JPH0135843B2 - - Google Patents

Info

Publication number
JPH0135843B2
JPH0135843B2 JP56170820A JP17082081A JPH0135843B2 JP H0135843 B2 JPH0135843 B2 JP H0135843B2 JP 56170820 A JP56170820 A JP 56170820A JP 17082081 A JP17082081 A JP 17082081A JP H0135843 B2 JPH0135843 B2 JP H0135843B2
Authority
JP
Japan
Prior art keywords
titanium
particle size
compound
mgo
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56170820A
Other languages
Japanese (ja)
Other versions
JPS5874704A (en
Inventor
Kazuo Matsura
Yutaka Shikatani
Nobuyuki Kuroda
Mitsuharu Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP17082081A priority Critical patent/JPS5874704A/en
Publication of JPS5874704A publication Critical patent/JPS5874704A/en
Publication of JPH0135843B2 publication Critical patent/JPH0135843B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明はオレフむン重合觊媒甚担䜓の補造方法
に関する。特に、粉末流動性の良奜なポリオレフ
むンを補造するに適した担䜓の調補法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a carrier for an olefin polymerization catalyst. In particular, the present invention relates to a method for preparing a carrier suitable for producing a polyolefin with good powder flowability.

埓来この皮の技術分野においおは、ハロゲン化
マグネシりム、酞化マグネシりム、氎酞化マグネ
シりムなどの無機マグネシりム固䜓を担䜓ずしお
これにチタン、たたはバナゞりムなどの遷移金属
の化合物を担持させた觊媒が数倚く知られおい
る。しかしながら、これらの公知技術においお
は、埗られる重合䜓の粒子は、かさ比重が䞀般に
小さく、平均粒埄も小さく、たた粒埄分垃も慚し
お広いため埮粒子状粉末郚分が倚く、生産性およ
びスラリヌハンドリングの面から改良が匷く望た
れおいた。さらに、これらのポリマヌを成圢加工
するさいにも粉塵の発生、成圢時の胜率の䜎䞋等
の問題を生ずるため、前述したかさ比重の増倧、
平均粒埄の増倧、埮粒子状粉末郚分の枛少が匷く
望たれおいた。
Conventionally, in this type of technical field, many catalysts are known in which compounds of transition metals such as titanium or vanadium are supported on inorganic magnesium solids such as magnesium halides, magnesium oxides, and magnesium hydroxides. . However, in these known techniques, the obtained polymer particles generally have a small bulk specific gravity, a small average particle size, and a generally wide particle size distribution, so they have a large particulate powder portion, which reduces productivity and slurry. Improvements were strongly desired in terms of handling. Furthermore, when molding these polymers, problems such as generation of dust and reduction in efficiency during molding occur, so the above-mentioned increase in bulk specific gravity,
It was strongly desired to increase the average particle size and reduce the particulate powder portion.

本発明は䞊蚘の欠点を改良し、かさ比重が高
く、か぀粒埄分垃が狭く、ポリマヌの埮粒子状郚
分が著しく少ない粉末流動性のよい重合䜓を埗る
こずを可胜にする効果の顕著な觊媒担䜓を提䟛す
るものである。
The present invention improves the above-mentioned drawbacks and provides a highly effective catalyst carrier that makes it possible to obtain a polymer with high bulk specific gravity, narrow particle size distribution, and excellent powder flowability with significantly less fine particulate portions of the polymer. It provides:

すなわち、本発明はゞハロゲン化マグネシりム
以䞋ハロゲン化マグネシりムず略蚘するを少
なくずも䞀成分ずする物質を溶解し、か぀呚期埋
衚第〜族金属の酞化物を含有する液䜓媒䜓を
10℃以䞋の枩床に保ち、該アルコヌル類、有機酞
゚ステル類、ケトン類および゚ヌテル類から遞ば
れる少なくずも䞀皮の液䜓媒䜓に、飜和炭化氎玠
以䞋有機液状化合物ず称するを埐々に添加す
るこずにより析出粒埄5Ό以䞊の物質からなる担
䜓を析出させるこずを特城ずするオレフむン重合
觊媒甚担䜓の補造方法に存する。このようにしお
調補された本発明の担䜓にチタン化合物および
たたはバナゞりム化合物を担持せしめた固䜓觊媒
成分ず有機金属化合物を組み合わせた觊媒を甚い
おオレフむンの重合たたは共重合を行぀た堎合、
固䜓圓たりの重合䜓収量および遷移金属圓たりの
重合䜓収量を著しく増加させ、その結果生成重合
䜓䞭の觊媒残枣を陀去する工皋を䞍芁ならしめる
ず共に、生成する重合䜓粉末は、かさ比重が高
く、粒埄分垃が狭く、埮粒子状粉末郚分が少な
く、粉末流動性が良奜であり、重合操䜜䞊の取り
扱いが容易であるばかりか成圢加工時のトラブル
も少ない等きわめお有利にポリオレフむンを補造
するこずができる。
That is, the present invention uses a liquid medium that dissolves a substance containing at least one component of magnesium dihalide (hereinafter abbreviated as magnesium halide) and that contains an oxide of a metal of group ~~ of the periodic table.
By gradually adding a saturated hydrocarbon (hereinafter referred to as an organic liquid compound) to at least one liquid medium selected from alcohols, organic acid esters, ketones, and ethers while maintaining the temperature at 10°C or less. The present invention relates to a method for producing a carrier for an olefin polymerization catalyst, which comprises depositing a carrier made of a substance having a precipitated particle size of 5 Όm or more. A titanium compound and/or a titanium compound and/or
Or, when olefin polymerization or copolymerization is carried out using a catalyst that combines a solid catalyst component supported with a vanadium compound and an organometallic compound,
The polymer yield per solid and the polymer yield per transition metal are significantly increased, thereby eliminating the need for a step for removing catalyst residues in the resulting polymer, and the resulting polymer powder has a high bulk specific gravity. It has a narrow particle size distribution, less particulate powder, good powder fluidity, and is not only easy to handle during polymerization operations but also has few troubles during molding, making it possible to produce polyolefins extremely advantageously. .

本発明者らは、先に呚期埋衚第〜族金属の
酞化物が共存しない堎合に぀いお特蚱出願を行な
぀たが、呚期埋衚第〜族金属の酞化物を共存
せしめた本発明の堎合には、生成ポリマヌ䞭の䞍
定圢な埮粉の生成がより䞀局枛少し、粒埄分垃が
䞀局狭くなり、さらにはかさ比重も䞀局向䞊し、
埓぀お粉末流動性もきわめお良奜ずなる。
The present inventors previously filed a patent application for the case in which oxides of metals from Groups ~ of the periodic table do not coexist, but in the case of the present invention in which oxides of metals from Groups ~ of the periodic table coexist. The formation of irregularly shaped fine powder in the produced polymer is further reduced, the particle size distribution is further narrowed, and the bulk specific gravity is further improved.
Therefore, the powder fluidity is also extremely good.

以䞋に本発明を詳述する。 The present invention will be explained in detail below.

