JPH0136116Y2 - - Google Patents

Info

Publication number
JPH0136116Y2
JPH0136116Y2 JP1982121465U JP12146582U JPH0136116Y2 JP H0136116 Y2 JPH0136116 Y2 JP H0136116Y2 JP 1982121465 U JP1982121465 U JP 1982121465U JP 12146582 U JP12146582 U JP 12146582U JP H0136116 Y2 JPH0136116 Y2 JP H0136116Y2
Authority
JP
Japan
Prior art keywords
reaction
heat
column
sample
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982121465U
Other languages
Japanese (ja)
Other versions
JPS5925457U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12146582U priority Critical patent/JPS5925457U/en
Publication of JPS5925457U publication Critical patent/JPS5925457U/en
Application granted granted Critical
Publication of JPH0136116Y2 publication Critical patent/JPH0136116Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は反応に伴なつて発生する熱量を測定し
て分析を行なうエンタルピメトリツクな分析装置
に関するものである。
[Detailed Description of the Invention] The present invention relates to an enthalpymetric analysis device that performs analysis by measuring the amount of heat generated during a reaction.

試料中の特定成分に対する反応液を適切に選ぶ
ことによつてその反応熱から特定成分を定量する
方法は、測定の速さおよび正確さにおいてすぐれ
ているうえ、指示薬などを必要としない直接測定
であるという点で、妨害物の影響も少ないすぐれ
た分析手段である。
The method of quantifying a specific component from the heat of reaction by appropriately selecting a reaction solution for a specific component in a sample is superior in measurement speed and accuracy, and is a direct measurement method that does not require an indicator. In this sense, it is an excellent analytical method that is less affected by interference.

従来、反応熱等の熱変化を検出する装置として
は熱量計があり、上記の分析手段においてこの熱
量計を検出器に用いることは不可能ではない。例
えば、試料液と反応液を連続的に混合しつつフロ
ー型マイクロカロリメーターに導入して反応熱を
測定する方法が考えられるが、この場合には、反
応液、試料が装置内で熱平衡に達してから反応を
開始させるので測定に時間がかかること、両液を
合すると直ちに反応が開始されて液体の流れとと
もに熱が拡散するので温度検出の再現性が悪いこ
と、そして、結果的に試料や反応液を大量に必要
とすること、などの点が問題になる。
Conventionally, a calorimeter has been used as a device for detecting thermal changes such as reaction heat, and it is not impossible to use this calorimeter as a detector in the above analysis means. For example, it is possible to measure the heat of reaction by continuously mixing the sample solution and reaction solution and introducing them into a flow-type microcalorimeter, but in this case, the reaction solution and sample reach thermal equilibrium within the device. The reaction starts after the two liquids are combined, so the measurement takes time.The reaction starts immediately when the two liquids are combined, and the heat diffuses as the liquid flows, resulting in poor reproducibility of temperature detection. Problems include the need for a large amount of reaction solution.

また、反応によつて生ずる熱量の測定を分析手
段とする分析装置としては温度滴定装置がよく知
られているが、この装置は連続的に滴下される滴
定剤と試料との反応による発熱量の変化を滴定の
終点検出に利用するものであつて、計測の対象は
消費された滴定剤の容量である。この装置を用い
て一定量の試料中に過剰の滴定剤を直接瞬時に投
入し、その反応熱からあらかじめ作成した検量線
を用いて定量することも可能であるが、バツチ測
定にならざるを得ず、短時間に多くの試料を処理
することはできない。
In addition, a temperature titration device is well known as an analytical device that measures the amount of heat generated by a reaction. Changes are used to detect the end point of titration, and the object of measurement is the volume of titrant consumed. Using this device, it is possible to directly and instantaneously inject excess titrant into a fixed amount of sample and quantify it using a calibration curve created in advance from the reaction heat, but it is necessary to measure in batches. However, it is not possible to process many samples in a short period of time.

