JPH0135769B2 - - Google Patents

Info

Publication number
JPH0135769B2
JPH0135769B2 JP56157808A JP15780881A JPH0135769B2 JP H0135769 B2 JPH0135769 B2 JP H0135769B2 JP 56157808 A JP56157808 A JP 56157808A JP 15780881 A JP15780881 A JP 15780881A JP H0135769 B2 JPH0135769 B2 JP H0135769B2
Authority
JP
Japan
Prior art keywords
graphite
mgf
stage
intercalation compound
ternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56157808A
Other languages
Japanese (ja)
Other versions
JPS5860608A (en
Inventor
Nobuatsu Watanabe
Takeshi Nakajima
Masayuki Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP56157808A priority Critical patent/JPS5860608A/en
Priority to US06/394,530 priority patent/US4477374A/en
Priority to GB08219748A priority patent/GB2107296B/en
Priority to IT22633/82A priority patent/IT1152305B/en
Priority to FR8213413A priority patent/FR2513981B1/en
Priority to NL8203056A priority patent/NL8203056A/en
Priority to DE3235596A priority patent/DE3235596A1/en
Publication of JPS5860608A publication Critical patent/JPS5860608A/en
Priority to NL8603066A priority patent/NL8603066A/en
Publication of JPH0135769B2 publication Critical patent/JPH0135769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な黒鉛層間化合物に関する。更に
詳細には、本発明は湿気に対して安定であるのみ
ならず優れた電導性を有する黒鉛とフツ化マグネ
シウム及びフツ素との3成分系黒鉛層間化合物に
関する。本発明は又、黒鉛とフツ化マグネシウム
及びフツ素との3成分系黒鉛層間化合物の製造方
法に関する。本発明は更に又、黒鉛とフツ化マグ
ネシウム及びフツ素との3成分系黒鉛層間化合物
から成る電導材料に関する。 近年、フツ化物の黒鉛層間化合物が、その秀れ
た電導性の故に注目されつつある。しかし従来よ
り知られている黒鉛層間化合物の殆どは湿気に対
して不安定であり、従つて空気中に放置するとた
だちに分解する。ゆえに実用に供することが不可
能である。これまで、黒鉛層間化合物を作る侵入
物質として用いられているフツ化物は融点及び沸
点ともに低く、室温ではガス状又は液状である。
ゆえに、一般に侵入物質としてのフツ化物は比較
的低温で高い蒸気圧を持つことが必要であるとい
うことが通念となつていた。そのため、高い融点
乃至沸点を有するフツ化物の黒鉛層間化合物の製
造の試みはなされなかつた。事実、高温でも蒸気
圧を示さないフツ化マグネシウムと黒鉛との2成
分系黒鉛層間化合物は生成しない。 本発明者らは、優れた電導性を有するばかりで
なく湿気に対して極めて安定な、実用に供し得る
フツ化物の黒鉛層間化合物を開発すべく鋭意研究
を重ね、その結果、式CxF(MgF2yで表わされ
る黒鉛とフツ化マグネシウム及びフツ素との3成
分系黒鉛層間化合物(以下、しばしば単に“3成
分系黒鉛層間化合物”と略記する)が原料黒鉛に
対して100%の収率で得られることを見出した。
得られた3成分系黒鉛層間化合物は湿気に対して
安定であるのみならず耐熱性も高く、又優れた電
導性を有する。本発明の3成分系黒鉛層間化合物
の電導度は原料黒鉛に較べ一桁高い優れたもので
ある。本発明はこのような新しい知見に基づき成
されたものである。 したがつて本発明の目的は、湿気に対して安定
であるのみならず耐熱性も高く、又優れた電導性
を有する新規な3成分系黒鉛層間化合物を提供す
ることにある。 本発明の他の一つの目的は、この新規な3成分
系黒鉛層間化合物の製造方法を提供することにあ
る。 本発明の他の更に一つの目的は、上述の如き新
規な3成分系黒鉛層間化合物から成る新規な電導
材料を提供することにある。 上記及び他の諸目的、本発明の諸特徴及び諸利
益は、以下に述べる詳細な説明及び添付の図面か
ら明かになろう。 本発明の一つの態様によれば、式CxF(MgF2
yで表わされる黒鉛とフツ化マグネシウム及びフ
ツ素との3成分系黒鉛層間化合物が提供される。 一般に、式CxF(MgF2yで表わされる3成分
系黒鉛層間化合物は、原料黒鉛をフツ素雰囲気下
に0〜400℃の温度で少なくとも該黒鉛に重量増
加を起こさせる時間MgF2と接触せしめることに
よつて得られる。 以下、本発明を更に詳細に説明する。 式CxF(MgF2yで表わされる本発明の3成分
系黒鉛層間化合物には、第1ステージ、第2ステ
ージ、第3ステージ又は第4ステージもしくはそ
れ以上のステージ数のものがある。3成分系黒鉛
層間化合物のステージ数は、X線回折から得られ
る周期距離(Ic)を測定することにより求められ
る。得られた3成分系黒鉛層間化合物のステージ
数は反応温度及び時間のみならず原料黒鉛の結晶
性及び厚み(C軸方向)にも影響される。第1ス
テージのものは、x=約3.0〜20、y=約0.03〜
0.20である。第2ステージのものは、x=約11〜
50、y=約0.01〜0.15である。第3ステージ以上
のものは、x=約30〜60、y=10-4〜10-2であ