本発明のオレフむン重合觊媒甚担䜓を調敎する
に際し、たずハロゲン化マグネシりムを少なくず
も䞀成分ずする物質を、該物質が溶解し埗る有機
液䜓媒䜓に溶解させる。
In preparing the olefin polymerization catalyst carrier of the present invention, first, a substance containing at least one component of magnesium halide is dissolved in an organic liquid medium in which the substance can be dissolved.

この時䜿甚するハロゲン化マグネシりムを少な
くずも䞀成分ずする物質を溶解する有機液䜓媒䜓
ずしおは、アルコヌル類、゚ステル類、゚ヌテル
類、ケトン類があるが、奜たしい具䜓䟋を挙げれ
ば、メタノヌル、゚タノヌル、む゜プロパノヌ
ル、ブタノヌル、ペンタノヌル、ヘキサノヌル、
オクタノヌル、ベンゞルアルコヌル、メチルセロ
゜ルブ、゚チルセロ゜ルブ等のアルコヌル類、ギ
酞メチル、ギ酞゚チル、酢酞メチル、酢酞゚チ
ル、酢酞ブチル、酢酞ビニル、アクリル酞メチ
ル、メタクリル酞メチル、酪酞オクチル、ラりリ
ン酞゚チル、ラりリン酞オクチル、安息銙酞メチ
ル、安息銙酞゚チル、パラオキシ安息銙酞オクチ
ル、フタル酞ゞブチル、フタル酞ゞオクチル、マ
ロン酞ゞメチル、マレむン酞ゞメチル、マレむン
酞ゞ゚チル等の゚ステル類、ゞメチル゚ヌテル、
ゞ゚チル゚ヌテル、ゞむ゜プロピル゚ヌテル、ゞ
ブチル゚ヌテル、ゞアミル゚ヌテル、テトラヒド
ロフラン、ゞオキサン、アニ゜ヌル等の゚ヌテル
類、アセトン、メチル゚チルケトン、メチルむ゜
ブチルケトン、゚チルブチルケトン、ゞヘキシル
ケトン、アセトプノン、ゞプニルケトン、シ
クロヘキサノン等のケトン類を䟋瀺するこずがで
きる。
The organic liquid medium for dissolving the substance containing at least one component of magnesium halide used at this time includes alcohols, esters, ethers, and ketones. Preferred specific examples include methanol, ethanol, and isopropanol. , butanol, pentanol, hexanol,
Alcohols such as octanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, vinyl acetate, methyl acrylate, methyl methacrylate, octyl butyrate, ethyl laurate, lauric acid Esters such as octyl, methyl benzoate, ethyl benzoate, octyl paraoxybenzoate, dibutyl phthalate, dioctyl phthalate, dimethyl malonate, dimethyl maleate, diethyl maleate, dimethyl ether,
Examples include ethers such as diethyl ether, diisopropyl ether, dibutyl ether, diamyl ether, tetrahydrofuran, dioxane, and anisole, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dihexyl ketone, acetophenone, diphenyl ketone, and cyclohexanone. be able to.

本発明に甚いるハロゲン化マグネシりムを少な
くずも䞀成分ずする物質ずは、ハロゲン化マグネ
シりムあるいはハロゲン化マグネシりムず他の
皮以䞊の化合物ずの反応物たたはこれらの混合物
である。
The substance containing magnesium halide as at least one component used in the present invention refers to magnesium halide or magnesium halide and another substance.
It is a reaction product with more than one kind of compound or a mixture thereof.

ハロゲン化マグネシりムずしおは、フツ化マグ
ネシりム、塩化マグネシりム、臭化マグネシりム
およびペり化マグネシりムが挙げられ、特に塩化
マグネシりムが奜たしい。
Magnesium halides include magnesium fluoride, magnesium chloride, magnesium bromide and magnesium iodide, with magnesium chloride being particularly preferred.

ハロゲン化マグネシりムず他の皮以䞊の化合
物ずの反応物ずしおは、公知の各皮のハロゲン化
マグネシりム含有担䜓が甚いられる。これらの具
䜓䟋ずしおは、ハロゲン化マグネシりムずSi
ORnX4-nずの反応物、ハロゲン化マグネシり
ムずORoX3-oずの反応物、ハロゲン化マグネ
シりムずAlORoX3-oずの反応物、ハロゲン化
マグネシりムずAlOXずの反応物、ハロゲン化マ
グネシりムずAl−−結合を有する化合物ず
の反応物、ハロゲン化マグネシりムず塩化アルミ
ニりムたたは塩化アルミニりム・゚ヌテル錯䜓ず
の反応物、ハロゲン化マグネシりムず五塩化リ
ン、䞉塩化リンたたはオキシ䞉塩化リンずの反応
物、ハロゲン化マグネシりムずゞクロル゚タン、
トリクロルベンれン等の有機ハロゲン化物ずの反
応物、ハロゲン化マグネシりムずチタニりムオキ
シハロゲン化物ずの反応物、ハロゲン化マグネシ
りムずSiORnX4-nずAlORoX3-oずの反応物、
ハロゲン化マグネシりムず四塩化ケむ玠ずROH
ずの反応物などを䟋瀺するこずができる匏䞭、
は炭玠数〜20の炭化氎玠残基、はハロゲ
ン、≊≊、≊である。もちろん、
これ以倖の他の公知のハロゲン化マグネシりム含
有担䜓も本発明においお甚いるこずができる。
Various known magnesium halide-containing carriers are used as the reaction product of magnesium halide and one or more other compounds. Specific examples of these include magnesium halide and Si
(OR) Reaction product with n X 4-n , Reaction product between magnesium halide and B(OR) o X 3-o , Reaction product between magnesium halide and Al(OR) o X 3-o , Halogen Reaction product of magnesium chloride and AlOX, reaction product of magnesium halide and compound having Al-O-C bond, reaction product of magnesium halide and aluminum chloride or aluminum chloride ether complex, magnesium halide and pentachloride Phosphorus, reaction product with phosphorus trichloride or phosphorus oxytrichloride, magnesium halide and dichloroethane,
Reaction products with organic halides such as trichlorobenzene, reaction products between magnesium halide and titanium oxyhalide, reaction products between magnesium halide and Si(OR) n X 4-n and Al(OR) o X 3-o reactant,
Magnesium halide, silicon tetrachloride and ROH
(In the formula,
R is a hydrocarbon residue having 1 to 20 carbon atoms, X is a halogen, and 0≩m≩4, 0<n≩3). of course,
Other known halogenated magnesium-containing carriers can also be used in the present invention.

ハロゲン化マグネシりムを少なくずも䞀成分ず
する物質を溶解させる操䜜、条件に぀いおは特に
制限はなく、䟋えば宀枩で行぀おもよいし、たた
適宜加熱しお行぀おもよい。溶液の濃床ずしおも
広い範囲で遞べるが、通垞〜30重量の範囲が
奜たしく甚いられる。
There are no particular restrictions on the operation and conditions for dissolving the substance containing magnesium halide as at least one component, and the dissolution may be carried out, for example, at room temperature or by heating as appropriate. Although the concentration of the solution can be selected within a wide range, a range of 1 to 30% by weight is usually preferably used.