本考案者らは従来のこうした熱的な分析装置の
特徴を考察し、測定周期の高速化、反応熱の効率
的検出などを目指して種々検討した結果、試料と
反応して適当な反応熱を発生する反応試薬を選択
して、この反応試薬とと試料との反応を、試料に
対して反応せずかつ熱容量または熱伝導率が小さ
い充填物を充填したカラム内あるいはその直前で
行なわせることによつて熱変化が高感度で再現性
よく検知することができ、したがつて、キヤリア
液中に試料を微量添加することによつても検出可
能であり、試料の微量化、測定周期の高速化を実
現しうることを見出して、これに基いて本考案を
完成するに至つた。
The inventors of the present invention considered the characteristics of conventional thermal analysis devices and conducted various studies aimed at speeding up the measurement cycle and efficiently detecting the heat of reaction. By selecting the reaction reagent to be generated and causing the reaction between this reaction reagent and the sample to occur in or immediately before a column packed with a packing that does not react with the sample and has a small heat capacity or thermal conductivity. Therefore, thermal changes can be detected with high sensitivity and good reproducibility.Therefore, it is also possible to detect thermal changes by adding a small amount of sample to the carrier liquid, making it possible to reduce the amount of sample and speed up the measurement cycle. We discovered that it is possible to realize this, and based on this we completed the present invention.

すなわち本考案は、試料に対して反応せずかつ
熱容量が小さいかあるいは熱伝導率が小さい充填
物を充填したカラムと、該カラムに接続して試料
液を送を試料液チユーブと、該カラムまたは試料
液チユーブに接続された反応液チユーブと、この
試料液および反応液を前記カラムに送液するポン
プと、カラム内あるいはカラムの出口近傍に設け
られた感熱素子と、該感熱素子の信号を濃度に変
換する電気回路とを備えたことを特徴とする、反
応熱を利用した分析装置に関するものである。
In other words, the present invention consists of a column filled with a packing that does not react with the sample and has a small heat capacity or a low thermal conductivity, a sample liquid tube connected to the column to send the sample liquid, and the column or A reaction liquid tube connected to the sample liquid tube, a pump that sends the sample liquid and reaction liquid to the column, a heat-sensitive element installed within the column or near the outlet of the column, and a signal from the heat-sensitive element that converts the signal of the heat-sensitive element into a concentration The present invention relates to an analytical device that utilizes reaction heat, and is characterized by being equipped with an electric circuit that converts heat of reaction into

試料に対して反応せずかつ熱容量が小さいかあ
るいは熱伝導率が小さい充填物とは、この充填物
が、試料と後述する反応試薬との反応を阻害せ
ず、かつ反応の場を狭めて反応による温度変化を
鋭敏にとらえるようにするものであることを明ら
かにしたものである。熱容量が小さければ反応液
中に反応熱が蓄積され、また熱伝導率が小さくて
も反応液巾に反応熱が蓄積されるからである。こ
のような充填物の例として、テフロンビーズ、ポ
リエチレンビーズなどを挙げることができる。
A packing that does not react with the sample and has a small heat capacity or low thermal conductivity is a packing that does not inhibit the reaction between the sample and the reaction reagent described below, and that narrows the reaction field and allows the reaction to occur. It has been clarified that this technology enables the sensitive detection of temperature changes due to This is because if the heat capacity is small, the reaction heat will be accumulated in the reaction liquid, and even if the thermal conductivity is small, the reaction heat will be accumulated in the width of the reaction liquid. Examples of such fillers include Teflon beads, polyethylene beads, and the like.

反応液中に含有される反応試薬は試料と反応し
て適度の反応熱を発生させるものである。反応熱
の種類は限定されないが発生する熱量の大きなも
のがよく、その点で中和熱が最も適当である。し
かしながら、そのほか吸脱着熱、金属配位熱、触
媒熱、希釈熱などあらゆる反応熱が利用の対象と
なる。また、この反応熱は正の反応熱のみでな
く、負の反応熱であつてもよい。反応試薬は試料
に応じ、発生する熱量と不純物との反応性を考慮
して定められることはいうまでもない。
The reaction reagent contained in the reaction solution reacts with the sample to generate an appropriate amount of reaction heat. The type of reaction heat is not limited, but one that generates a large amount of heat is preferable, and in that respect, neutralization heat is most suitable. However, all other reaction heats such as adsorption/desorption heat, metal coordination heat, catalytic heat, and dilution heat can be used. Moreover, this reaction heat may be not only a positive reaction heat but also a negative reaction heat. It goes without saying that the reaction reagent is determined depending on the sample, taking into account the amount of heat generated and the reactivity with impurities.

