JPH0136342B2 - - Google Patents

Info

Publication number
JPH0136342B2
JPH0136342B2 JP11156379A JP11156379A JPH0136342B2 JP H0136342 B2 JPH0136342 B2 JP H0136342B2 JP 11156379 A JP11156379 A JP 11156379A JP 11156379 A JP11156379 A JP 11156379A JP H0136342 B2 JPH0136342 B2 JP H0136342B2
Authority
JP
Japan
Prior art keywords
magnetic
stator
step motor
rotor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11156379A
Other languages
Japanese (ja)
Other versions
JPS5635674A (en
Inventor
Hiroshi Takashio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP11156379A priority Critical patent/JPS5635674A/en
Publication of JPS5635674A publication Critical patent/JPS5635674A/en
Publication of JPH0136342B2 publication Critical patent/JPH0136342B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ステツプモータの構成要素であるコ
イルブロツクの磁心、あるいはステータの表面処
理に関するものである。 第1図は、従来の一体ステータ式ステツプモー
タの一例を示す図であり、高透磁率材よりなる磁
心1にコイルワイヤ2をまいたコイルブロツク3
は、その両端を同じく高透磁率材よりなるステー
タ4の上に重ねて、ネジ止めすることにより磁気
的結合を行ない、これによりロータ5のまわりの
磁気抵抗分布を正しくセツトすると共に、コイル
ブロツクによつて発生した磁束をロータのまわり
に導いている。 ところが、高透磁率材であるところの磁心1や
ステータ4に、例えば、純鉄や45パーマロイなど
耐食性の劣る材料を使用した場合、表面での錆発
生により、磁心1とステータ4の重ね合わせ部分
の磁気抵抗が増大して、ロータ5のまわりの磁気
抵抗分布が本来のねらい値よりずれるとともにコ
イルブロツク3による発生磁束も減少して、ステ
ツプモータの効率や耐磁性低下などの多くの問題
を引きおこすのみならず、長時間の使用中には錆
が脱落し、歯車のかみ合い部や接点部及び軸受部
に入り込み、重大な機能欠陥に結びつく恐れもあ
る。 この耐食性を向上させる目的で、非磁性のめつ
きを施した場合には、上述の場合と同様、磁心1
とステータ4の間に大きな磁気抵抗分を持ち込む
事になり、好ましくなかつた。 このような事から、これらに耐食性と共に磁性
を有するめつきを施す事が種々考えられてきたが
従来のものには次のような欠点があつた。 先ず、磁性を有する電気ニツケルめつきの利用
が考えられたが、通常行なわれているめつき方法
では、めつき厚のバラツキが大きく、耐食性及び
ステツプモータの性能にバラつきが出て、品質上
好ましくなかつた。 次に、非磁性体であるニツケル−リン系の無電
解めつきを行なつた後、400℃前後で熱処理を行
ない、めつき皮膜に磁性を付与して利用すること
が考えられた。この方法では、一回のめつき処理
内での厚みのバラツキは少ないが、めつき厚が増
すに従い、ステツプモータの性能が非磁性めつき
と同レベルになる傾向があり、めつき厚の管理を
厳密に行なう必要があつた。又熱処理工程が一工
程追加になると言う欠点もある。 本発明は、上記の欠点を除去すべくなされたも
ので、磁心1あるいはステータ4の表面に磁性を
有するニツケル―コバルト―リン系の無電解めつ
きを施し、両者の接触面の磁気抵抗を小さくする
ことにより、高効率のステツプモータを提供する
事を目的とする。 以下、図面に従つて本発明を説明する。 第2図は第1図に示した一体ステータ式ステツ
プモータの駆動コイルに流れる電流波形を示し、
(a)は非磁性めつきを施したコイルブロツクを用い
た時の電流波形、(b)は本発明によるニツケル―コ
バルト―リン系無電解めつきを施したコイルブロ
ツクを用いた時の電流波形をそれぞれ示してい
る。 本発明では、第2図bに示す通り、第2図aに
示す波形と比べて、立上り時間は長くなる(t2
t1)。一体ステータにおいて、コイルに電流を流
すと磁束は、まづステータ連結部4aの領域を通
過し飽和した後、ロータ5の領域を通過し、ロー
タの回転に寄与するもので、実質的にパルス巾
(t0)が短くなつたのと同じ作用が起こる。しか
し、磁気回路のオームの法則つまり、(コイルの
巻数)・(電流)=(磁気抵抗)・(磁束)の関係か
ら、磁気抵抗が小さくなる程、同じ電流を流して
得られる磁束数が多くなり、磁心2とステータ4
との接触面の磁気抵抗小さい本発明では、コイル
1より発生する磁束が従来より多くなり、ロータ
5に及ぼす力が強くなり、逆起電力が大きくなる
(i2<i1)。つまりパルス巾が非磁性めつきの第2
図aのものより実質上短くなつても、ロータの駆
動力は劣えず、充分駆動が行なえることがわか
る。 ここで、立上り時間t1・t2とは一体ステータを
用いた場合生じるもので、ステータ連結部4aを
磁束が飽和するまでの時間である。この立上り時
間は時定数(コイルのインダクタンス/コイルの
直流抵抗)によつて決まるので、インダクタンス
に比例するが、更にインダクタンスは(巻数)2
(磁気抵抗)で表わされ、磁気抵抗に反比例する。
従つて、磁気抵抗の小さい本発明の構成によれば
第2図bのごとく、立上り時間が長くなるわけで
ある。 なお、第2図bから明らかにt0がロータを回転
させるに充分なパルス巾であることがわかる。 なぜなら、パルスが切れる直前で波形が充分立
ち上がつているからである(ロータ磁極がコイル
磁界と平行な位置まで回転している状態を示す)。 上記の説明は一体ステータ式ステツプモータに
ついてであるが、ステータが左右別々になる、即
ち第1図4aで示す部分が切れている、二体ステ
ータ式ステツプモータでも同様の効果があること
は言うまでもない。 実際に同一モータ仕様の時計(ステータは78パ
ーマロイ製で耐食性に問題がないため、45パーマ
ロイ製の磁心にのみめつきを施した)にニツケル
―コバルト―リン系無電解めつき及び従来方法の
めつきを施した時の、ステツプモータの性能を表
1に示す。
The present invention relates to surface treatment of the magnetic core of a coil block or stator, which is a component of a step motor. FIG. 1 is a diagram showing an example of a conventional integrated stator type step motor, in which a coil block 3 has a coil wire 2 wound around a magnetic core 1 made of a high magnetic permeability material.
The two ends of the stator 4 are placed on top of the stator 4, which is also made of a high magnetic permeability material, and are screwed together to create a magnetic coupling.This allows the magnetic resistance distribution around the rotor 5 to be set correctly, and the coil block to The magnetic flux thus generated is guided around the rotor. However, if a material with poor corrosion resistance, such as pure iron or 45 permalloy, is used for the magnetic core 1 and stator 4, which are high magnetic permeability materials, rust will form on the surface and the overlapping portion of the magnetic core 1 and stator 4 will deteriorate. The magnetic resistance of the step motor increases, causing the magnetic resistance distribution around the rotor 5 to deviate from its original target value, and the magnetic flux generated by the coil block 3 also decreases, causing many problems such as a decrease in efficiency and magnetic resistance of the step motor. In addition, during long-term use, rust may fall off and enter the meshing parts, contacts, and bearings of gears, leading to serious functional defects. If non-magnetic plating is applied for the purpose of improving this corrosion resistance, the magnetic core 1