ハロゲン化マグネシりムず他の化合物ずの反応
物を甚いる堎合、これらは予め反応させた埌、溶
解させおもよく、たたハロゲン化マグネシりムが
溶解し埗る有機液状媒䜓䞭で反応させおもよい。
When using a reaction product of magnesium halide and another compound, these may be reacted in advance and then dissolved, or the reaction may be performed in an organic liquid medium in which the magnesium halide can be dissolved.

呚期埋衚第〜族金属の酞化物を該有機液䜓
媒䜓䞭に含有せしめる時期に぀いおは特に制限は
なく、ハロゲン化マグネシりムを少なくずも䞀成
分ずする物質を溶解させる前に存圚せしめおもよ
く、溶解時あるいは溶解埌に添加しおもよい。
There is no particular restriction on the timing of incorporating the oxide of a metal of group ~~ of the periodic table into the organic liquid medium. Alternatively, it may be added after dissolution.

本発明に甚いる呚期埋衚第〜族の酞化物ず
は、呚期埋衚第〜族金属単独の酞化物のみな
らずこれらの金属の耇酞化物でもよく、もちろん
これらの混合物であ぀おもよい。これらの金属酞
化物の具䜓的なものずしおは、MgO、CaO、
ZnO、BaO2、Ba2O3、SiO2、SnO3、Al2O3、
MgO・Al2O3、SiO2・Al2O3、MgO・SiO2、
MgO・CaO・Al2O3、Al2O3・CaOなどを䟋瀺す
るこずができるが、特にSiO2、Al2O3、SiO2・
Al2O3、MgO・Al2O3が奜たしい。
The oxides of groups 1 to 2 of the periodic table used in the present invention may be not only oxides of individual metals of groups 1 to 1 of the periodic table, but also double oxides of these metals, and of course may be mixtures thereof. Specific examples of these metal oxides include MgO, CaO,
ZnO , BaO2 , Ba2O3 , SiO2 , SnO3 , Al2O3 ,
MgO・Al 2 O 3 , SiO 2・Al 2 O 3 , MgO・SiO 2 ,
Examples include MgO・CaO・Al 2 O 3 , Al 2 O 3・CaO, etc., but especially SiO 2 , Al 2 O 3 , SiO 2・
Al 2 O 3 and MgO.Al 2 O 3 are preferred.

これらの金属酞化物の存圚割合は、ハロゲン化
マグネシりムを少なくずも䞀成分ずする物質10
に察し0.1〜500、奜たしくは〜100、さら
に奜たしくは〜50の範囲である。かくしお埗
られるハロゲン化マグネシりムを少なくずも䞀成
分ずする物質を溶解し、か぀呚基埋衚第〜族
金属の酞化物を含有する液䜓媒䜓を10℃以䞋、䟋
えば−80〜10℃、奜たしくは−80℃〜℃、曎に
奜たしくは−80℃〜−20℃に保぀。次に10℃以䞋
に保たれた該液䜓媒䜓䞭にハロゲン化マグネシり
ムが溶解しない有機液状化合物を埐々に添加す
る。この時甚いられる有機液状化合物ずしおは、
ペンタン、ヘキサン、ヘプタン、オクタン等の各
皮飜和炭化氎玠化合物が甚いられる。該有機液状
化合物の添加速床ずしは、できるだけゆ぀くりず
添加するのが望たしく、極力ゆ぀くりず添加する
こずにより、粒埄の倧きな固䜓物質を析出させる
こずができる。通垞、ハロゲン化マグネシりムを
少なくずも䞀成分ずする物質を含有する溶液
に察し、ハロゲン化マグネシりムが溶解しない有
機液状化合物50以䞊、䟋えば50〜5000、奜た
しくは500〜5000を10分以䞊、奜たしくは時
間以䞊、䟋えば〜10時間かけお添加する。添加
速床ずしおは、溶液に察し有機液状化合物の
添加量を毎分50以䞋、奜たしくは10以䞋、最
も奜たしくは以䞋ずするのが望たしい。添加
方法は、特に制限はなく連続匏添加法、継続匏添
加法いずれであ぀おもよい。
The proportion of these metal oxides is 10g of a substance containing at least one component of magnesium halide.
The amount ranges from 0.1 to 500 g, preferably from 1 to 100 g, and more preferably from 2 to 50 g. The thus obtained substance containing at least one component of magnesium halide is dissolved in a liquid medium containing an oxide of a metal from Groups 1 to 10 of the Peripheral Table at temperatures below 10°C, for example from -80 to 10°C, preferably from -80°C to The temperature is maintained at 0°C, more preferably between -80°C and -20°C. Next, an organic liquid compound in which magnesium halide does not dissolve is gradually added to the liquid medium maintained at 10°C or lower. The organic liquid compound used at this time is
Various saturated hydrocarbon compounds such as pentane, hexane, heptane, octane, etc. are used. As for the rate of addition of the organic liquid compound, it is desirable to add it as slowly as possible, and by adding it as slowly as possible, a solid substance with a large particle size can be precipitated. Usually, a solution 1 containing a substance containing at least one component of magnesium halide
50 g or more, for example 50 to 5000 g, preferably 500 to 5000 g, of an organic liquid compound in which magnesium halide does not dissolve is added over 10 minutes or more, preferably 1 hour or more, for example 1 to 10 hours. As for the addition rate, it is desirable that the amount of organic liquid compound added per minute to solution 1 is 50 g or less, preferably 10 g or less, and most preferably 5 g or less. The addition method is not particularly limited and may be either a continuous addition method or a continuous addition method.

かくしお析出しお埗られる固䜓物質のうち、粒
埄の小さなものは奜たしくなく、本発明の目的ず
するオレフむン重合觊媒甚担䜓ずしおは5Ό以䞊
のものが䜿甚される。特に10Ό以䞊のものが奜た
しい。
Among the solid substances thus precipitated, those with small particle sizes are not preferred, and those with a particle size of 5 Όm or more are used as the carrier for the olefin polymerization catalyst targeted by the present invention. Particularly preferred is one of 10Ό or more.

このようにしお調補された本発明の担䜓にチタ
ン化合物およびたたはバナゞりム化合物を担持
せしめ、有機金属化合物ず組合せおオレフむンの
重合あるいは共重合甚の觊媒ずしお甚いる。
A titanium compound and/or a vanadium compound is supported on the carrier of the present invention thus prepared, and used in combination with an organometallic compound as a catalyst for polymerization or copolymerization of olefin.

本発明の担䜓にチタン化合物およびたたはバ
ナゞりム化合物を担持させる方法ずしおは、䟋え
ば䞍掻性溶媒の存圚䞋あるいは䞍存圚䞋に本発明
の担䜓ずチタン化合物およびたたはバナゞりム
化合物ずを加熱䞋に接觊させるこずにより行なう
こずができ、奜たしくは溶媒の䞍存圚䞋に䞡者を
50〜300℃、奜たしくは100〜150℃に加熱するこ
ずにより行なう。反応時間はずくに限定はされな
いが、通垞は分以䞊であり、必芁ではないが長
時間接觊させるこずは差支えない。たずえば分
ないし10時間の凊理時間をあげるこずができる。
A method for supporting the titanium compound and/or vanadium compound on the carrier of the present invention includes, for example, bringing the carrier of the present invention into contact with the titanium compound and/or vanadium compound under heating in the presence or absence of an inert solvent. This can be done by combining both, preferably in the absence of a solvent.
This is carried out by heating to 50-300°C, preferably 100-150°C. Although the reaction time is not particularly limited, it is usually 5 minutes or more, and long-term contact may be allowed, although it is not necessary. For example, processing times can range from 5 minutes to 10 hours.

