JPH0136717Y2 - - Google Patents

Info

Publication number
JPH0136717Y2
JPH0136717Y2 JP16048084U JP16048084U JPH0136717Y2 JP H0136717 Y2 JPH0136717 Y2 JP H0136717Y2 JP 16048084 U JP16048084 U JP 16048084U JP 16048084 U JP16048084 U JP 16048084U JP H0136717 Y2 JPH0136717 Y2 JP H0136717Y2
Authority
JP
Japan
Prior art keywords
concrete
support
steel
arch
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16048084U
Other languages
Japanese (ja)
Other versions
JPS6175396U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16048084U priority Critical patent/JPH0136717Y2/ja
Publication of JPS6175396U publication Critical patent/JPS6175396U/ja
Application granted granted Critical
Publication of JPH0136717Y2 publication Critical patent/JPH0136717Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は海洋構造物、特に、水圧、氷圧等が直
接作用する外側壁を大荷重にも耐えられるような
構造にした海洋構造物に関するものである。
[Detailed description of the invention] [Field of industrial application] The present invention relates to marine structures, particularly marine structures whose outer walls, on which water pressure, ice pressure, etc. are directly applied, are structured to withstand large loads. It is something.

〔従来の技術〕[Conventional technology]

海洋資源の開発、海洋空間の利用等のために海
洋構造物の開発が盛んに行われている。
2. Description of the Related Art Marine structures are being actively developed for the purpose of developing marine resources and utilizing marine space.

海洋構造物は、一般の沖合いに構築する海上貯
油施設の如きものにあつては波浪等による水圧の
荷重を外側壁で受け、又、たとえば、北極圏で石
油掘削を行なうための人工島として海洋構造物を
浅瀬等に据え付えて使用する場合は、外側壁が氷
の衝撃を受ける。
Offshore structures, such as general offshore oil storage facilities built offshore, receive water pressure loads from waves etc. on their outer walls, and for example, offshore structures such as artificial islands for oil drilling in the Arctic Circle. When a structure is installed and used in shallow water, the outer wall is subjected to impact from ice.

かかる水圧や氷圧の荷重を直接受ける海洋構造
物の外側壁を構成する壁部材を、これらの荷重を
支え得る構造とすることが必要である。
It is necessary that the wall members constituting the outer walls of marine structures that directly receive the loads of water pressure and ice pressure have a structure that can support these loads.

上記海洋構造物の外側壁部材を大荷重に耐え得
るものとするため、従来より種々の工夫がなさ
れ、鋼構造とするもの、コンクリート構造とする
もの、が試みられたが、いずれも一長一短があ
り、近年では、鋼構造とコンクリート構造のそれ
ぞれの特徴を生かす構造として、コンクリートの
外側と内側とを鋼板で挾んだ、いわゆる、サンド
イツチ式複合構造としたものが提案されている。
すなわち、第3図に一例を示す如く、外側鋼板a
と内側鋼板bとの間に、コンクリートcと、隔壁
としての鋼製ウエブdを配し、複数のウエブdを
支承間隔L内に有するよう支持点eを設けて内側
から支持させるようにしたもの、あらるいは上記
構成のほかに、第4図に示す如く、剪断力に弱い
コンクリートcを保護するために、コンクリート
cのずれ止め材としての鋼製リブfを内側鋼板b
の外面に取り付けたり、更に鉄筋gを配してコン
クリートcを補強したもの、等があり、かかる構
造の壁構造を海洋構造物の外側壁に応用したわも
のが提案され、既に公知となつている(日本造船
学会論文集第141号参照)。
In order to make the outer wall members of the marine structures mentioned above capable of withstanding large loads, various efforts have been made in the past, including steel structures and concrete structures, but each has its advantages and disadvantages. In recent years, as a structure that takes advantage of the respective characteristics of steel structure and concrete structure, a so-called Sanderutsch type composite structure, in which the outside and inside of concrete are sandwiched between steel plates, has been proposed.
That is, as shown in an example in FIG.
and inner steel plate b, concrete c and steel webs d as partition walls are arranged, and support points e are provided so that a plurality of webs d are within the support interval L to support them from the inside. , or in addition to the above configuration, as shown in Fig. 4, in order to protect the concrete c which is weak against shearing force, a steel rib f as a slip prevention material of the concrete c is attached to an inner steel plate b.
There are wall structures that can be attached to the outside of a marine structure, or reinforced concrete c by placing reinforcing bars g, etc., and a wall structure in which such a wall structure is applied to the outside wall of an offshore structure has been proposed and is already well known. (Refer to Proceedings of the Society of Naval Architects of Japan, No. 141).