る。一般に式CxF(MgF2yで表わされる3成分
系黒鉛層間化合物において、x=3〜100及びy
=約0.0001〜0.20である。第1ステージ、第2ス
テージ、第3ステージ及び第4ステージもしくは
それ以上のステージ数の化合物のそれぞれについ
て、xとyの値は上述の範囲内で、反応温度及び
時間のみならず、原料黒鉛の結晶性及びC軸方向
の厚みによつて変化する。 本発明に用いられる黒鉛原材料としては、天然
黒鉛のほか、石油コークスなどを加熱処理して得
られる人造黒鉛も用いることができる。粒径は臨
界的ではなくフレーク状あるいは粉状で、約20〜
50メツシユ又は50〜400メツシユ又は400メツシユ
以上(タイラー)のものを用いることができる。
又、ブロツク状の黒鉛が望まれる場合には、メタ
ン、プロパン、ベンゼン及びないし又はアセチレ
ンなどの炭化水素を約2100℃に加熱された基材
(一般に人造黒鉛から成る)に接触させて炭化水
素を熱分解し、得られた黒鉛材料を基材上に沈積
し、その後沈積した黒鉛材料を熱処理して得られ
たものを用いることができる。その場合、熱処理
温度に応じて黒鉛化度の異なつたブロツク状黒鉛
が得られる。約2400℃で熱処理を行なうと、パイ
ロテイツクカーボンが得られる。約2600℃〜3000
℃で熱処理を行なうとパイロテイツクカーボンに
比べて高い結晶性を有するパイロテイツクグラフ
アイトが得られる。 原料黒鉛をフツ素雰囲気下に0〜400℃の温度
で少なくとも該黒鉛に重量増加を起こさせる時間
MgF2と接触せしめることによつて行なわれる、
式CxF(MgF2yで表わされる3成分系黒鉛層間
化合物の製造に関し、望ましい反応条件は下記の
通りである。フツ素圧は特に臨界的ではないが、
通常0.5〜10atm位が用いられる。反応温度は0
〜400℃、好ましくは15〜350℃である。前述した
ように、望ましいx値及びy値を有する、式Cx
F(MgF2yで表わされる化合物を得るための反応
時間は、原料黒鉛の結晶性及びC軸方向の厚み、
且つ反応温度とに依存する。しかし、反応時間は
一般に1時間〜10日、更に一般には1日〜8日で
ある。原料黒鉛のMgF2に対する重量比は3成分
系黒鉛層間化合物の望ましいステージ数に依存す
るが、通常1:0.4〜1:10である。反応条件に
関して注目すべきことは、反応系の温度が100℃
より高い温度まで上げられた場合、いつたん加熱
した反応系を冷却する過程において、温度が100
℃を下回つた時点で黒鉛に重量増加が認められる
という点である。原料黒鉛のC軸方向の厚みが1
mmより厚い場合、生成物は第1ステージ化合物で
あるより第2ステージもしくは第1ステージより
むしろ高いステージ数の化合物である場合が多
い。第1ステージ化合物を得るためには、通常、
厚み(C軸方向)が0.8mmまでの黒鉛材料を用い
るのが好ましい。 反応終了後、反応系の温度が室温より高い温度
にまで上げられていた場合、反応系の温度は室温
にまで下げられる。未反応のMgF2はシーブかピ
ンセツトによつて分離され、式CxF(MgF2y
表わされる所望の3成分系黒鉛層間化合物が得ら
れる。 CxF(MgF2yの周期距離(Ic)は、第1ステー
ジのものについては9.3〜9.4Å、第2ステージの
ものについては12.7〜12.8Å、第3ステージのも
のについては16.0〜16.1Å、そして第4ステージ
のものについては19.4〜19.5Åである。式Cx
(MgF2yで表わされる3成分系黒鉛層間化合物の
場合、第1、第2、第3及び第4ステージ化合物
は全て黒色を呈する。式CxF(MgF2yで表わさ
れる本発明による3成分系黒鉛層間化合物は全て
湿気に対して非常に安定であるため、数週間空気
中に放置したり、1晩水に浸しておいてもそのX
線回折図には何の変化も見られない。 式CxF(MgF2yで表わされる本発明の3成分
系黒鉛層間化合物のいくつかの例について、元素
分析及びX線回折を行なつた結果を第1表に示
す。
The present invention relates to a novel graphite intercalation compound. More particularly, the present invention relates to a ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine, which is not only stable against moisture but also has excellent electrical conductivity. The present invention also relates to a method for producing a ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine. The present invention also relates to a conductive material comprising a ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine. In recent years, fluoride graphite intercalation compounds have been attracting attention because of their excellent electrical conductivity. However, most of the conventionally known graphite intercalation compounds are unstable to moisture and therefore decompose immediately when left in air. Therefore, it is impossible to put it into practical use. Fluorides, which have been used as intercalating substances to create graphite intercalation compounds, have low melting and boiling points and are gaseous or liquid at room temperature.