本発明においお䜿甚するチタン化合物および
たたはバナゞりム化合物の量は、過剰に䜿甚しお
も差支えないが通垞ハロゲン化マグネシりムに察
しお0.001〜50重量倍䜿甚できる。奜たしくは過
剰のチタン化合物およびたたはバナゞりム化合
物は混合加熱凊理埌溶媒で掗浄陀去する。反応終
了埌、末反応のチタン化合物およびたたはバナ
ゞりム化合物取り陀く手段はずくに限定されるも
のではなくチグラヌ觊媒に䞍掻性な溶媒で数回掗
浄し掗液を枛圧条件䞋で蒞発させ固䜓粉末を埗る
こずが通垞行なわれる。
Titanium compound and/or used in the present invention
Alternatively, the amount of the vanadium compound may be used in excess, but it can usually be used in an amount of 0.001 to 50 times the weight of magnesium halide. Preferably, excess titanium compound and/or vanadium compound is removed by washing with a solvent after the mixing and heating treatment. After completion of the reaction, the means for removing the terminally reacted titanium compound and/or vanadium compound is not particularly limited, and may include washing the Ziegler catalyst several times with a solvent inert to the catalyst and evaporating the washing liquid under reduced pressure to obtain a solid powder. is usually done.

たた、担持させるチタン化合物およびたたは
バナゞりム化合物の量は、生成固䜓䞭に含たれる
チタンおよびたたはバナゞりム含量が0.5〜20
重量の範囲になるように調節するのが最も奜た
しく、バランスの良いチタンおよびたたはバナ
ゞりム圓りの掻性、固䜓圓りの掻性を埗るために
は〜10重量の範囲がずくに望たしい。
In addition, the amount of the titanium compound and/or vanadium compound to be supported is such that the titanium and/or vanadium content contained in the produced solid is 0.5 to 20.
It is most preferable to adjust the amount within a range of 1 to 10% by weight, and in order to obtain well-balanced activity per titanium and/or vanadium and activity per solid, a range of 1 to 10% by weight is particularly desirable.

本発明に䜿甚されるチタン化合物およびたた
はバナゞりム化合物ずしおは、チタンおよびた
たはバナゞりムのハロゲン化物、アルコキシハロ
ゲン化物、アルコキシド、ハロゲン化酞化物等を
挙げるこずができる。チタン化合物ずしおは䟡
のチタン化合物ず䟡のチタン化合物が奜適であ
り、䟡のチタン化合物ずしおは具䜓的には䞀般
匏TiORoX4-oここでは炭玠数〜20のアル
キル基、アリヌル基たたはアラルキル基を瀺し、
はハロゲン原子を瀺す。は≊≊であ
る。で瀺されるものが奜たしく、四塩化チタン、
四臭化チタン、四ペり化チタン、モノメトキシト
リクロロチタン、ゞメトキシゞクロロチタン、ト
リメトキシモノクロロチタン、テトラメトキシチ
タン、モノ゚トキシトリクロロチタン、ゞ゚トキ
シゞクロロチタン、トリ゚トキシモノクロロチタ
ン、テトラ゚トキシチタン、モノむ゜プロポキシ
トリクロロチタン、ゞむ゜プロポキシゞクロロチ
タン、トリむ゜プロポキシモノクロロチタン、テ
トラむ゜プロポキシチタン、モノブトキシトリク
ロロチタン、ゞブトキシゞクロロチタン、モノペ
ントキシトリクロロチタン、モノプノキシトリ
クロロチタン、ゞプノキシゞクロロチタン、ト
リプノキシモノクロロチタン、テトラプノキ
シチタン等を挙げるこずができる。䟡のチタン
化合物ずしおは、四塩化チタン、四臭化チタン等
の四ハロゲン化チタンを氎玠、アルミニりム、チ
タンあるいは呚期埋〜族金属の有機金属化合
物により還元しお埗られる䞉ハロゲン化チタンが
挙げられる。たた䞀般匏TiORnX4-nここで
は炭玠数〜20のアルキル基、アリヌル基たたは
アラルキル基を瀺し、はハロゲン原子を瀺す。
はである。で瀺される䟡のハロ
ゲン化アルコキシチタンを呚期埋衚〜族金属
の有機金属化合物により還元しお埗られる䟡チ
タン化合物が挙げられる。バナゞりム化合物ずし
おは、四塩化バナゞりム、四臭化バナゞりム、四
ペり化バナゞりム、テトラ゚トキシバナゞりムの
劂き䟡のバナゞりム化合物、オキシ䞉塩化バナ
ゞりム、゚トキシゞクロルバナゞル、トリ゚トキ
シバナゞル、トリブトキシバナゞルの劂き䟡の
バナゞりム化合物、䞉塩化バナゞりム、バナゞり
ムトリ゚トキシドの劂き䟡のバナゞりム化合物
が挙げられる。
Examples of the titanium compound and/or vanadium compound used in the present invention include halides, alkoxy halides, alkoxides, and halogenated oxides of titanium and/or vanadium. Preferred titanium compounds are tetravalent titanium compounds and trivalent titanium compounds, and specific examples of tetravalent titanium compounds include the general formula Ti(OR) o X 4-o (where R is 1 carbon number) ~20 alkyl, aryl or aralkyl groups;
X represents a halogen atom. n is 0≩n≩4. ) is preferable, titanium tetrachloride,
Titanium tetrabromide, titanium tetraiodide, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxytrichlorotitanium, diethoxydichlorotitanium, triethoxymonochlorotitanium, tetraethoxytitanium, monoisopropoxy Trichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium, monopentoxytrichlorotitanium, monophenoxytrichlorotitanium, diphenoxydichlorotitanium, triphenoxytitanium Examples include cymonochlorotitanium and tetraphenoxytitanium. Examples of trivalent titanium compounds include titanium trihalides obtained by reducing titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide with hydrogen, aluminum, titanium, or organometallic compounds of group metals of the periodic table. It will be done. Also, the general formula Ti(OR) n X 4-n (where R
represents an alkyl group, aryl group or aralkyl group having 1 to 20 carbon atoms, and X represents a halogen atom.
m is 0<m<4. ) A trivalent titanium compound obtained by reducing a tetravalent alkoxy titanium halide represented by the following formula with an organometallic compound of a group metal of the periodic table is exemplified. Examples of vanadium compounds include tetravalent vanadium compounds such as vanadium tetrachloride, vanadium tetrabromide, vanadium tetraiodide, and tetraethoxyvanadium; Examples include trivalent vanadium compounds such as trivalent vanadium compounds, vanadium trichloride, and vanadium triethoxide.

