Example 2 The same procedure as in Example 2 was carried out except that 0.7% by weight of the particle source was added. Comparative Example 3 The same procedure as in Example 2 was carried out except that the calendering treatment was not performed. Example 3 The particle size of inorganic silica (SiO 2 ) was adjusted by crushing and classification to obtain a particle source with an average diameter of 3.0 μm. Add 0.05% by weight of this and polymerize according to the usual method, [η]
A PET of 0.65 was obtained. Using this raw material, the following procedure was carried out in the same manner as in Example 1 to obtain a film with a thickness of 10μ,
evaluated. The results are shown in Table-1. Example 4 The same procedure as in Example 3 was carried out except that 0.2% by weight of the particle source was added. Example 5 The same procedure as in Example 3 was carried out except that 0.5% by weight of the particle source was added. Comparative Example 4 The same procedure as in Example 3 was carried out except that 0.02% by weight of the particle source was added. Comparative Example 5 The same procedure as in Example 3 was carried out except that 0.7% by weight of the particle source was added. Example 6 The particle size of inorganic calcium carbonate (CaCO 3 ) was adjusted by crushing and classification to obtain a particle source with an average diameter of 2.0 μm. 2.0% by weight of this was added and polymerized according to a conventional method to obtain PET with [η] 0.65. Using this raw material, the same procedure as in Example 1 was carried out to obtain a film with a thickness of 10 μm, which was then evaluated. The results are shown in Table-1. Example 7 The particle size of inorganic calcium carbonate (CaCO 3 ) was adjusted by crushing and classification to obtain a particle source with an average diameter of 2.5 μm. The following steps were carried out in the same manner as in Example 6. Comparative Example 6 The same procedure as in Example 6 was carried out except that the calendering treatment was not performed. Comparative Example 7 The same procedure as in Example 6 was carried out except that 0.02% by weight of the particle source was added. Comparative Example 8 The same procedure as in Example 6 was carried out except that 0.6% by weight of the particle source was added. As shown in Table-1, the amount added is 0.05% by weight.
If it is less than that, problems will arise in running performance and durability (Comparative Example 4, Comparative Example 7). On the other hand, when the amount added exceeds 0.5% by weight, problems occur in tape output and dropout (Comparative Examples 5 and 8). If the constituent requirements of the present invention are violated in this way, some problems will occur in the quality of the tape, making it impossible to obtain a well-balanced tape.

【表】 ただし、表−1のテープ品質は、テープを1/2
インチ幅に切断し、そのテープをビクター製
VHSビデオテープレコーダにかけて次の基準で
評価した。 (1) テープ出力 比較例1を標準テープとしクロマS/Nによ
りランク付けした。 ◎ +2dB以上 〇〜◎ +1.5〜+2dB 〇 +1.0〜+1.5dB 〇〜△ +0.5〜+1.0dB △ 0 〜+0.5dB △〜× −0.5〜0dB × −0.5dB以下 (2) ドロツプアウト 15マイクロ秒以上のドロツプ・アウト数を測
定した。 ◎ 10コ/分以下 〇 10〜20コ/分 △ 20〜50コ/分 × 50コ/分以上 (3) 走行性、耐摩耗性 500回レコーダで走行させ、走行状態および
走行後のフイルム上の傷の発生状況でランク付
けした。
[Table] However, the tape quality in Table 1 is 1/2
Cut the tape into inch-wide strips made by Victor
It was played on a VHS video tape recorder and evaluated using the following criteria. (1) Tape output Comparative example 1 was used as a standard tape and ranked by chroma S/N. ◎ +2dB or more〇~◎ +1.5~+2dB 〇 +1.0~+1.5dB 〇~△ +0.5~+1.0dB △ 0~+0.5dB △~× −0.5~0dB × −0.5dB or less (2) Dropout The number of dropouts of 15 microseconds or longer was measured. ◎ 10 pcs/min or less 〇 10 to 20 pcs/min △ 20 to 50 pcs/min Ranked according to the degree of injury.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜第4図は、本発明のフイルム表面に形成
された凹凸部を拡大した平面図、第5図は第3図
のA−A′断面図、第6〜第9図は、フイルム表
面に形成された粒子構造、すなわち、凹凸部の顕
微鏡写真である。 1;フイルム、2;陥没部、3;突起部、4;
盛り上り部、5;凹凸部。
1 to 4 are enlarged plan views of the uneven portions formed on the surface of the film of the present invention, FIG. 5 is a sectional view taken along line A-A' in FIG. 3, and FIGS. This is a micrograph of the grain structure formed in the wafer, that is, the uneven portion. 1; film, 2; depressed portion, 3; protrusion, 4;
Raised portion, 5; uneven portion.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステルが主成分で、内在粒子の混入量
が0.05〜0.5重量%である二軸延伸フイルムであ
つて、タテ方向のF−5値が15Kg/mm2を越え20
Kg/mm2以下、ヨコ方向のF−5値が9〜15Kg/
mm2、表面突起平均高さ0.040μ以下であり、かつ表
面突起平均高さと内在粒子平均径の比が5.1×
10-3以下であることを特徴とする磁気記録用ベー
スフイルム。
1 A biaxially oriented film whose main component is polyester and the amount of internal particles mixed in is 0.05 to 0.5% by weight, and whose F-5 value in the longitudinal direction exceeds 15 kg/ mm2 .
Kg/mm 2 or less, F-5 value in the horizontal direction is 9 to 15 Kg/
mm 2 , the average height of surface protrusions is 0.040μ or less, and the ratio of the average height of surface protrusions to the average internal particle diameter is 5.1×
A base film for magnetic recording characterized by having a magnetic recording temperature of 10 -3 or less.
JP58158107A 1983-08-31 1983-08-31 Base film for magnetic recording Granted JPS5982629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158107A JPS5982629A (en) 1983-08-31 1983-08-31 Base film for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158107A JPS5982629A (en) 1983-08-31 1983-08-31 Base film for magnetic recording