Therefore, it has been generally accepted that fluoride as an interstitial substance needs to have a relatively low temperature and high vapor pressure. Therefore, no attempt has been made to produce a fluoride graphite intercalation compound having a high melting point or boiling point. In fact, a binary graphite intercalation compound of magnesium fluoride and graphite that exhibits no vapor pressure even at high temperatures is not produced. The present inventors have conducted extensive research to develop a practically usable fluoride graphite intercalation compound that not only has excellent conductivity but is also extremely stable against moisture, and as a result, has the formula C x F ( MgF 2 ) A ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine (hereinafter often simply referred to as "ternary graphite intercalation compound") represented by y has a yield of 100% based on the raw material graphite. I found that it can be obtained at a lower rate.
The obtained three-component graphite intercalation compound is not only stable against moisture but also has high heat resistance and excellent electrical conductivity. The electrical conductivity of the ternary graphite intercalation compound of the present invention is one order of magnitude higher than that of the raw material graphite. The present invention has been made based on such new knowledge. Therefore, an object of the present invention is to provide a novel three-component graphite intercalation compound that is not only stable against moisture but also has high heat resistance and excellent electrical conductivity. Another object of the present invention is to provide a method for producing this novel ternary graphite intercalation compound. Another object of the present invention is to provide a novel electrically conductive material comprising the novel ternary graphite intercalation compound as described above. These and other objects, features and benefits of the present invention will become apparent from the following detailed description and accompanying drawings. According to one embodiment of the invention, the formula C x F(MgF 2 )
A ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine represented by y is provided. Generally, the ternary graphite intercalation compound represented by the formula C Obtained by contact. The present invention will be explained in more detail below. The ternary graphite intercalation compound of the present invention represented by the formula C x F (MgF 2 ) y may have a first stage, a second stage, a third stage, a fourth stage, or more stages. The number of stages of the ternary graphite intercalation compound is determined by measuring the periodic distance (I c ) obtained from X-ray diffraction. The number of stages of the obtained ternary graphite intercalation compound is influenced not only by the reaction temperature and time but also by the crystallinity and thickness (in the C-axis direction) of the raw graphite. For the first stage, x = approximately 3.0 ~ 20, y = approximately 0.03 ~
It is 0.20. For the second stage, x = approximately 11~
50, y=about 0.01-0.15. For the third stage and above, x=approximately 30 to 60 and y=10 -4 to 10 -2 . Generally, in a ternary graphite intercalation compound represented by the formula C x F (MgF 2 ) y , x = 3 to 100 and y
= approximately 0.0001 to 0.20. For each of the first stage, second stage, third stage and fourth stage or higher stage compounds, the values of x and y are within the ranges mentioned above, as well as the reaction temperature and time. It varies depending on the crystallinity and the thickness in the C-axis direction. As the graphite raw material used in the present invention, in addition to natural graphite, artificial graphite obtained by heat treating petroleum coke or the like can also be used. Particle size is not critical, flake-like or powder-like, approximately 20 to
50 meshes, 50 to 400 meshes, or more than 400 meshes (Tyler) can be used.
