JPH0136516B2 - - Google Patents

Info

Publication number
JPH0136516B2
JPH0136516B2 JP7344882A JP7344882A JPH0136516B2 JP H0136516 B2 JPH0136516 B2 JP H0136516B2 JP 7344882 A JP7344882 A JP 7344882A JP 7344882 A JP7344882 A JP 7344882A JP H0136516 B2 JPH0136516 B2 JP H0136516B2
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
crystal composition
voltage
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7344882A
Other languages
Japanese (ja)
Other versions
JPS58191780A (en
Inventor
Yutaka Nakagawa
Minoru Akatsuka
Tomonori Koorishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7344882A priority Critical patent/JPS58191780A/en
Publication of JPS58191780A publication Critical patent/JPS58191780A/en
Publication of JPH0136516B2 publication Critical patent/JPH0136516B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(R,R′は炭素数1〜8の直鎖アルキル基)
で表わされる化合物()を含む正の誘電異方性
を持つネマチツク液晶組成物に関するものであ
り、ネジレ型ネマチツクセル(以下TNセルと称
す)に用いるとマルチプレツクス性に優れるとい
う特徴を持つ。 近年、液晶表示装置の応用分野は著しく拡大し
つつある。特にドツトマトリクス表示セルは、電
子式卓上計算機を始めとして、事務機器、電子計
算機の端末表示装置等に使用され始めている。そ
の結果、液晶表示セルとしては、より見易すく、
また、より表示画素数の大きいものが求められて
いる。 ドツトマトリクス表示とは、図形あるいは文字
等の情報を点の集合として表示するものであり、
表示画素数が多くなるためにマルチプレツクス駆
動が必要になる。当初1/7もしくは1/8デユーテイ
で駆動された1行表示のセルが一般的であつた
が、最近では1/32デユーテイあるいは1/64デユー
テイ等の要求が生じ、TNセルのマルチプレツク
ス駆動特性を改良する事が重要な課題となつてい
る。 TNセルのマルチプレツクス駆動特性は、駆動
電圧、電圧マージン、応答速度等で表わされる事
が多いが、表示コントラストに直接影響する特性
としては電圧マージンが最も重要である。電圧マ
ージン(M)とは駆動電圧の変動がどの程度許容
できるかを表わす値であり、選択波形で充分点灯
するための最低電圧(Von)と半選択波形でクロ
ストークが生じ始める最高電圧(Voff)との差
の駆動電圧に対する割合として次式の様に定義さ
れる。 M≡(Voff−Von)/VD×100(%) (1) VD≡(Von+Voff)/2 (2) 電圧マージンが大きい程走査線数を増す事がで
き、また、表示コントラストも優れたものにな
る。 式(1),(2)において、Von,Voffは、印加波形、
視野角、温度あるいは点灯状態とクロストーク状
態の定義等により意味が変わるため、以下の説明
では常法に従い次の様に定義する。まず、TNセ
ルは従来から知られている様に印加電圧の実効値
に応じて作動するので、使用波形のデユーテイ
比、あるいはバイアスが変化してもTNセル間の
相対比較をするためには1種類の波形による比較
で充分である。そこで、1/8デユーテイ1/4バイア
ス波形を用いた場合の電圧マージンにより比較す
る。視野角(θ)はTNセルの法線方向より、低
視角明視方向へ10゜から40゜の範囲を想定する。ま
た、温度は25℃とし、θ=10゜において電圧印加
による輝度変化がその飽和値の50%に達する電圧
でVon、θ=40゜において25%でクロストーク発
生と考えVoffと定義する。 TNセルの電圧マージンは用いる液晶組成物に
より影響される。そこで液晶材料を種々検討した
結果、化合物()を含む液晶組成物が電圧マー
ジンの改良に有効であることを見出した。 化合物()の代表例の融点および透明点を第
1表に示す。
(R, R' are straight chain alkyl groups having 1 to 8 carbon atoms)
It relates to a nematic liquid crystal composition with positive dielectric anisotropy containing the compound () represented by (), and has the characteristic of having excellent multiplexing properties when used in a twisted nematic cell (hereinafter referred to as TN cell). In recent years, the field of application of liquid crystal display devices has been expanding significantly. In particular, dot matrix display cells are beginning to be used in electronic desktop calculators, office equipment, computer terminal display devices, and the like. As a result, the liquid crystal display cell is easier to see,