海洋構造物の複合構造部材を、第3図、第4図
に示す如き構造とした場合には、外力が作用した
場のにコンクリートcに二点鎖線で示す如きアー
チhが生じて、このコンクリートcがアーチ効果
を発揮し、アーチhの基部(足元)が支持点eに
集中して外力に耐え得るようになる。
When a composite structural member of an offshore structure has a structure as shown in Figs. 3 and 4, when an external force is applied, an arch h as shown by a chain double-dashed line is formed in the concrete c, and this concrete c exerts an arch effect, and the base (foot) of arch h concentrates on support point e, making it able to withstand external forces.

〔考案が解決しようとする問題点) ことろが、上記従来公知の構造では、支持部が
点支持であるため、コンクリートはアーチ効果を
発揮し得て外力に耐えるが、アーチhの幅が狭く
なり、大荷重に耐えるだけの強度を持たせ得ず、
支持点eの間隔(支承間隔)を狭めなければなら
ない。支承間隔を狭めるということは、それだけ
支持部材が多く必要となることであり、重量が大
となると共に、コストもアツプすることになる。
又、従来のコンクリートの内外側を鋼板で挾んだ
複合構造では、コンクリートcの厚みを薄いまま
で強度を持たせるようにしているため、外力が作
用した場合に、薄いコンクリートcにトラス効果
等で耐力を持たせるようにしている。コンクリー
トが薄いと、鋼板a,b間に複数の鋼製ウエブd
を配してトラス効果を実現させようとすることか
ら、多くの補強用ウエブdをコンクリートc中に
入れて補強することが余儀なくされている。その
ため、ウエブが沢山必要となり、構造が複雑にな
ると共に資材費が嵩むことになる。
[Problems to be solved by the invention] However, in the conventionally known structure mentioned above, since the support part is a point support, the concrete can exert an arch effect and withstand external force, but the width of the arch h is narrow. Therefore, it cannot be made strong enough to withstand large loads,
The spacing between the support points e (support spacing) must be narrowed. Reducing the support spacing means that more support members are required, which increases the weight and cost.
In addition, in the conventional composite structure in which the inside and outside of concrete are sandwiched between steel plates, the thickness of the concrete c is kept thin to maintain strength, so when external force is applied, the thin concrete c has a truss effect, etc. I am trying to make it durable. If the concrete is thin, there will be multiple steel webs d between steel plates a and b.
In order to achieve a truss effect by arranging the concrete, it is necessary to insert many reinforcing webs d into the concrete c for reinforcement. Therefore, a large number of webs are required, which complicates the structure and increases material costs.

そとで、本考案は複合構造部材の支承間隔を広
くし得て支持部材数の削減、重量の軽減を図ると
共に、アーチの幅を広くし得て強度のアツプを図
り、コンクリートがより有効なアーチ効果を発揮
して支承部間のウエブがずれ止め材等を一切不要
にして構造を簡素化させるようにし、従来公知の
海洋構造物の部材のもつ問題点を解消させた海洋
構造物を提供しようとするものである。
Therefore, the present invention makes it possible to widen the support spacing of composite structural members, thereby reducing the number of support members and weight. It also makes it possible to increase the strength of the arch by widening the width of the arch, making concrete more effective. To provide a marine structure that exhibits an arch effect and simplifies the structure by eliminating the need for any anti-slip material for webs between supporting parts, and solving problems associated with conventionally known marine structure members. This is what I am trying to do.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、コンクリートの外側と内側を鋼板で
挾んだ複合構造とした海洋構造物の複合構造部材
において、該部材の支持部に、支持側の鋼板より
も厚さを厚くし且つ広幅とした支持プレートを手
方向に平行に配して、該支持プレートで幅広く支
持部を支承させるようにすると共に、該支持プレ
ートによる支承部のみに隔壁を設け、且つコンク
リートの内外方向に厚みを厚くした構造とする。
The present invention is a composite structural member for marine structures that has a composite structure in which concrete is sandwiched between steel plates on the outside and inside. A structure in which support plates are arranged parallel to the hand direction so that the support plate supports a wide range of support parts, a partition is provided only in the support part by the support plate, and the thickness is increased in the inner and outer directions of the concrete. shall be.