Alternatively, if block-shaped graphite is desired, hydrocarbons such as methane, propane, benzene, and/or acetylene are brought into contact with a substrate (generally made of artificial graphite) heated to about 2100°C. The graphite material obtained by thermal decomposition is deposited on a base material, and then the deposited graphite material is heat-treated, which can be used. In that case, block-shaped graphite having different degrees of graphitization can be obtained depending on the heat treatment temperature. Pyrotechnic carbon is obtained by heat treatment at approximately 2400°C. Approximately 2600℃~3000℃
When the heat treatment is carried out at .degree. C., pyrotechnic graphite having higher crystallinity than pyrotechnic carbon can be obtained. Raw material graphite is placed in a fluorine atmosphere at a temperature of 0 to 400°C for at least a period of time to cause the graphite to increase in weight.
carried out by contacting with MgF 2 ,
Regarding the production of a ternary graphite intercalation compound represented by the formula C x F (MgF 2 ) y , desirable reaction conditions are as follows. Fluorine pressure is not particularly critical, but
Usually about 0.5 to 10 atm is used. The reaction temperature is 0
-400°C, preferably 15-350°C. As mentioned above, the formula C x has the desired x and y values.
The reaction time to obtain the compound represented by F(MgF 2 ) y depends on the crystallinity of the raw graphite, the thickness in the C-axis direction,
It also depends on the reaction temperature. However, reaction times generally range from 1 hour to 10 days, more typically from 1 day to 8 days. The weight ratio of raw graphite to MgF 2 depends on the desired number of stages of the ternary graphite intercalation compound, but is usually 1:0.4 to 1:10. What should be noted about the reaction conditions is that the temperature of the reaction system is 100℃.
If the temperature is raised to a higher temperature, the temperature will rise to 100% in the process of cooling the heated reaction system.
The point is that an increase in weight of graphite is observed when the temperature drops below ℃. The thickness of the raw graphite in the C-axis direction is 1
When thicker than mm, the product is more likely to be a second stage than a first stage compound or a higher stage number compound rather than the first stage. To obtain first stage compounds, usually
It is preferable to use graphite material having a thickness (in the C-axis direction) of up to 0.8 mm. After the reaction is completed, if the temperature of the reaction system has been raised to a temperature higher than room temperature, the temperature of the reaction system is lowered to room temperature. Unreacted MgF 2 is separated using a sieve or tweezers to obtain the desired ternary graphite intercalation compound having the formula C x F (MgF 2 ) y . The periodic distance (I c ) of C x F(MgF 2 ) y is 9.3 to 9.4 Å for the first stage, 12.7 to 12.8 Å for the second stage, and 16.0 to 16.0 for the third stage. 16.1 Å, and 19.4-19.5 Å for the fourth stage. Formula C x F