Additionally, there is a demand for devices with a larger number of display pixels. A dot matrix display is one that displays information such as figures or characters as a collection of dots.
Multiplex driving becomes necessary as the number of display pixels increases. Initially, single-line display cells driven at 1/7 or 1/8 duty were common, but recently there has been a demand for 1/32 duty or 1/64 duty, and the multiplex drive characteristics of TN cells have changed. Improving this has become an important issue. The multiplex drive characteristics of a TN cell are often expressed in terms of drive voltage, voltage margin, response speed, etc., but the voltage margin is the most important characteristic that directly affects display contrast. Voltage margin (M) is a value that expresses how much variation in drive voltage can be tolerated, and it is defined as the lowest voltage (Von) for sufficient lighting with the selected waveform and the highest voltage (Voff) at which crosstalk begins to occur with the half-selected waveform. ) is defined as the ratio of the difference with respect to the drive voltage as shown in the following equation. M≡(Voff−Von)/VD×100(%) (1) VD≡(Von+Voff)/2 (2) The larger the voltage margin, the more the number of scanning lines can be increased, and the better the display contrast. Become. In equations (1) and (2), Von and Voff are applied waveforms,
Since the meaning changes depending on the viewing angle, temperature, or the definition of the lighting state and crosstalk state, the following definitions will be used in the following explanation according to the usual method. First, as is known from the past, TN cells operate according to the effective value of the applied voltage, so even if the duty ratio of the waveform used or the bias changes, it is necessary to It is sufficient to compare different types of waveforms. Therefore, we will compare the voltage margin when using a 1/8 duty 1/4 bias waveform. The viewing angle (θ) is assumed to be in the range of 10° to 40° from the normal direction of the TN cell toward the low visual angle clear vision direction. Further, the temperature is set to 25°C, and Von is defined as the voltage at which the luminance change due to voltage application reaches 50% of its saturation value at θ = 10°, and Voff is defined as crosstalk occurs at 25% at θ = 40°. The voltage margin of a TN cell is affected by the liquid crystal composition used. As a result of investigating various liquid crystal materials, it was discovered that a liquid crystal composition containing the compound () is effective in improving the voltage margin. Table 1 shows the melting points and clearing points of representative examples of compound ().