試料液は、カラムに連続的に送られる場合もあ
るが、通常は間欠的に送られる。この試料液はそ
のままカラムに送り込んでもよいがキヤリア液を
使用して送り込んでもよい。キヤリア液は、試料
および反応試薬に応じて、水、各種緩衝液、有機
溶媒などのなかから適宜選択される。
The sample liquid may be sent to the column continuously, but usually it is sent intermittently. This sample solution may be sent to the column as it is, or it may be sent using a carrier liquid. The carrier liquid is appropriately selected from among water, various buffer solutions, organic solvents, etc., depending on the sample and reaction reagent.

本考案の装置はこのような反応をうまく行なわ
せるように構成されているものである。本考案の
一実施例である装置の概要を第1図に示す。
The apparatus of the present invention is constructed to allow such a reaction to occur successfully. FIG. 1 shows an outline of an apparatus which is an embodiment of the present invention.

図に示される如く、反応液は反応液タンク1か
ら送液ポンプ2によつて連続的に吸上げられ、反
応液チユーブ3内を一定速度で移動する。そし
て、恒温槽4の予熱コイル11部内で熱平衡に達
し、カラム5に流入し出口から排出される。その
際、出口近傍に設けられた感熱素子6によつて温
度が連続的に検知されている。一方、試料は吸引
ポンプ7によつて連続的に吸引され、試料液チユ
ーブ8内を流れている。そして、測定時にはイン
ジエクター9が切り替わつて、一定量の試料が反
応液にはさまれた形でカラム5内に送り込まれ
る。試料はカラム内で反応試薬と反応して発熱あ
るいは吸熱して温度が変化し、この温度変化を感
熱素子6が検知して電気回路10が濃度変換処理
する。
As shown in the figure, the reaction liquid is continuously sucked up from the reaction liquid tank 1 by the liquid sending pump 2 and moves at a constant speed within the reaction liquid tube 3. Then, thermal equilibrium is reached within the preheating coil 11 of the constant temperature bath 4, and the heat flows into the column 5 and is discharged from the outlet. At this time, the temperature is continuously detected by the heat-sensitive element 6 provided near the outlet. On the other hand, the sample is continuously sucked by the suction pump 7 and is flowing inside the sample liquid tube 8 . Then, during measurement, the injector 9 is switched, and a certain amount of the sample is fed into the column 5 while being sandwiched between the reaction liquid. The sample reacts with the reaction reagent in the column and generates or absorbs heat, causing a temperature change. The thermosensitive element 6 detects this temperature change, and the electric circuit 10 performs a concentration conversion process.

実施例においては、液送りチユーブは反応液チ
ユーブ3と試料液チユーブ8の2本のみになつて
いるが、必要により、キヤリア液とか反応助剤あ
るいは充填物層の洗浄剤などのチユーブをさらに
設けてもよいことはいうまでもない。試料液をカ
ラムまたは反応液チユーブ内に一定量注入するイ
ンジエクターは公知の種々のもののなかから適宜
選択すればよく、例えば液体クロマトグラフイー
などで多用されているインジエクター9を用いれ
ばよい。試料液チユーブ8を反応液チユーブ3に
接続する場合には、なるべくカラム5内で反応熱
を多く発生させるためにカラム5の入口近傍に接
続するのがよい。感熱素子6は系内において反応
熱による温度変化がピークになる部位に設けるの
がよく、カラムの出口端部もしくはその近傍に設
けるかあるいに出口側のカラム内に設けるのがよ
い。感熱素子6にはサーミスターとか白金測温抵
抗体などを適宜選択して用いればよい。
In the embodiment, there are only two liquid feed tubes, the reaction liquid tube 3 and the sample liquid tube 8, but if necessary, additional tubes for carrier liquid, reaction aid, cleaning agent for the packed layer, etc. may be provided. Needless to say, it is okay. The injector for injecting a fixed amount of the sample liquid into the column or reaction liquid tube may be appropriately selected from among various known injectors. For example, the injector 9, which is often used in liquid chromatography, may be used. When connecting the sample liquid tube 8 to the reaction liquid tube 3, it is preferable to connect it near the inlet of the column 5 in order to generate as much reaction heat within the column 5 as possible. The heat sensitive element 6 is preferably provided at a location in the system where the temperature change due to the heat of reaction peaks, and is preferably provided at or near the outlet end of the column, or in the column on the outlet side. As the heat-sensitive element 6, a thermistor, a platinum resistance temperature sensor, or the like may be appropriately selected and used.