In the case of a ternary graphite intercalation compound represented by (MgF 2 ) y , the first, second, third and fourth stage compounds all exhibit black color. All of the ternary graphite intercalation compounds according to the invention with the formula C Even if it is X
No change is seen in the line diffraction pattern. Table 1 shows the results of elemental analysis and X-ray diffraction of some examples of the ternary graphite intercalation compound of the present invention represented by the formula C x F (MgF 2 ) y .

【表】 第1図には、C9F(MgF20.08及びC5F(MgF20.1
のX線回折パターン(Cu−K〓)を、(C2F)o71重
量%及び(CF)o29重量%から成るフツ化黒鉛の
それと対比して示す。上述の3成分系黒鉛層間化
合物のX線回折パターンを考察すると、ブロード
な回折線が時々観察される。第1図に示される
CxF(MgF2yで表わされる化合物のうちの二種
についての周期距離(Ic)は、(00l)回折線から
計算され、それぞれ9.37Å及び9.34Åである。 第2図にはC7F(MgF20.14及びC9F(MgF20.08
のDTA曲線(昇温速度20℃/分にて、空気中に
て測定)を、(C2F)o59重量%及び(CF)o41重量
%から成るフツ化黒鉛のそれと対比して示す。
C9F(MgF20.08及びC7F(MgF20.14のそれぞれに
ついて、第2図に示されるように、発熱のブロー
ドなピークが90℃の附近で最初に開始する。又こ
れらの点において、重量減少が熱重量測定法によ
り認められる。第2図においては、残存黒鉛の酸
化反応に由来するピークが830℃の附近に観察さ
れる。フツ化黒鉛については、573℃と697℃の2
点において発熱ピークが観察されるが、それらは
それぞれフツ化黒鉛の分解と残存黒鉛の酸化反応
に対応するものである。 ESCAは、ホスト黒鉛と侵入物質の間の化学結
合に関する貴重な情報を得るための最も有用な手
段の一つである。 第3図には、第1ステージ化合物〔C7F
(MgF20.14及びC5F(MgF20.10〕とCxF(MgF2y
の第2ステージ化合物のESCAスペクトルを、
(C2F)o59重量%及び(CF)o41重量%から成るフ
ツ化黒鉛のそれと対比して示す。第1ステージ化
合物については、コンタミネーシヨン炭素の1sピ
ークが284eVのところに観察されるのに対し、
289eVのところに強いピークが観察される。この
ピークの位置はフツ化黒鉛のそれと殆ど同じであ
るが、これは侵入したフツ素と黒鉛の炭素原子の
化学的相互作用が、炭素とフツ素の共有結合を有
するフツ化黒鉛のそれに類似していることを示す
ものである。上述のピークの他に、第1ステージ
化合物については、C−C共有結合に由来する強
いピークが284eVのところに観察される。このこ
とは、フツ素と何の相互作用も持たない炭素原子
が多数存在することを意味する。第2ステージ化
合物については、284eVのところにC−C結合に
由来するピークが観察され、286eVから291eVの
範囲においてブロードなシヨルダーが観察され
る。ESCA考察において、各原子の内殼から発す
る光電子の運動エネルギーが測定される。固体に
おける光電子の平均自由行程はせいぜい数十Å程
度であるため、黒鉛層間化合物においては僅かな
数層の黒鉛層が分析されるにすぎない。よつて、
化合物の表面附近の化学結合がESCAスペクトル
においては強く出てくる。分析した化学組成物の
ピークの強さを比較すると、第1ステージ化合物
の表面附近には少量のフツ化黒鉛が生成されてい
ることが分る。 式CxF(MgF2yで表わされる3成分系黒鉛層
間化合物の生成については下記のことが考えられ
る。気体種(MgF2n′・(F2o′が次式によつて表
わされるMgF2とフツ素との反応によつて最初に
生成する。 m′MgF2+n′F2(MgF2n′・(F2o′ 上述の気体種は次に黒鉛を侵入する。温度上昇
と共に化学的平衡は左に移動し、気体状の錯化合
物は高温において分解する。特願昭第56−157807
号明細書に記載されているように、侵入物質とし
てAlF3を用い、式CxF(AlF3yで表わされる黒鉛
層間化合物を生成する場合にも、気体種(AlF3
n・(F2oが式mAlF3+nF2(AlF3n・(F2o
よつて表わされるAlF3とフツ素との反応によつ
て最初に生成される。実験結果より、(MgF2n
′・(F2o′は(AlF3n・(F2oに比べ広い温度範

においてより高い安定性と蒸気圧を有することが
分る。加えて、(MgF2n′・(F2o′のサイズは
(AlF3n・(F2oよりも小さいと考えられる。な
ぜならば、CxF(MgF2yの周期距離はCx
(AlF3yのそれに比べて約0.1Åだけ小さいからで
ある。又、ハロゲン化アルミニウムは気相の中に
2量体を形成しやすい。これらの理由から、
MgF2及びF2はAlF3及びF2よりもより簡単に黒鉛
に侵入させ得ると考えられる。 上述の如く、本発明による3成分系黒鉛層間化
合物を数週間空気中に放置し、その後、X線回折
法による分析を行なつても、空気中に放置しなか
つたものと殆ど同じX線回折パターンが得られ
る。本発明による3成分系黒鉛層間化合物は、空
気中に放置するとただちに分解してしまう従来の
フツ化物−黒鉛層間化合物とは異なり、湿気に対
して安定である。 次に本発明による3成分系黒鉛層間化合物のa
軸方向(黒鉛層に対して平行な方向)における電
導度について説明する。一般に当業者には、第2
ステージ化合物と第3ステージ化合物との間には
実質上電導度における差異はないこと、及び第2
ステージ、第3ステージ化合物の電導度は他のス
テージの化合物のそれに比べて優れていることが
知られている〔デイー・ビランド、エー・エロル
ド及びエフ・フオーゲル、シンセテイツクメタル
ス第3号(1981)、第279〜288頁(D.Billand、A.