〔作用〕[Effect]

外力が外側鋼板に作用すると、広幅とした支承
部と厚くしたコンクリートのために、幅の広いア
ーチが有効に形成されて大なる強度のアツプとな
り、支承部のみに隔壁を設設けるだけで大荷重に
耐え得られる。
When an external force acts on the outer steel plate, a wide arch is effectively formed due to the wide bearing part and thick concrete, greatly increasing the strength, and simply installing a bulkhead only at the bearing part can handle a large load. can withstand.

〔実施例〕〔Example〕

以下、図面に基づき本考案の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は本考案の海洋構造物における外側壁の
部分の断面を示すもので、コンクリート3の外側
を外側鋼板1により、又、内側を内側鋼板2によ
りそれぞれ覆つてサンドイツチ式複合構造とした
壁部材において、海上構造物内部から支持される
壁部材の支承部4を、内側鋼板2の厚みの数倍の
厚さとし且つ広幅とした支持プレート5と、該支
持プレート5の中心線上の内面に直角方向に取り
付けた支持部材6と、該支持プレート5と支持部
材6との間に配して支持プレート5を補強するた
めの支持プレート5の長手方向に適宜間隔で配し
た補強部材7とから構成し、該広幅の支持プレー
ト5をもつ支承部4上にのみ横隔壁としての鋼製
ウエブ8を設け、且つコンクリート3の厚さを、
支承部4の間隔(支承間隔)Lに対して厚くし、
コンクリート3内のアーチ効果を利用して荷重を
支え得るようにする。
Figure 1 shows a cross section of the outer wall of the offshore structure of the present invention, and the wall is made of Sanderutsch type composite structure by covering the outside of the concrete 3 with the outer steel plate 1 and the inner side with the inner steel plate 2. In the member, the support part 4 of the wall member supported from inside the offshore structure is made to have a thickness several times the thickness of the inner steel plate 2 and a wide support plate 5, and a support plate 5 that is perpendicular to the inner surface on the center line of the support plate 5. It consists of a support member 6 attached in the direction, and reinforcing members 7 arranged at appropriate intervals in the longitudinal direction of the support plate 5 for reinforcing the support plate 5 by being arranged between the support plate 5 and the support member 6. However, the steel web 8 as a transverse bulkhead is provided only on the support portion 4 having the wide support plate 5, and the thickness of the concrete 3 is
The distance between the supporting parts 4 (supporting distance) is made thicker than the distance L,
The arch effect within the concrete 3 can be used to support the load.

上記広幅とする支承部4の支持プレート5の全
幅L′は、前記支承間隔Lに対して約10〜40%と
し、隣接各支承部4上の鋼製ウエブ8同士で区画
されるコンクリート3を支える前記支承部4の支
持プレート5は半分の約5〜20%位とする。支持
プレート5の片側の幅を支承間隔Lに対して約5
〜20%位とするのは、5%以下では支持幅が点に
近くなつてコンクリート3内のアーチ効果の幅が
狭くなつて強度的に不利となり、20%以上の広幅
としてわも効果上変化はなく、かえつて材料の無
駄となるからである。
The total width L' of the support plate 5 of the wide bearing part 4 is approximately 10 to 40% of the bearing interval L, and the concrete 3 divided by the steel webs 8 on each adjacent bearing part 4 is The supporting plate 5 of the supporting portion 4 is about 5 to 20% of the half. The width of one side of the support plate 5 is approximately 5 with respect to the support spacing L.
The reason why it is set at ~20% is that if it is less than 5%, the support width will become close to a point, and the width of the arch effect within the concrete 3 will become narrower, which will be disadvantageous in terms of strength.If it is wider than 20%, the arch effect will change. This is because it would end up being a waste of material instead.

又、コンクリート3は支承間隔に対して厚くす
るが、その厚さTは支承間隔Lの40%前後が施工
上、経済性等の面から最適である。しかし、この
値に限定されるものではないことは当然である。
Further, the concrete 3 is made thicker than the bearing spacing, and the optimal thickness T is approximately 40% of the bearing spacing L from the viewpoint of construction and economy. However, it is natural that the value is not limited to this value.