次に、本考案の装置を苛性ソーダ製造工程にお
ける製品管理に適用した場合について述べる。苛
性ソーダ製造工業においては電解槽内に20〜50%
程度の苛性ソーダ濃厚溶液が生成している。この
濃厚溶液を第1図に概要を示す装置を用い希釈す
ることなく連続分析した。充填物にはテフロンビ
ーズであるフロロパツク80(商品名、ガスクロ工
業(株)製)を用い、直径2mm×長さ39mmの円筒型カ
ラムに充填した。反応液には0.5NHClを用い、
1.2ml/minで一定流速で通液した。試料の量は
1回あたり20μとし、30秒または60秒間隔で注
入した。恒温槽は34.2℃に設定した。感熱素子に
はサーミスターSB−10K(宝工業(株)製)を用い
た。
Next, a case will be described in which the device of the present invention is applied to product control in a caustic soda manufacturing process. In the caustic soda manufacturing industry, 20 to 50% of
A concentrated solution of caustic soda is produced. This concentrated solution was continuously analyzed without dilution using the apparatus outlined in FIG. Fluoropak 80 (trade name, manufactured by Gascro Industries Co., Ltd.), which is a Teflon bead, was used as a packing material, and was packed into a cylindrical column with a diameter of 2 mm and a length of 39 mm. Using 0.5NHCl as the reaction solution,
The liquid was passed through at a constant flow rate of 1.2 ml/min. The sample amount was 20μ per injection, and the injections were made at 30 or 60 second intervals. The constant temperature bath was set at 34.2°C. A thermistor SB-10K (manufactured by Takara Kogyo Co., Ltd.) was used as the heat-sensitive element.

このような条件で苛性ソーダ濃度を連続的に測
定し、変動係数を求めたところ、0.8%であつた。
一方、カラムに何も充填しないで測定した場合の
変動係数は3.3%であつた。次に、苛性ソーダの
濃度を変えて温度変化との関係を求めたところ第
2図に示すように良好な直線関係が得られた。
The caustic soda concentration was continuously measured under these conditions and the coefficient of variation was found to be 0.8%.
On the other hand, the coefficient of variation when measuring without filling the column with anything was 3.3%. Next, when the concentration of caustic soda was changed and the relationship with temperature change was determined, a good linear relationship was obtained as shown in FIG.