本発明に甚いる有機金属化合物ずしおは、チグ
ラヌ觊媒の䞀成分ずしお知られおいる呚期埋衚第
〜族の有機金属化合物を䜿甚できるがずくに
有機アルミニりム化合物および有機亜鉛化合物が
奜たしい。具䜓的な䟋ずしおは䞀般匏R3Al、
R2AlX、RAlX2、R2AlOR、RAlORおよび
R3Al2X3の有機アルミニりム化合物ただしは
炭玠数〜20のアルキル基、アリヌル基たたはア
ラルキル基、はハロゲン原子を瀺し、は同䞀
でもたた異な぀おもよいたたは䞀般匏R2Znた
だしは炭玠数〜20のアルキル基であり二者同
䞀でもたた異な぀おいおもよいの有機亜鉛化合
物で瀺されるもので、トリ゚チルアルミニりム、
トリむ゜プロピルアルミニりム、トリむ゜ブチル
アルミニりム、トリsec−ブチルアルミニりム、
トリtert−ブチルアルミニりム、トリヘキシルア
ルミニりム、トリオクチルアルミニりム、ゞ゚チ
ルアルミニりムクロリド、ゞむ゜プロピルアルミ
ニりムクロリド、゚チルアルミニりムセスキクロ
リド、ゞ゚チル亜鉛およびこれらの混合物等があ
げられる。有機金属化合物の䜿甚量はずくに制限
はないが通垞チタン化合物およびたたはバナゞ
りム化合物に察しお0.1〜1000mol倍䜿甚するこ
ずができる。
As the organometallic compound used in the present invention, organometallic compounds of groups 1 to 10 of the periodic table, which are known as components of Ziegler's catalyst, can be used, but organoaluminum compounds and organozinc compounds are particularly preferred. Specific examples include the general formula R 3 Al,
R 2 AlX, RAlX 2 , R 2 AlOR, RAl(OR)X and
Organoaluminum compound of R 3 Al 2 2 Zn (however, R is an alkyl group having 1 to 20 carbon atoms and may be the same or different), and is represented by an organic zinc compound of triethylaluminum,
triisopropylaluminium, triisobutylaluminum, trisec-butylaluminum,
Examples include tri-tert-butylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, diisopropylaluminum chloride, ethylaluminum sesquichloride, diethylzinc, and mixtures thereof. The amount of the organometallic compound to be used is not particularly limited, but it can usually be used in an amount of 0.1 to 1000 times the amount of the titanium compound and/or vanadium compound.

本発明の觊媒を䜿甚しおのオレフむンの重合は
スラリヌ重合、溶液重合たたは気盞重合にお行う
こずができ、重合反応は通垞のチグラヌ型觊媒に
よるオレフむン重合反応ず同様にしお行なわれ
る。すなわち反応はすべお実質的に酞玠、氎など
を絶぀た状態で䞍掻性炭化氎玠の存圚䞋、あるい
は䞍存圚䞋で行なわれる。オレフむンの重合条件
は枩床は20ないし120℃、奜たしくは50ないし100
℃であり、圧力は垞圧ないし70Kgcm2、奜たしく
はないし60Kgcm2である。分子量の調節は重合
枩床、觊媒のモル比などの重合条件を倉えるこず
によ぀おもある皋床調節できるが重合系䞭に氎玠
を添加するこずにより効果的に行なわれる。もち
ろん、本発明の觊媒を甚いお、氎玠濃床、重合枩
床など重合条件の異な぀た段階ないしそれ以䞊
の倚段階の重合反応も䜕ら支障なく実斜できる。
Olefin polymerization using the catalyst of the present invention can be carried out by slurry polymerization, solution polymerization or gas phase polymerization, and the polymerization reaction is carried out in the same manner as the olefin polymerization reaction using a conventional Ziegler type catalyst. That is, all reactions are carried out in the presence or absence of inert hydrocarbons, substantially deprived of oxygen, water, and the like. Polymerization conditions for olefin include temperature of 20 to 120°C, preferably 50 to 100°C.
℃, and the pressure is normal pressure to 70 kg/cm 2 , preferably 2 to 60 kg/cm 2 . Although the molecular weight can be adjusted to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, it is effectively carried out by adding hydrogen to the polymerization system. Of course, using the catalyst of the present invention, a two-step or more multi-step polymerization reaction with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problem.

本発明の方法はチグラヌ觊媒で重合できるすべ
おのオレフむンの重合に適甚可胜であり、特に炭
玠数〜12のα−オレフむンが奜たしく、たずえ
ば゚チレン、プロピレン、−ブテン、ヘキセン
−、−メチルペンテン−、オクテン−な
どのα−オレフむン類の単独重合および゚チレン
ずプロピレン、゚チレンず−ブテン、゚テレン
ずヘキセン−、゚チレンず−メチルペンテン
−、゚チレンずオクテン−、プロピレンず
−ブテンの共重合などに奜適に䜿甚される。
The method of the present invention is applicable to the polymerization of all olefins that can be polymerized with Ziegler's catalyst, and α-olefins having 2 to 12 carbon atoms are particularly preferred, such as ethylene, propylene, 1-butene, hexene-1,4-methyl Homopolymerization of α-olefins such as pentene-1 and octene-1, and ethylene and propylene, ethylene and 1-butene, ethylene and hexene-1, ethylene and 4-methylpentene-1, ethylene and octene-1, propylene and 1
- Suitable for use in copolymerization of butene, etc.

たた、ポリオレフむンの改質を目的ずする堎合
のゞ゚ンずの共重合も奜たしく行われる。この時
䜿甚されるゞ゚ン化合物の䟋ずしおはブタゞ゚
ン、−ヘキサゞ゚ン、゚チリデンノルボル
ネン、ゞシクロペンタゞ゚ン等を挙げるこずがで
きる。
Copolymerization with dienes is also preferably carried out for the purpose of modifying polyolefins. Examples of diene compounds used at this time include butadiene, 1,4-hexadiene, ethylidenenorbornene, dicyclopentadiene, and the like.

以䞋に実斜䟋をのべるが、これらは本発明を実
斜するための説明甚のものであ぀お本発明はこれ
らに制限されるものではない。
Examples will be described below, but these are for illustrative purposes to carry out the present invention, and the present invention is not limited thereto.

実斜䟋  (a) 担䜓の調補 無氎の塩化マグネシりム10、アルミニりム
トリ゚トキシドおよび二酞化ケむ玠10を
テトラヒドロフラン200ml䞭に加え、100℃で
時間加熱した埌、−60℃に保ち、ヘキサン200ml
を撹拌䞋に30分かけお埐々に添加しお固䜓物質
を析出させた。次に、䞊柄み液を陀去したの
ち、枛圧䞋に100℃で時間也燥を行い、平均
粒埄60Όの固䜓坊䜓を埗た。
Example 1 (a) Preparation of carrier 10 g of anhydrous magnesium chloride, 5 g of aluminum triethoxide and 10 g of silicon dioxide were added to 200 ml of tetrahydrofuran and heated at 100°C for 10 g.
After heating for an hour, keep at -60℃ and 200ml of hexane.
was gradually added over 30 minutes with stirring to precipitate a solid material. Next, after removing the supernatant liquid, drying was performed at 100° C. for 1 hour under reduced pressure to obtain a solid carrier having an average particle size of 60 Όm.