【表】【table】

【表】 No.1および2の化合物は単独では液晶性が悪い
が、他の材料と混合して用いる事により使用でき
る。 類似化合物としては 等が知られているが、いずれも透明点低く、実用
上問題である。 化合物()のアルキル鎖長は、CH3以上であ
れば使用しうるが、透明点を考慮するとR,
R′ともにn−C3H7以上である事が望ましい。ま
た、アルキル鎖長が大きすぎるとスメクチツク相
が生じ易くなり実用上問題であり、Rとしてn―
C5H11以下、R1としてはn―C4H9以下である事
が望ましい。 一方、他の液晶材料との相溶性は、従来から多
用されてきた一般式 で表わされるシクロヘキシルカルボキシレート系
材料よりも劣る。その結果、多量の使用は融点の
上昇をもたらし低温で分相を生じたりする問題を
持つ。そこで液晶組成中での化合物()は50重
量%以下である事が望ましい。 化合物()の誘電異方性は25℃において−2
程度であり、TNセルに用いるためには正の誘電
異方性を持つた液晶と併用せねばならない。 こうした目的に適合する正の誘電異方性を持つ
化合物(Np材料と称す)の例を以下に列記する。 (Rは炭素数1〜8の直鎖アルキル基、Xは
F,Cl,Br等のハロゲン基を意味する) Np材料として好ましい物性は誘電異方性が大
きいことである。従つて末端にCN基を持つ化合
物を用いる事が一般的であり、CN基を持つ中で
も特に好ましい化合物としては 等が挙げられる。また、誘電異方性は前記化合物
程大きくなくとも、相溶性の観点で優れたNp
料は 等である。 また、誘電異方性が負もしくは零に近い材料と
併用する事もできる。その目的は液晶組成の誘電
異方性、ネマチツク温度領域、屈折率の異方性等
の物性を要求仕様に適合させるためのものであ
り、具体的には (R,R′は炭素数1〜8の直鎖アルキル基)
等が用いられる。 第2表に本発明の実施例を、従来から多用され
ている
[Table] Compounds No. 1 and 2 have poor liquid crystallinity when used alone, but can be used by mixing them with other materials. As a similar compound etc. are known, but all have low clearing points and are problematic in practice. The alkyl chain length of the compound () can be used as long as it is CH 3 or more, but considering the clearing point, R,
It is desirable that both R' be n-C 3 H 7 or more. In addition, if the alkyl chain length is too large, a smectic phase tends to occur, which is a practical problem.
It is desirable that C 5 H is 11 or less, and R 1 is preferably n-C 4 H 9 or less. On the other hand, compatibility with other liquid crystal materials can be determined using the general formula that has been used frequently in the past. It is inferior to the cyclohexyl carboxylate material represented by As a result, when used in large amounts, the melting point increases and phase separation occurs at low temperatures. Therefore, it is desirable that the content of compound () in the liquid crystal composition be 50% by weight or less. The dielectric anisotropy of compound () is -2 at 25℃
In order to use it in a TN cell, it must be used in conjunction with a liquid crystal that has positive dielectric anisotropy. Examples of compounds with positive dielectric anisotropy (referred to as Np materials) that are suitable for these purposes are listed below. (R means a straight-chain alkyl group having 1 to 8 carbon atoms, and X means a halogen group such as F, Cl, Br, etc.) A preferable physical property for the Np material is large dielectric anisotropy. Therefore, it is common to use compounds that have a CN group at the end, and particularly preferred compounds that have a CN group include etc. In addition, although the dielectric anisotropy is not as large as that of the above-mentioned compounds, Np materials are excellent in terms of compatibility. etc. Further, it can also be used in combination with a material whose dielectric anisotropy is negative or close to zero. The purpose is to match the physical properties of the liquid crystal composition, such as dielectric anisotropy, nematic temperature range, and refractive index anisotropy, to the required specifications. (R, R' are straight chain alkyl groups having 1 to 8 carbon atoms)
etc. are used. Table 2 shows examples of the present invention that have been frequently used in the past.

【式】(ECHと略 称する)の比較例と共に記す。 第2表において、化合物()として (化合物No.4) (化合物No.5) の等重量混合物(混合物―1と略称)を用い、ま
た、ECHとして の等重量混合物(混合物―2と略称)を用い、
Np材料としては
[Formula] (abbreviated as ECH) is described together with a comparative example. In Table 2, as compound () (Compound No. 4) (Compound No. 5) was used as an equal weight mixture (abbreviated as mixture-1), and as ECH. Using an equal weight mixture of (abbreviated as mixture-2),
As an Np material

【式】(ECNと 略称)[Formula] (ECN and abbreviation)