This is undesirable because a large amount of magnetic resistance is introduced between the magnet and the stator 4. For this reason, various attempts have been made to provide these with corrosion-resistant and magnetic plating, but conventional methods have had the following drawbacks. First, the use of electric nickel plating, which has magnetism, was considered, but the commonly used plating method has large variations in plating thickness, resulting in variations in corrosion resistance and step motor performance, which is unfavorable in terms of quality. Ta. Next, it was considered that after electroless plating with a non-magnetic nickel-phosphorus material, heat treatment was performed at around 400°C to impart magnetism to the plating film. With this method, there is little variation in thickness within a single plating process, but as the plating thickness increases, the performance of the step motor tends to be at the same level as non-magnetic plating. It was necessary to do it strictly. There is also the drawback that one additional heat treatment step is required. The present invention has been made to eliminate the above-mentioned drawbacks, and the surface of the magnetic core 1 or stator 4 is electrolessly plated with magnetic nickel-cobalt-phosphorus to reduce the magnetic resistance of the contact surface between the two. The purpose of this invention is to provide a highly efficient step motor. The present invention will be explained below with reference to the drawings. Figure 2 shows the current waveform flowing through the drive coil of the integrated stator step motor shown in Figure 1.
(a) is a current waveform when using a coil block with non-magnetic plating, (b) is a current waveform when using a coil block with nickel-cobalt-phosphorus electroless plating according to the present invention. are shown respectively. In the present invention, as shown in FIG. 2b, the rise time is longer (t 2 >
t1 ). In the integrated stator, when a current is passed through the coil, the magnetic flux first passes through the stator connecting portion 4a and becomes saturated, then passes through the rotor 5 area and contributes to the rotation of the rotor, and the pulse width is substantially reduced. The same effect occurs as (t 0 ) becomes shorter. However, according to Ohm's law for magnetic circuits, that is, the relationship (number of coil turns), (current) = (magnetic resistance), (magnetic flux), the smaller the magnetic resistance, the more magnetic flux can be obtained by passing the same current. , magnetic core 2 and stator 4
In the present invention, where the magnetic resistance of the contact surface with the coil 1 is small, the magnetic flux generated by the coil 1 is larger than that of the conventional method, and the force exerted on the rotor 5 becomes stronger, resulting in a larger back electromotive force (i 2 <i 1 ). In other words, the pulse width is second to that of non-magnetic plating.
It can be seen that even though the rotor is substantially shorter than the one in Fig. a, the driving force of the rotor is not inferior and sufficient driving can be performed. Here, the rise times t 1 and t 2 occur when an integral stator is used, and are the times until the magnetic flux saturates the stator connecting portion 4a. This rise time is determined by the time constant (coil inductance/coil DC resistance), so it is proportional to the inductance, but the inductance is also (number of turns) 2 /
(magnetic resistance) and is inversely proportional to magnetic resistance.
Therefore, according to the structure of the present invention having a small magnetic resistance, the rise time becomes longer as shown in FIG. 2b. It is clear from FIG. 2b that t 0 is a pulse width sufficient to rotate the rotor. This is because the waveform rises sufficiently just before the pulse ends (indicating that the rotor magnetic poles have rotated to a position parallel to the coil magnetic field). The above explanation is about a one-piece stator type step motor, but it goes without saying that a two-piece stator type step motor, in which the left and right stators are separated, that is, the part shown in Fig. 1 4a is cut off, can have the same effect. . In fact, a watch with the same motor specifications (the stator is made of 78 permalloy and has a 45 permalloy magnetic core with glazing applied to it because there is no problem with corrosion resistance) was plated with nickel-cobalt-phosphorus electroless plating and the conventional method. Table 1 shows the performance of the step motor when applied.