He〓rold and F.Vogel、SYNTHETIC
METALS、(1981)279−288)を参照〕。パ
イロテイツク グラフアイト(日本カーボン社
製)及びC38F(MgF20.03(第1ステージと第2
ステージの混合ステージ化合物)のa軸方向の比
抵抗は、マテイリアルス サイエンス アンド
エンジニアリング、第31号(1977)第255〜259頁
〔Materials Science and Engineering、31
(1977)255−259〕に記載の4点DC−ブリツジ法
によつて測定した。 その結果を第2表に示す。 第2表 化合物 比低抗(25℃)、(Ω・cm) パイロテイツクカーボン 3.5×10-5 C38F(MgF20.03 2×10-6 第2表から明らかなように、C38F(MgF20.03
の比抵抗は原料のパイロテイツクカーボンに較べ
て一桁低い。本発明による3成分系黒鉛層間化合
物は湿気に対して安定であるのみならず高い電導
度を有する。本発明による3成分系黒鉛層間化合
物は銅箔に包みこんだり、エポキシなどに含入せ
しめることによつて電導材料として用いることが
できる。本発明による3成分系黒鉛層間化合物は
電導材料として有用であるのみならず、各種の有
機反応における触媒としても用いることができ
る。 次に本発明の実施例を挙げるが、本発明の範囲
は実施例に限定されるものではない。 実施例 1 マダガスカル産フレーク状天然黒鉛(297〜
840μm)0.3gと粉末状MgF20.6gを混合し、Ni
製反応管に入れ真空排気する。これに温度25℃で
フツ素ガスを導入して1気圧とし、30分間放置後
300℃まで4℃/分の昇温速度で昇温し、45時間
反応させた。次に反応管を25℃まで冷却した。フ
ツ素ガスをチツ素で置換した。反応終了後、生成
物と未反応のMgF2を297μmのシーブを用いて分
離し、黒色の黒鉛層間化合物C7F(MgF20.10を得
た。 実施例 2 マダガスカル産フレーク状天然黒鉛(297〜
840μm)0.3gと粉末状MgF20.6gを混合し、Ni
製反応管に入れ真空排気する。これに温度25℃で
フツ素ガスを導入して1気圧とし、320℃まで4
℃/分の昇温速度で昇温し、58時間反応させた。
次に反応管を25℃まで冷却した。フツ素ガスをチ
ツ素で置換した。反応終了後、生成物と未反応の
MgF2を297μmのシーブを用いて分離し、黒色の
黒鉛層間化合物C9F(MgF20.08を得た。 実施例 3 パイロリテイツク グラフアイト(日本カーボ
ン社製、C軸方向厚み0.671mm、幅4.445mm及び長
さ5.012mm)42.9mgと粉末状MgF2100gを混合し、
Ni製反応管に入れ真空排気する。これに温度25
℃でフツ素ガスを導入して1気圧とし、反応系を
その温度で8日間反応させた。フツ素ガスをチツ
素で置換した。反応終了後、生成物と未反応の
MgF2をシーブを用いて分離し、黒色の黒鉛層間
化合物C11F(MgF20.05を得た。生成物の比抵抗
は4×10-6Ω・cmであつたが、原料パイロリテイ
ツクカーボンの比抵抗は3.5×10-5Ω・cmであつ
た。生成物は第1ステージのものであつた。 実施例 4 パイロリテイツク グラフアイト(日本カーボ
ン社製、C軸方向厚み0.928mm、幅4.457mm及び長
さ5.125mm)51.0mgと粉末状MgF2100gを混合し、
Ni製反応管に入れ真空排気する。反応系を昇温
速度4℃/minで232℃まで昇温し、その温度で
フツ素ガスを導入して1気圧とした。反応系をそ
の温度で8日間反応させた。フツ素ガスをチツ素
で置換した。反応終了後、生成物と未反応の
MgF2をシーブを用いて分離し、黒色の黒鉛層間
化合物C38F(MgF20.03を得た。生成物の比抵抗
は2×10-6Ω・cmであつたが、原料パイロリテイ
ツクカーボンの比抵抗は3.5×10-5Ω・cmであつ
た。生成物は第1ステージと第2ステージとの混
合ステージのものであつた。 実施例 5 パイロリテイツク グラフアイト(日本カーボ
ン社製、C軸方向厚み0.950mm、幅5.081mm及び長
さ5.237mm)66.7mgと粉末状MgF2100gを混合し、
Ni製反応管に入れ真空排気する。これに温度25
℃でフツ素ガスを導入して1気圧とし、反応系を
その温度で2日間反応させた。フツ素ガスをチツ
素で置換した。反応終了後、生成物と未反応の
MgF2をシーブを用いて分離し、黒色の黒鉛層間
化合物C30F(MgF20.19を得た。生成物の比抵抗
は2×10-6Ω・cmであつたが、原料パイロリテイ
ツクカーボンの比抵抗は3.5×10-5Ω・cmであつ
た。生成物は第1ステージ、第2ステージ、第3
ステージ及び第4ステージの混合ステージのもの
であつた。 実施例 6 パイロリテイツク グラフアイト(日本カーボ
ン社製、C軸方向厚み0.950mm、幅5.427mm及び長
さ6.175mm)80.4mgと粉末状MgF2100gを混合し、
Ni製反応管に入れ真空排気する。これに温度25
℃でフツ素ガスを導入して1気圧とし、反応系を
その温度で2日間反応させた。フツ素ガスをチツ
素で置換した。反応終了後、生成物と未反応の
MgF2をシーブを用いて分離し、黒色の黒鉛層間
化合物C32F(MgF20.17を得た。生成物の比抵抗
は9×10-7Ω・cmであつたが、原料パイロリテイ
ツクカーボンの比抵抗は3.5×10-5Ω・cmであつ
た。生成物は第1ステージ、第2ステージ、第3
ステージ及び第4ステージの混合ステージのもの
であつた。 ところでここに記載のESCA考察は、デユポン
社製650B電子分光計を用いて、Mg−K〓線で行つ
たものである。DTAについては、空気中にてα
−Al2O3を対照として行なつた。Alの分析は原子
吸収法によつて行なつた。 上述の実施例より、本発明が式CxF(MgF2y
で表わされ、優れた特性を有する新規な黒鉛層間
化合物及びその製造方法を提供するものであるこ
とが明らかである。又、本発明の諸特徴及び諸利
益は前述した詳細な説明において挙げられた多く
の実験データより明らかである。
[Table] Figure 1 shows C 9 F (MgF 2 ) 0.08 and C 5 F (MgF 2 ) 0.1.
The X-ray diffraction pattern of 0 (Cu-K) is shown in contrast to that of fluorinated graphite consisting of 71% by weight of (C 2 F) o and 29% by weight of (CF) o . When considering the X-ray diffraction pattern of the above-mentioned ternary graphite intercalation compound, broad diffraction lines are sometimes observed. Shown in Figure 1
The periodic distances (I c ) for two of the compounds represented by C x F (MgF 2 ) y are calculated from the (00l) diffraction line and are 9.37 Å and 9.34 Å, respectively. Figure 2 shows C 7 F (MgF 2 ) 0.14 and C 9 F (MgF 2 ) 0.08.
The DTA curve (measured in air at a heating rate of 20°C/min) is shown in comparison to that of fluorinated graphite consisting of 59% by weight of (C 2 F) o and 41% by weight of (CF) o . .