【表】【table】

【表】 TNセルは消費電力、回路コスト等を考慮し
て、できるだけ低電圧で駆動する事が望まれてい
る。例えば1/8デユーテイでは4〜5Vで駆動され
る場合が多い。第3表はその目的に適した組成の
実施例である。 第3表において、以下の様な略号を使用する。
[Table] Considering power consumption, circuit cost, etc., it is desirable for TN cells to be driven at as low a voltage as possible. For example, 1/8 duty is often driven at 4 to 5V. Table 3 provides examples of compositions suitable for that purpose. In Table 3, the following abbreviations are used.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 で表わされる化合物を含む正の誘電異方性を持つ
たネマチツク液晶組成物。 (式中R,R′は炭素数1〜8の直鎖アルキル
基) 2 Rの炭素数が3〜5で、かつR′の炭素数が
3〜4である事を特徴とする特許請求の範囲第1
項記載のネマチツク液晶組成物。 3 化合物()の濃度は1〜50重量%であるこ
とを特徴とする特許請求の範囲第2項記載のネマ
チツク液晶組成物。
[Claims] 1. General formula A nematic liquid crystal composition with positive dielectric anisotropy containing a compound represented by (In the formula, R and R' are linear alkyl groups having 1 to 8 carbon atoms.) 2 A patent claim characterized in that R has 3 to 5 carbon atoms, and R' has 3 to 4 carbon atoms. Range 1
The nematic liquid crystal composition described in . 3. The nematic liquid crystal composition according to claim 2, wherein the concentration of the compound () is 1 to 50% by weight.
JP7344882A 1982-05-04 1982-05-04 Nematic liquid crystal composition Granted JPS58191780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7344882A JPS58191780A (en) 1982-05-04 1982-05-04 Nematic liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7344882A JPS58191780A (en) 1982-05-04 1982-05-04 Nematic liquid crystal composition

Publications (2)

Publication Number Publication Date
JPS58191780A JPS58191780A (en) 1983-11-09
JPH0136516B2 true JPH0136516B2 (en) 1989-08-01

Family

ID=13518509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7344882A Granted JPS58191780A (en) 1982-05-04 1982-05-04 Nematic liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS58191780A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126691A (en) * 1984-07-13 1986-02-05 Matsushita Electric Ind Co Ltd Liquid crystal composition
DE3582551D1 (en) * 1984-10-19 1991-05-23 Dainippon Ink & Chemicals NEMATIC LIQUID CRYSTAL COMPOSITION.
DE3606787A1 (en) * 1986-03-01 1987-09-03 Merck Patent Gmbh ELECTROOPTICAL DISPLAY ELEMENT
JPH0794405B2 (en) * 1986-06-06 1995-10-11 旭硝子株式会社 Fluoroalkoxyphenol derivative compound and liquid crystal composition containing the same
US8958594B2 (en) 2011-07-25 2015-02-17 Panasonic Corporation Speaker device

Also Published As

Publication number Publication date
JPS58191780A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
EP0258868B1 (en) A nematic liquid crystal composition
JPH0781141B2 (en) Nematic liquid crystal composition
JPH0359952B2 (en)
JPS6228840B2 (en)
JPH0136516B2 (en)
KR19990022257A (en) Nematic Liquid Crystal Compositions for Active Matrix Applications
JPH083559A (en) Liquid crystal composition and liquid crystal display element
US5089169A (en) Liquid crystal material and display device using same
JPH049197B2 (en)
EP0171746A2 (en) Liquid crystal composition
CN108239548A (en) Voltage stability is high, frequency dependence good liquid-crystal composition and its display device
US4740328A (en) Liquid crystal composition
JPH052718B2 (en)
JPH0359953B2 (en)
CN112961682A (en) Liquid crystal composition, liquid crystal display element and liquid crystal display
JPS6134480B2 (en)
JP2901157B2 (en) Liquid crystal composition
JPH0113513B2 (en)
JPS59191789A (en) Nematic liquid crystal composition for display element
JP3233684B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JPS647116B2 (en)
JPH09183976A (en) Antiferroelectric liquid crystal composition
JP4817531B2 (en) Liquid crystal composition
JPH0456076B2 (en)
JPS6063275A (en) Liquid crystal compound