【表】 以上述べたとおり、本発明では磁心あるいはス
テータの表面に、ニツケル―コバルト―リン系無
電解めつきによる磁性皮膜を施したので、ネジ止
め部の接触抵抗が小さくなり、等価的に駆動パル
ス巾が短くなるにもかかわらず、ロータの回転力
は損なう事がなく、低消費電流の高効率ステツプ
モータを提供することができ、耐食性も保証でき
る。 更に、めつき厚のバラつきが少なく、かつ磁性
を付与させるための熱処理も必要ないため、容易
に品質の均一な高効率ステツプモータを提供する
ことが可能となる。 なお、本実施例は時計用ステツプモータについ
て述べたが、時計以外の同様な構造を有するステ
ツプモータについても、同様の効果が得られるの
は自明の事である。
[Table] As mentioned above, in the present invention, a magnetic film is applied to the surface of the magnetic core or stator by nickel-cobalt-phosphorus electroless plating, so the contact resistance of the screwed part is reduced, and the drive is equivalently improved. Even though the pulse width is shortened, the rotational force of the rotor is not impaired, a high efficiency step motor with low current consumption can be provided, and corrosion resistance can also be guaranteed. Further, since there is little variation in plating thickness and no heat treatment is required to impart magnetism, it is possible to easily provide a highly efficient step motor with uniform quality. Although this embodiment has been described with respect to a step motor for a watch, it is obvious that similar effects can be obtained with step motors having a similar structure other than those used in watches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のステツプモータの一例を示す
平面図。第2図a,bはコイルに流れる電流波形
を示す特性図であり、(a)は磁心に非磁性めつきを
施したもの、(b)は本発明によるものである。 1……磁心、2……コイルワイヤ、3……コイ
ルブロツク、4……ステータ、5……ロータ。
FIG. 1 is a plan view showing an example of a conventional step motor. FIGS. 2a and 2b are characteristic diagrams showing the waveform of the current flowing through the coil, where (a) is the one in which the magnetic core is plated with non-magnetic material, and (b) is the one according to the present invention. 1... Magnetic core, 2... Coil wire, 3... Coil block, 4... Stator, 5... Rotor.