本考案は反応熱の発生個所を固相にもち込むこ
とによつて反応熱の拡散を防止し、このことによ
つて温度変化の鋭敏度を高めるとともに再現性を
も高め、高速かつ高感度で多数の試料の連続分析
を可能にしたものであり、特に同種の試料を多数
分析する工程管理分析用として好適である。
This invention prevents the diffusion of reaction heat by bringing it into the solid phase, which increases the sensitivity of temperature changes and improves reproducibility, resulting in high speed and high sensitivity. It enables continuous analysis of a large number of samples, and is particularly suitable for process control analysis in which a large number of samples of the same type are analyzed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例である装置の概要を
示すものであり、第2図は本考案の装置を用いて
苛性ソーダ濃度と温度変化量との関係を求めた結
果を示している。 1…反応液タンク、2…送液ポンプ、3…反応
液チユーブ、4…恒温槽、5…カラム、6…感熱
素子、7…吸引ポンプ、8…試料液チユーブ、9
…インジエクター、10…電気回路、11…予熱
コイル。
FIG. 1 shows an outline of an apparatus that is an embodiment of the present invention, and FIG. 2 shows the results of determining the relationship between the concentration of caustic soda and the amount of temperature change using the apparatus of the present invention. 1... Reaction liquid tank, 2... Liquid sending pump, 3... Reaction liquid tube, 4... Constant temperature bath, 5... Column, 6... Heat sensitive element, 7... Suction pump, 8... Sample liquid tube, 9
...Injector, 10...Electric circuit, 11...Preheating coil.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料に対して反応せずかつ熱容量が小さいかあ
るいは熱伝導率が小さい充填物を充填したカラム
と、該カラムに接続して試料液を送る試料液チユ
ーブと、該カラムまたは試料液チユーブに接続さ
れた反応液チユーブと、この試料液および反応液
を前記カラムに送液するポンプと、カラム内ある
いはカラムの出口近傍に設けられた感熱素子と、
該感熱素子の信号を濃度に変換する電気回路とを
備えたことを特徴とする、反応熱を利用した分析
装置。
A column packed with a packing that does not react with the sample and has a small heat capacity or low thermal conductivity, a sample liquid tube connected to the column to send the sample liquid, and a column connected to the column or the sample liquid tube. a reaction liquid tube, a pump for feeding the sample liquid and the reaction liquid to the column, and a heat-sensitive element provided within the column or near the outlet of the column;
An analysis device that utilizes reaction heat, characterized by comprising an electric circuit that converts a signal from the heat-sensitive element into a concentration.
JP12146582U 1982-08-10 1982-08-10 Analyzer that uses reaction heat Granted JPS5925457U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12146582U JPS5925457U (en) 1982-08-10 1982-08-10 Analyzer that uses reaction heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12146582U JPS5925457U (en) 1982-08-10 1982-08-10 Analyzer that uses reaction heat

Publications (2)

Publication Number Publication Date
JPS5925457U JPS5925457U (en) 1984-02-17
JPH0136116Y2 true JPH0136116Y2 (en) 1989-11-02

Family

ID=30277995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12146582U Granted JPS5925457U (en) 1982-08-10 1982-08-10 Analyzer that uses reaction heat

Country Status (1)

Country Link
JP (1) JPS5925457U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314228Y2 (en) * 1973-03-12 1978-04-15

Also Published As

Publication number Publication date
JPS5925457U (en) 1984-02-17

Similar Documents

Publication Publication Date Title
US4022575A (en) Automatic chemical analyzer
US4912051A (en) Permeation absorption sampler with multiple detection
US4165219A (en) Analysis of solutions using chromatographic column
EP0028319B1 (en) Method and apparatus for effecting a repeated chemical analysis of a process stream
US8709820B2 (en) Concentration measuring apparatus for hydrogen sulfide in gas flow, and method for determining sulfide ion
JPH0136116Y2 (en)
US3080746A (en) Apparatus and method for testing liquids
Lee System for continuously monitoring hydrogen chloride concentrations in gaseous mixtures using a chloride ion-selective electrode
Phansi et al. Kinetic thermometric methods in analytical chemistry
JPS5928645A (en) Apparatus for thermal analysis
AU2001265989B2 (en) Method and device for measuring a component in a liquid sample
Mertens et al. The Use of an Ammonium Selective Electrode for the Automatic Determination of Ammonia in Boiler Feed-Waters
JPS623366B2 (en)
US4067227A (en) Hydrogen transfer system for gas chromatograph
US3497322A (en) Nitrogen detector
Liu et al. Dual-phase gas-permeation flow-injection thermometric analysis for the determination of carbon dioxide
Riley et al. Controlled-dispersion flow analysis: Flow-injection analysis applied to clinical chemistry
Diamandis et al. Continuous-flow determination of reducing sugars and sucrose in natural and industrial products with periodate oxidation and a periodate-sensitive flow-through electrode
Liu et al. A thermistor as a sensor in gas phase flow injection analysis
US3172730A (en) Method and apparatus for the determination
Király et al. Non-equilibrium effects in liquid-solid chromatography and flow sorption microcalorimetry
SU1458785A1 (en) Method of determining the activity coefficients of components of binary mixtures
Van Duyne et al. Chemically selective polarographic detector for gas chromatography
Opekar et al. Pheumatoamperometric determination of cyanide, sulfide and their mixtures
JPH02150768A (en) Liquid chromatograph analysis apparatus