For C 9 F(MgF 2 ) 0.08 and C 7 F(MgF 2 ) 0.14 , respectively, a broad exothermic peak first starts around 90° C., as shown in FIG. Also at these points a weight loss is observed by thermogravimetry. In FIG. 2, a peak derived from the oxidation reaction of residual graphite is observed around 830°C. For graphite fluoride, there are two temperatures: 573℃ and 697℃.
Exothermic peaks are observed at points, which correspond to the decomposition of fluorinated graphite and the oxidation reaction of residual graphite, respectively. ESCA is one of the most useful means to obtain valuable information about the chemical bonds between host graphite and interloping substances. Figure 3 shows the first stage compound [C 7 F
(MgF 2 ) 0.14 and C 5 F (MgF 2 ) 0.10 ] and C x F (MgF 2 ) y
The ESCA spectrum of the second stage compound of
It is shown in comparison with that of fluorinated graphite consisting of 59% by weight of (C 2 F) o and 41% by weight of (CF) o . For the first stage compounds, the 1s peak of contamination carbon is observed at 284 eV, whereas
A strong peak is observed at 289eV. The position of this peak is almost the same as that of fluorinated graphite, and this is because the chemical interaction between the penetrating fluorine and carbon atoms of graphite is similar to that of fluorinated graphite, which has a covalent bond between carbon and fluorine. This indicates that the In addition to the peaks mentioned above, for the first stage compound, a strong peak originating from the C--C covalent bond is observed at 284 eV. This means that there are many carbon atoms that have no interaction with fluorine. For the second stage compound, a peak derived from the C--C bond is observed at 284 eV, and a broad shoulder is observed in the range from 286 eV to 291 eV. In ESCA considerations, the kinetic energy of photoelectrons emitted from the inner shell of each atom is measured. Since the mean free path of photoelectrons in a solid is on the order of several tens of angstroms at most, only a few graphite layers can be analyzed in graphite intercalation compounds. Afterwards,
Chemical bonds near the surface of a compound appear strongly in the ESCA spectrum. A comparison of the peak intensities of the analyzed chemical compositions reveals that a small amount of graphite fluoride is produced near the surface of the first stage compound. Regarding the formation of the three-component graphite intercalation compound represented by the formula C x F (MgF 2 ) y , the following may be considered. The gaseous species (MgF 2 ) n ′·(F 2 ) o ′ is first generated by the reaction between MgF 2 and fluorine expressed by the following equation. m′MgF 2 +n′F 2 (MgF 2 ) n ′・(F 2 ) o ′ The above gaseous species then penetrate the graphite. As the temperature increases, the chemical equilibrium shifts to the left, and gaseous complexes decompose at high temperatures. Special application No. 56-157807
As described in the specification, when AlF 3 is used as the intercalating substance and a graphite intercalation compound having the formula C x F (AlF 3 ) y is produced, the gaseous species (AlF 3 )
n .(F 2 ) o is first produced by the reaction of AlF 3 with fluorine, represented by the formula mAlF 3 +nF 2 (AlF 3 ) n .(F 2 ) o . From the experimental results, (MgF 2 ) n
′·(F 2 ) o ′ is found to have higher stability and vapor pressure over a wide temperature range than (AlF 3 ) n ·(F 2 ) o . In addition, the size of (MgF 2 ) n ′·(F 2 ) o ′ is considered to be smaller than (AlF 3 ) n ·(F 2 ) o . Because the periodic distance of C x F (MgF 2 ) y is C x F