Claims (1)

【特許請求の範囲】[Claims] 1 永久磁石よりなるロータ、該ロータを取り囲
むように配置された一対の高透磁率材よりなるス
テータ、および高透磁率材よりなる磁心を有する
コイルブロツクを主な構成要素とするステツプモ
ータにおいて、前記コイルブロツクの磁心表面も
しくはステータの表面、あるいは両者の表面に、
ニツケル―コバルト―リン系磁性皮膜を形成した
事を特徴とするステツプモータ。
1. A step motor whose main components include a rotor made of a permanent magnet, a pair of stators made of a high magnetic permeability material arranged to surround the rotor, and a coil block having a magnetic core made of a high magnetic permeability material. On the magnetic core surface of the coil block, the surface of the stator, or both surfaces,
A step motor characterized by forming a nickel-cobalt-phosphorus magnetic film.
JP11156379A 1979-08-31 1979-08-31 Step-motor Granted JPS5635674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11156379A JPS5635674A (en) 1979-08-31 1979-08-31 Step-motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11156379A JPS5635674A (en) 1979-08-31 1979-08-31 Step-motor

Publications (2)

Publication Number Publication Date
JPS5635674A JPS5635674A (en) 1981-04-08
JPH0136342B2 true JPH0136342B2 (en) 1989-07-31

Family

ID=14564547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11156379A Granted JPS5635674A (en) 1979-08-31 1979-08-31 Step-motor

Country Status (1)

Country Link
JP (1) JPS5635674A (en)

Also Published As

Publication number Publication date
JPS5635674A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
EP0740397B1 (en) Stator structure for rotary electric machine
EP1330010A1 (en) Electric motor
US5075814A (en) External method and apparatus for magnetizing metal pieces in rotary electric apparatus to a permanent magnetization state
JPS58218860A (en) Permanent magnet type direct current machine
DE3629423C2 (en)
JPH0136342B2 (en)
JP2016144336A (en) Stepping motor and clock
JPH0135590B2 (en)
JPS6147064B2 (en)
JPH10164784A (en) Magnet rotor
AT223684B (en) Process for the production of electrical components of the printed circuit type
JPH0132325Y2 (en)
SU1056385A1 (en) Single-phase step motor
DE2530410A1 (en) STEPPER MOTOR
JP2673178B2 (en) Monostable Latching Solenoid
JPS63316658A (en) Multipolar magnetization
JPH0528942Y2 (en)
JPH05292692A (en) Thin film coil for micro-motor and manufacture thereof
JPS5588554A (en) Rotor
JPH05176510A (en) Rotary electric machine
KR100252831B1 (en) Method for magnetization of permanent magnet
JPS5828469Y2 (en) Kogata Denchi Dokeinomo - Takozo
JPS60167310A (en) Magnetization of anisotropic cylinder magnet
JPS5961459A (en) Setting method of electric neutral shaft of brush for flat motor
JP2001351816A (en) Magnetizing yoke device and motor using magnet magnetized by using it