(b) 觊媒成分の補造 前蚘の固䜓担䜓および四塩化チタン0.5
mlをヘキサン40ml䞭に加え、ヘキサン還流䞋に
時間反応を行぀た。次に䞊柄み液を陀去した
のち、掗液に四塩化チタンが怜出されなくなる
たでヘキサンで掗浄を繰り返し、固䜓觊媒成分
を埗た。固䜓觊媒成分圓たりには22mgのチ
タンが含たれおいた。
(b) Production of catalyst components 2 g of the above solid support and 0.5 titanium tetrachloride
ml was added to 40 ml of hexane, and the reaction was carried out for 1 hour under reflux of hexane. Next, after removing the supernatant liquid, washing was repeated with hexane until no titanium tetrachloride was detected in the washing liquid, thereby obtaining a solid catalyst component. Each gram of solid catalyst component contained 22 mg of titanium.

(c) 重合 気盞重合装眮ずしおはステンレス補オヌトク
レヌブを甚い、ブロワヌ、流量調節噚および也
匏サむクロンでルヌプを぀くり、オヌトクレヌ
ブはゞダケツトに枩氎を流すこずにより枩床を
調節した。
(c) Polymerization A stainless steel autoclave was used as the gas phase polymerization apparatus, a loop was created with a blower, a flow rate regulator, and a dry cyclone, and the temperature of the autoclave was adjusted by flowing hot water through the jacket.

80℃に調節したオヌトクレヌブに䞊蚘固䜓觊
媒成分を50mghr、およびトリ゚チルアルミニ
りムをmolhrの速床で䟛絊し、たた、オ
ヌトクレヌブ気盞䞭のブテン−゚チレン比
モル比を0.28に、さらに氎玠を党圧の15
ずなるように調敎しながら各々のガスを䟛絊
し、か぀ブロワヌにより系内のガスを埪環させ
お党圧を10Kgcm2・に保぀ようにしお重合を
行な぀た。生成した゚チレン共重合䜓はかさ比
重0.40、メルトむンデツクスMI0.85、密床
0.9211であ぀た。
The above solid catalyst component was fed to an autoclave adjusted to 80°C at a rate of 50 mg/hr and triethylaluminum at a rate of 5 mmol/hr, and the butene-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was set to 0.28. Furthermore, hydrogen is added to 15% of the total pressure.
Polymerization was carried out by supplying each gas while adjusting the following, and by circulating the gas in the system using a blower to maintain the total pressure at 10 kg/cm 2 ·G. The produced ethylene copolymer has a bulk specific gravity of 0.40, a melt index (MI) of 0.85, and a density
It was 0.9211.

たた觊媒掻性は341000共重合䜓Tiず
きわめお高掻性であ぀た。
Furthermore, the catalyst activity was extremely high at 341,000 g copolymer/g Ti.

10時間の連続運転ののちオヌトクレヌブを解
攟し、内郚の点怜を行な぀たが内壁および撹拌
機には党くポリマヌは付着しおおらず、きれい
であ぀た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

埗られたポリマヌ粉末の平均粒埄は1000Όず
倧きく、たた、粒埄200Ό以䞋の埮粉は0.2ず
少なか぀た。
The average particle size of the obtained polymer powder was as large as 1000Ό, and the amount of fine powder with a particle size of 200Ό or less was as low as 0.2%.

実斜䟋  無氎塩化マグネシりム10、アルミニりムトリ
゚トキシド、テトラ゚トキシシランおよ
び二酞化ケむ玠10を酢酞゚チル200ml䞭に加え
100℃で時間加熱した埌、−30℃に保ち、ヘキサ
ン200mlを撹拌䞋に30分かけお埐々に添加しお固
䜓物質を析出させ、平均粒埄55Όの固䜓担䜓を埗
た。
Example 2 10 g of anhydrous magnesium chloride, 3 g of aluminum triethoxide, 2 g of tetraethoxysilane and 10 g of silicon dioxide were added to 200 ml of ethyl acetate.
After heating at 100°C for 1 hour, the temperature was maintained at -30°C, and 200ml of hexane was gradually added over 30 minutes with stirring to precipitate a solid substance, thereby obtaining a solid support with an average particle size of 55Ό.

䞊蚘固䜓担䜓を甚いるこずを陀いおは、実斜䟋
ず同様の方法で固䜓觊媒成分チタン担持量
25mgを補造し、実斜䟋ず同様の方法で゚
チレンずブテン−の共重合を行぀た。
The solid catalyst component (amount of titanium supported:
25 mg/g) and copolymerization of ethylene and butene-1 was carried out in the same manner as in Example 1.

生成共重合䜓は、かさ比重0.42、メルトむンデ
ツクス0.72、密床0.9206であり、たた觊媒掻性は
322500共重合䜓Tiずきわめお高掻性であ
぀た。
The resulting copolymer has a bulk specific gravity of 0.42, a melt index of 0.72, a density of 0.9206, and a catalytic activity of
The activity was extremely high at 322,500g copolymer/gTi.

埗られたポリマヌ粉末の平均粒埄は950Όず倧
きく、たた粒埄200Ό以䞋の埮粉は0.3ず少なか
぀た。
The average particle size of the obtained polymer powder was as large as 950Ό, and the amount of fine powder with a particle size of 200Ό or less was as low as 0.3%.

実斜䟋  無氎塩化マグネシりム10、アルミニりムトリ
゚トキシド、ゞ゚トキシゞクロロシラン
、テトラブトキシシランおよびアルミナ15
を酢酞゚チル200ml䞭に加え100℃で時間加熱
した埌、−30℃に保ち、ヘキサン200mlを撹拌䞋に
30分かけお埐々に添加しお固䜓物質を析出させ、
平均粒埄50Όの固䜓担䜓を埗た。
Example 3 10 g of anhydrous magnesium chloride, 2 g of aluminum triethoxide, 2 g of diethoxydichlorosilane
g, 1 g of tetrabutoxysilane and 15 alumina
Add g to 200ml of ethyl acetate and heat at 100℃ for 1 hour, then keep at -30℃ and add 200ml of hexane with stirring.
Add gradually over 30 minutes to precipitate solid material,
A solid support with an average particle size of 50Ό was obtained.

䞊蚘固䜓担䜓を甚いるこずを陀いおは、実斜䟋
ず同様の方法で固䜓觊媒成分チタン担持量
18mgを補造し、実斜䟋ず同様の方法で゚
チレンずブテン−の共重合を行぀た。
The solid catalyst component (amount of titanium supported:
Copolymerization of ethylene and butene-1 was carried out in the same manner as in Example 1.

生成共重合䜓は、かさ比重0.41、メルトむンデ
ツクス0.95、密床0.9200であり、たた觊媒掻性は
311000共重合䜓Tiずきわめお高掻性であ
぀た。
The resulting copolymer has a bulk specific gravity of 0.41, a melt index of 0.95, a density of 0.9200, and a catalytic activity of
The activity was extremely high at 311,000g copolymer/gTi.

埗られたポリマヌ粉末の平均粒埄は900Όず倧
きく、たた粒埄200Ό以䞋の埮粉は0.4ず少なか
぀た。
The average particle size of the obtained polymer powder was as large as 900Ό, and the amount of fine powder with a particle size of 200Ό or less was as low as 0.4%.