今、外力10が外側鋼板1の表面に作用すると、
コンクリート3が支承間隔Lに対して厚くしてあ
り且つ支承部4が広幅としてあることから、広い
支持プレート5上に均一に荷重が分布するアーチ
9がコンクリート3内に形成され、コンクリート
3がより有効なアーチ効果を発揮する。しかも、
このアーチ9の幅が広幅の支持プレート5面を基
部とする広い幅に形成されるため、強度が向上す
ることに伴ない支承間隔Lを広げることが可能と
なる。コンクリート3の厚さのみを単に厚くして
も、支承部を一点支持構造としたのでは、アーチ
の幅が小さいのでコンクリート厚さを厚くしたこ
とに比例して強度は大とならない。本考案では、
支承部4を広幅とし且つコンクリート3の厚さを
厚くした構造としてあることから、前記の如く、
アーチの幅が広く、コンクリート3が有効なアー
チ効果を発揮し、大荷重を負担することができ
る。
Now, when an external force 10 acts on the surface of the outer steel plate 1,
Since the concrete 3 is thicker than the bearing spacing L and the bearing part 4 is wide, an arch 9 is formed in the concrete 3 in which the load is evenly distributed on the wide support plate 5, and the concrete 3 is made wider. Demonstrates an effective arch effect. Moreover,
Since the arch 9 is formed to have a wide width with the wide support plate 5 as its base, the support interval L can be increased as the strength is improved. Even if only the thickness of the concrete 3 is increased, the strength will not increase in proportion to the increase in the thickness of the concrete because the width of the arch is small if the support part is of a single point support structure. In this invention,
As described above, since the support part 4 is wide and the concrete 3 is thick,
The width of the arch is wide, and the concrete 3 exhibits an effective arch effect and can bear a large load.

なお、支持プレート5は図示の如く平板とした
もののみに限られるものでなく、両側縁を内側へ
屈曲させ、補強部材7で補強させるようにしても
よいこと、又、ウエブ8は鋼製トラスあるいは内
外板接続部材に替えてもよいこと、その他本考案
の要旨を逸脱しない範囲内で種々変更を加え得る
ことは勿論である。
Note that the support plate 5 is not limited to a flat plate as shown in the figure, but may have both side edges bent inward and reinforced with reinforcing members 7. Also, the web 8 may be made of a steel truss. Alternatively, it is of course possible to replace the inner and outer plate connecting members, and to make various other changes without departing from the gist of the present invention.

〔考案の効果〕[Effect of idea]