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16086179A Division JPS5683842A (en) 1979-12-13 1979-12-13 Base film for magnetic recording

Publications (2)

Publication Number Publication Date
JPS5982629A JPS5982629A (en) 1984-05-12
JPH0138661B2 true JPH0138661B2 (en) 1989-08-15

Family

ID=15664452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158107A Granted JPS5982629A (en) 1983-08-31 1983-08-31 Base film for magnetic recording

Country Status (1)

Country Link
JP (1) JPS5982629A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261026A (en) * 1985-05-15 1986-11-19 Teijin Ltd Biaxially oriented polyester film
JPH0684442B2 (en) * 1987-04-13 1994-10-26 帝人株式会社 Polyester film
JPH0684443B2 (en) * 1987-04-13 1994-10-26 帝人株式会社 Polyester film
JPH01185818A (en) * 1988-01-20 1989-07-25 Toshiba Corp Magnetic tape

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115571A (en) * 1975-04-04 1976-10-12 Asahi Chemical Ind Method of manufacturing polyester film
JPS53106789A (en) * 1977-03-01 1978-09-18 Unitika Ltd Phenol-type chelate resin and adsorption teratment using the same
JPS53106783A (en) * 1977-03-01 1978-09-18 Teijin Ltd Polyester film with improved travelling property
JPS5415978A (en) * 1977-06-28 1979-02-06 Teijin Ltd Polyester film
JPS5415979A (en) * 1977-07-06 1979-02-06 Teijin Ltd Polyester film
JPS5417981A (en) * 1977-07-11 1979-02-09 Teijin Ltd Oriented polyester film for photosensive recorder
JPS5434207A (en) * 1977-08-23 1979-03-13 Teijin Ltd Polyester film
JPS54143112A (en) * 1978-04-27 1979-11-08 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115571A (en) * 1975-04-04 1976-10-12 Asahi Chemical Ind Method of manufacturing polyester film
JPS53106789A (en) * 1977-03-01 1978-09-18 Unitika Ltd Phenol-type chelate resin and adsorption teratment using the same
JPS53106783A (en) * 1977-03-01 1978-09-18 Teijin Ltd Polyester film with improved travelling property
JPS5415978A (en) * 1977-06-28 1979-02-06 Teijin Ltd Polyester film
JPS5415979A (en) * 1977-07-06 1979-02-06 Teijin Ltd Polyester film
JPS5417981A (en) * 1977-07-11 1979-02-09 Teijin Ltd Oriented polyester film for photosensive recorder
JPS5434207A (en) * 1977-08-23 1979-03-13 Teijin Ltd Polyester film
JPS54143112A (en) * 1978-04-27 1979-11-08 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS5982629A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
KR100227401B1 (en) Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
US5164439A (en) Polyester film for magnetic recording media
JPH0212742B2 (en)
JP4026795B2 (en) Biaxially oriented polyester film
JPH05301330A (en) Laminated film
US4508782A (en) Base film for magnetic recording tape with F-5 values of 9-15 Kg/mm2
US5677034A (en) Biaxially oriented, laminated polyester film
JPH0138661B2 (en)
JPH0836739A (en) Polyester film for magnetic recording medium
JPH0365777B2 (en)
EP1325809B1 (en) Biaxially oriented, laminated polyester film
JPH0219525B2 (en)
GB2091631A (en) Base film for magnetic recording tape
JP3413906B2 (en) Polyester film for magnetic recording media
JPH09164641A (en) Biaxially oriented polyester film
JP3351821B2 (en) Biaxially oriented polyester film
JP2897554B2 (en) Biaxially oriented film
JPH07178807A (en) Polyethylene-2,6-naphthalate film
JPH0584818A (en) Biaxially stretched laminated film
JP2576321B2 (en) Biaxially oriented laminated film
JP2993280B2 (en) Laminated polyester film for magnetic recording media
JPH05117420A (en) Polyethylene 2,6-naphthalate film
JPH04341840A (en) Biaxially oriented laminated polyester film
JPH04278349A (en) Biaxially oriented laminated polyester film
KR100291275B1 (en) Film for magnetic recording media