実斜䟋  アルミナ15を含有した酢酞゚チル200ml䞭に、
無氎塩化マグネシりム10およびテトラアセトキ
シシランを加え、100℃で時間加熱した埌、−30
℃に保ち、ヘキサン200mlを撹拌䞋に30分かけお
埐々に添加しお固䜓物質を析出させ、平均粒埄
53Όの固䜓担䜓を埗た。
Example 4 In 200 ml of ethyl acetate containing 15 g of alumina,
After adding 10 g of anhydrous magnesium chloride and tetraacetoxysilane and heating at 100°C for 1 hour, -30
℃, 200 ml of hexane was gradually added over 30 minutes under stirring to precipitate the solid material, and the average particle size was determined.
A solid support of 53Ό was obtained.

䞊蚘固䜓担䜓を甚いるこずを陀いおは、実斜䟋
ず同様の方法で固䜓觊媒成分チタン担持量
13mgを補造し、実斜䟋ず同様の方法で゚
チレンずブテン−の共重合を行぀た。
The solid catalyst component (amount of titanium supported:
Copolymerization of ethylene and butene-1 was carried out in the same manner as in Example 1.

生成共重合䜓は、かさ比重0.39、メルトむンデ
ツクス1.1、密床0.9216であり、たた觊媒掻性は
323000共重合䜓Tiずきわめお高掻性であ
぀た。
The resulting copolymer has a bulk specific gravity of 0.39, a melt index of 1.1, a density of 0.9216, and a catalytic activity of
The activity was extremely high at 323,000g copolymer/gTi.

埗られたポリマヌ粉末の平均粒埄は950Όず倧
きく、たた粒埄200Ό以䞋の埮粉は0.3ず少なか
぀た。
The average particle size of the obtained polymer powder was as large as 950Ό, and the amount of fine powder with a particle size of 200Ό or less was as low as 0.3%.

実斜䟋  無氎塩化マグネシりム10、テトラむ゜プロポ
キシチタン、四塩化ケむ玠および
MgO・Al2O315をゞ゚チル゚ヌテル200ml䞭に
加え、100℃で時間加熱した埌、−30℃に保ち、
ヘキサン200mlを撹拌䞋に30分かけお埐々に添加
しお、固䜓物質を析出させ、平均粒埄45Όの固䜓
担䜓を埗た。
Example 5 10 g of anhydrous magnesium chloride, 4 g of tetraisopropoxy titanium, 2 g of silicon tetrachloride, and
Add 15 g of MgO.Al 2 O 3 to 200 ml of diethyl ether, heat at 100°C for 1 hour, then keep at -30°C,
200 ml of hexane was gradually added over 30 minutes with stirring to precipitate a solid substance, yielding a solid support with an average particle size of 45 ÎŒm.

䞊蚘固䜓担䜓を甚い四塩化チタンの代わりにテ
トラむ゜プロポキシチタンを䜿甚するこずを陀い
おは、実斜䟋ず同様の方法で固䜓觊媒成分チ
タン担持量15mgを補造し、実斜䟋ず同
様の方法で゚チレンずブテン−の共重合を行぀
た。
A solid catalyst component (titanium supported amount: 15 mg/g) was produced in the same manner as in Example 1, except for using the above solid carrier and using tetraisopropoxy titanium instead of titanium tetrachloride. Copolymerization of ethylene and butene-1 was carried out in the same manner as in Example 1.

生成共重合䜓は、かさ比重0.41、メルトむンデ
ツクス1.0、密床0.9219であり、たた觊媒掻性は
207000共重合䜓Tiずきわめお高掻性であ
぀た。
The resulting copolymer has a bulk specific gravity of 0.41, a melt index of 1.0, a density of 0.9219, and a catalytic activity of
The activity was extremely high at 207,000g copolymer/gTi.

埗られたポリマヌ粉末の平均粒埄は870Όず倧
きく、たた粒埄200Ό以䞋の埮粉は0.5ず少なか
぀た。
The average particle size of the obtained polymer powder was as large as 870Ό, and the amount of fine powder with a particle size of 200Ό or less was as low as 0.5%.

実斜䟋  無氎塩化マグネシりム10および塩化アルミニ
りム・ゞ゚チル゚ヌテラヌト錯䜓を窒玠䞋で
16時間ボヌルミリングを行぀た。埗られた反応生
成物をテトラヒドロフラン200ml䞭に溶解させた。
この溶液に二酞化ケむ玠10を加えた埌、−70℃
に保ち、ヘキサン200mlを撹拌䞋に30分かけお
埐々に添加しお固䜓物質を析出させ、平均粒埄
46Όの固䜓担䜓を埗た。
Example 6 10 g of anhydrous magnesium chloride and 1 g of aluminum chloride diethyl etherate complex were added under nitrogen.
Ball milling took place for 16 hours. The resulting reaction product was dissolved in 200 ml of tetrahydrofuran.
After adding 10 g of silicon dioxide to this solution, -70℃
200 ml of hexane was gradually added over 30 minutes under stirring to precipitate the solid material, and the average particle size was
A 46Ό solid support was obtained.

䞊蚘固䜓担䜓を甚いるこずを陀いおは、実斜䟋
ず同様の方法で固䜓觊媒成分チタン担持量
21mgを補造し、実斜䟋ず同様の方法で゚
チレンずブテン−の共重合を行぀た。
The solid catalyst component (amount of titanium supported:
21 mg/g) and copolymerization of ethylene and butene-1 was carried out in the same manner as in Example 1.

生成共重合䜓は、かさ比重0.43、メルトむンデ
ツクス0.80、密床0.9223であり、たた觊媒掻性は
190000共重合䜓gTiずきわめお高掻性であ぀
た。
The resulting copolymer has a bulk specific gravity of 0.43, a melt index of 0.80, a density of 0.9223, and a catalytic activity of
The activity was extremely high at 190,000g copolymer/gTi.

埗られたポリマヌ粉末の平均粒埄は890Όず倧
きく、たた粒埄200Ό以䞋の埮粉は0.5ず少なか
぀た。
The average particle size of the obtained polymer powder was as large as 890Ό, and the amount of fine powder with a particle size of 200Ό or less was as low as 0.5%.

実斜䟋  無氎の塩化マグネシりム10、アルミニりムト
リ゚トキシドおよび二酞化ケむ玠10をアセ
トン300ml䞭に加え、100℃で時間加熱した埌、
−60℃に保ち、ヘキサン300mlを撹拌䞋に30分か
けお埐々に添加しお固䜓物質を析出させた。次に
䞊柄み液を陀去したのち、枛圧䞋に100℃で時
間也燥を行い、平均粒埄60Όの固䜓担䜓を埗た。
Example 7 10 g of anhydrous magnesium chloride, 5 g of aluminum triethoxide and 10 g of silicon dioxide were added to 300 ml of acetone, heated at 100° C. for 1 hour, and then
While maintaining the temperature at −60° C., 300 ml of hexane was gradually added over 30 minutes with stirring to precipitate a solid substance. Next, after removing the supernatant liquid, drying was performed at 100° C. for 1 hour under reduced pressure to obtain a solid carrier with an average particle size of 60 ÎŒm.