以上述べた如く、本考案の海洋構造物によれ
ば、水圧、氷圧等が作用する構造部材を、鋼板で
内外側を挾持させたコンクリートを厚くすると共
に支承部の幅を広くして、外力により幅の広いア
ーチがコンクリート内に形成されるようにしてあ
るため、コンクリートがより有効なアーチ効果を
発揮し得て氷圧力の如き大きな荷重まで充分に耐
え得られ、しかも、アーチの幅を広くし得ること
から強度の向上が図れて隣接支承部間に補強のた
めの鋼製隔壁の採用を省略できて部材の削減、取
付工数の削減、コンクリート打設工事の作業性向
上、コストの低減、等が図れると共に、支承間隔
を広げ得られて支持部材の削減、重量の軽減が図
れ、又、鋼製隔壁は支承部上に設けた一方向のみ
とすることができ、これとクロスする方向の鋼製
隔壁は不要となり、上記支承部間の鋼製隔壁を不
要にできたことと相俣つて構造を簡素化できて大
なる強度をもたせることができる。更に又、支承
部の支持プレートの幅を広くしたことからコンク
リートの破壊をも有効に防止し得られ、内側鋼板
にリブ等のすべり止め材や鉄筋を一切不要にで
き、このすべり止め材や鉄筋近傍からクラツクが
生じてコンクリートアーチの基部にひび割れが発
生するという事態も未然に防止できる。
As described above, according to the marine structure of the present invention, the structural members on which water pressure, ice pressure, etc. act are made thicker with concrete sandwiched between the inner and outer sides by steel plates, and the width of the supporting part is widened, so that external forces can be applied. Because a wider arch is formed in the concrete, the concrete can exhibit a more effective arch effect and can withstand large loads such as ice pressure. As a result, the strength can be improved, and the use of steel partition walls for reinforcement between adjacent bearing parts can be omitted, reducing the number of parts, reducing the number of installation steps, improving the workability of concrete pouring work, and reducing costs. etc., and the spacing between the bearings can be increased, reducing the number of supporting members and the weight. Also, the steel partition wall can be provided on the bearing part in only one direction, and the steel partition wall can be provided in only one direction on the bearing part. There is no need for a steel partition wall, and together with the fact that the steel partition wall between the supporting parts is not required, the structure can be simplified and increased in strength. Furthermore, by widening the width of the support plate of the bearing part, it is possible to effectively prevent the destruction of concrete, and there is no need for anti-slip materials such as ribs or reinforcing bars on the inner steel plate. It is also possible to prevent the occurrence of cracks in the base of the concrete arch due to cracks occurring in the vicinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の要部を示す斜視図、第2図は
本考案によるコンクリートアーチの状態を示す断
面図、第3図及び第4図はいずれも従来の海洋構
造物の構造部材の断面図である。 1は外側鋼板、2は内側鋼板、3はコンクリー
ト、4は支承部、5は支持プレート、8は鋼製ウ
エブ、9はアーチを示す。
Figure 1 is a perspective view showing the main parts of the present invention, Figure 2 is a sectional view showing the state of the concrete arch according to the present invention, and Figures 3 and 4 are cross sections of structural members of conventional marine structures. It is a diagram. 1 is an outer steel plate, 2 is an inner steel plate, 3 is concrete, 4 is a bearing part, 5 is a support plate, 8 is a steel web, and 9 is an arch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンクリートの内側と外側を鋼板で挾んでコン
クリートと鋼板の複合構造部材により形成された
海洋構造物において、上記複合構造部材を支持す
る支承部を広幅支持面として、該支承部のみに鋼
製隔壁を設け、且つ上記鋼板に挾持されるコンク
リートの厚さを厚くしてなる複合構造部材により
形成されたことを特徴とする海洋構造物。
In a marine structure formed by a composite structural member of concrete and steel plates with steel plates sandwiching the inside and outside of the concrete, the bearing part that supports the composite structural member is used as a wide support surface, and a steel partition is installed only at the bearing part. What is claimed is: 1. A marine structure characterized in that it is formed of a composite structural member formed by increasing the thickness of concrete that is provided and sandwiched between the steel plates.
JP16048084U 1984-10-24 1984-10-24 Expired JPH0136717Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16048084U JPH0136717Y2 (en) 1984-10-24 1984-10-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16048084U JPH0136717Y2 (en) 1984-10-24 1984-10-24

Publications (2)

Publication Number Publication Date
JPS6175396U JPS6175396U (en) 1986-05-21
JPH0136717Y2 true JPH0136717Y2 (en) 1989-11-07

Family

ID=30718402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16048084U Expired JPH0136717Y2 (en) 1984-10-24 1984-10-24

Country Status (1)

Country Link
JP (1) JPH0136717Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274681B2 (en) * 2018-11-29 2023-05-17 成光精密株式会社 Undersea submarine structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6175396U (en) 1986-05-21

Similar Documents

Publication Publication Date Title
US3302361A (en) Prefabricated bridge deck unit
US2731824A (en) hadley
US4882889A (en) Composite structures
JP2008223427A (en) Concrete-filled steel segment
JP2009154400A (en) Composite segment
US4579785A (en) Metal decking
JP2006283414A (en) Structure of continuous composite i-girder bridge
JPH0136717Y2 (en)
KR100728743B1 (en) Corrugated steel plates concrete bridge
US20060225374A1 (en) Reinforced structural steel decking
US2002987A (en) Reenforcement for tubular and like structures
JPH0411199A (en) Synthetic segment
JP2958852B2 (en) Steel concrete composite plate
JP3708759B2 (en) Joint between ring segments of shielded pipeline
KR200167832Y1 (en) Structures for composite corrugated steel concrete plate
JP2001172916A (en) Corrugated synthetic floor slab
JPH11350867A (en) Segment piece and construction method of underground structure
JP4040535B2 (en) Bridge
GB2136033A (en) Off-shore structures
KR102453222B1 (en) Reinforced girder and bridge using the same
GB2244784A (en) Elastomeric mounting
CN211974444U (en) Improved newly-added reverse beam reinforcing structure
GB2256881A (en) Load supporting structure
JPH02232405A (en) Composite floor board structure
JPH0356567Y2 (en)