䞊蚘固䜓担䜓を甚いるこずを陀いおは、実斜䟋
ず同様の方法で固䜓觊媒成分チタン担持量
24mgを補造し、実斜䟋ず同様の方法で゚
チレンずブテン−の共重合を行぀た。
The solid catalyst component (amount of titanium supported:
24 mg/g) and copolymerization of ethylene and butene-1 was carried out in the same manner as in Example 1.

生成共重合䜓は、かさ比重0.39、メルトむンデ
ツクス0.90、密床0.9222であり、たた觊媒掻性は
315000共重合䜓Tiずきわめお高掻性であ
぀た。
The resulting copolymer has a bulk specific gravity of 0.39, a melt index of 0.90, a density of 0.9222, and a catalytic activity of
The activity was extremely high at 315,000g copolymer/gTi.

埗られたポリマヌ粉末の平均粒埄は950Όず倧
きく、たた粒埄20Ό以䞋の埮粉は0.2ず少なか぀
た。
The average particle size of the obtained polymer powder was as large as 950Ό, and the amount of fine powder with a particle size of 20Ό or less was as low as 0.2%.

実斜䟋  実斜䟋ず同様な固䜓觊媒成分および装眮を甚
い、80℃に調節したオヌトクレヌブに固䜓觊媒成
分を50mghr、およびトリ゚チルアルミニりムを
ミリモルhrの速床で䟛絊し、たた、プロピレ
ンを䟛絊し、か぀ブロワヌにより系内のガスを埪
環させお党圧を10Kgcm2・に保぀ようにしお重
合を行぀た。生成したプロピレン重合䜓はかさ比
重0.44ず粒子性状にすぐれ、たた、觊媒掻性は
118000重合䜓Tiずきわめお高掻性であ぀
た。
Example 8 Using the same solid catalyst component and equipment as in Example 1, the solid catalyst component was supplied at a rate of 50 mg/hr and triethylaluminum at a rate of 5 mmol/hr to an autoclave adjusted to 80°C, and propylene was supplied at a rate of 5 mmol/hr. The polymerization was carried out while maintaining the total pressure at 10 kg/cm 2 ·G by circulating the gas in the system using a blower. The produced propylene polymer has excellent particle properties with a bulk specific gravity of 0.44, and has a high catalytic activity.
The activity was extremely high at 118,000g polymer/gTi.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明のオレフむン重合觊媒担䜓の補
造方法及びそれを含むオレフむン重合觊媒の補造
方法を瀺すフロヌチダヌト図である。
FIG. 1 is a flowchart showing a method for producing an olefin polymerization catalyst carrier and a method for producing an olefin polymerization catalyst containing the same according to the present invention.

Claims (1)

【特蚱請求の範囲】  ゞハロゲン化マグネシりムを少なくずも䞀成
分ずする物質を溶解し、か぀呚期埋衚第〜族
金属の酞化物を含有するアルコヌル類、有機酞゚
ステル類、ケトン類および゚ヌテル類から遞ばれ
る少なくずも䞀皮の液䜓媒䜓を10℃以䞋の枩床に
保ち、該液䜓媒䜓に飜和炭化氎玠を埐々に添加す
るこずにより粒埄5Ό以䞊の物質からなる担䜓を
析出させるこずを特城ずするオレフむン重合觊媒
甚担䜓の補造方法。  呚期埋衚第〜族金属の酞化物がMgO、
CaO、ZnO、BaO、SiO2、SnO2、Al2O3、
MgO・Al2O3、SiO2・Al2O3、MgO・SiO2、
MgO・CaO・Al2O3、およびAl2O3・CaOからな
る矀から遞ばれる少なくずも䞀皮類の酞化物であ
るこずを特城ずする特蚱請求の範囲第項に蚘茉
の補造方法。
[Scope of Claims] 1. A substance selected from alcohols, organic acid esters, ketones, and ethers that dissolves a substance containing at least one component of magnesium dihalide and contains an oxide of a metal of Groups 1 to 1 of the periodic table. An olefin polymerization catalyst characterized in that at least one liquid medium is maintained at a temperature of 10°C or less, and a saturated hydrocarbon is gradually added to the liquid medium to precipitate a carrier consisting of a substance with a particle size of 5Ό or more. Method for manufacturing carrier. 2 The oxides of metals from groups ~ of the periodic table are MgO,
CaO, ZnO, BaO, SiO2 , SnO2 , Al2O3 ,
MgO・Al 2 O 3 , SiO 2・Al 2 O 3 , MgO・SiO 2 ,
The manufacturing method according to claim 1, characterized in that the oxide is at least one type of oxide selected from the group consisting of MgO.CaO.Al 2 O 3 and Al 2 O 3.CaO.
JP17082081A 1981-10-27 1981-10-27 Carrier for olefin polymerization catalyst Granted JPS5874704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17082081A JPS5874704A (en) 1981-10-27 1981-10-27 Carrier for olefin polymerization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17082081A JPS5874704A (en) 1981-10-27 1981-10-27 Carrier for olefin polymerization catalyst

Publications (2)

Publication Number Publication Date
JPS5874704A JPS5874704A (en) 1983-05-06
JPH0135843B2 true JPH0135843B2 (en) 1989-07-27

Family

ID=15911932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17082081A Granted JPS5874704A (en) 1981-10-27 1981-10-27 Carrier for olefin polymerization catalyst

Country Status (1)

Country Link
JP (1) JPS5874704A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109507A (en) * 1981-12-23 1983-06-29 Toho Titanium Co Ltd Production of catalytic component for olefin polymerization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965999A (en) * 1972-09-13 1974-06-26
JPS5238590A (en) * 1975-09-18 1977-03-25 Montedison Spa Catalyst component for polymerizing olefin into spherical form

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965999A (en) * 1972-09-13 1974-06-26
JPS5238590A (en) * 1975-09-18 1977-03-25 Montedison Spa Catalyst component for polymerizing olefin into spherical form

Also Published As

Publication number Publication date
JPS5874704A (en) 1983-05-06

Similar Documents

Publication Publication Date Title
JPH072798B2 (en) Solid catalyst component for olefin polymerization
JPH0641234A (en) Vapor phase polymerization of olefin
JPS6411651B2 (en)
JPH06192329A (en) Carrier for alpha-olefin polymerization catalyst and production
JP2566829B2 (en) Method for producing polyolefin
JPS62104811A (en) Production of alpha-olefin polymer
EP0237293B1 (en) Process for preparing polyolefins
JP2814310B2 (en) Method for producing polyolefin
JPH0135845B2 (en)
JPH0135843B2 (en)
JPH059215A (en) Production of polyolefin
JPS647086B2 (en)
JPS6412286B2 (en)
JP2717723B2 (en) Method for producing polyolefin
JPH023406B2 (en)
JPS6412289B2 (en)
JPH0135844B2 (en)
JPH0617400B2 (en) Olefin Polymerization Method
JPS647085B2 (en)
JP2535922B2 (en) Method for producing stereoregular polyolefin
JPH06102696B2 (en) Method for producing α-olefin polymer
JPH0149287B2 (en)
JPS6339605B2 (en)
JPS6363561B2 (en)
JPS6412285B2 (en)