This is because it is smaller by about 0.1 Å compared to that of (AlF 3 ) y . Furthermore, aluminum halides tend to form dimers in the gas phase. because of these reasons,
It is believed that MgF 2 and F 2 can penetrate graphite more easily than AlF 3 and F 2 . As mentioned above, even if the ternary graphite intercalation compound according to the present invention is left in the air for several weeks and then analyzed by X-ray diffraction, the X-ray diffraction result is almost the same as that obtained when it was not left in the air. A pattern is obtained. The ternary graphite intercalation compound according to the present invention is stable against moisture, unlike conventional fluoride-graphite intercalation compounds which decompose immediately when left in air. Next, a of the ternary graphite intercalation compound according to the present invention.
The electrical conductivity in the axial direction (direction parallel to the graphite layer) will be explained. Generally, those skilled in the art will understand that the second
that there is virtually no difference in conductivity between the stage compound and the third stage compound;
It is known that the conductivity of stage and third stage compounds is superior to that of other stage compounds [D. Billand, A. Herold, and F. Fogel, Synthetic Metals No. 3 (1981 ), pp. 279-288 (D. Billand, A.
He〓rold and F.Vogel, SYNTHETIC
METALS, 3 (1981) 279-288). Pyrotics Graphite (manufactured by Nippon Carbon Co., Ltd.) and C 38 F (MgF 2 ) 0.03 (1st stage and 2nd stage)
The specific resistance in the a-axis direction of the mixed stage compound) is determined by Materials Science and
Engineering, No. 31 (1977), pp. 255-259 [Materials Science and Engineering, 31
(1977) 255-259] by the four-point DC-Bridge method. The results are shown in Table 2. Table 2 Compound Specification Low Resistance (25℃), (Ω・cm) Pyrotake Carbon 3.5×10 -5 C 38 F (MgF 2 ) 0.03 2×10 -6 As is clear from Table 2, C 38 F( MgF2 ) 0.03
The specific resistance of the material is one order of magnitude lower than that of the raw material, pyrotechnic carbon. The ternary graphite intercalation compound according to the invention is not only stable against moisture but also has high electrical conductivity. The ternary graphite intercalation compound according to the present invention can be used as a conductive material by wrapping it in copper foil or incorporating it into epoxy or the like. The ternary graphite intercalation compound according to the present invention is not only useful as a conductive material, but also can be used as a catalyst in various organic reactions. Next, examples of the present invention will be described, but the scope of the present invention is not limited to the examples. Example 1 Flaky natural graphite from Madagascar (297~
840 μm) and 0.6 g of powdered MgF 2 were mixed.
Place in a prepared reaction tube and evacuate. Fluorine gas was introduced into this at a temperature of 25℃ to create a pressure of 1 atm, and after leaving it for 30 minutes.
The temperature was raised to 300°C at a rate of 4°C/min, and the reaction was allowed to proceed for 45 hours. The reaction tube was then cooled to 25°C. Fluorine gas was replaced with nitrogen. After the reaction was completed, the product and unreacted MgF 2 were separated using a 297 μm sieve to obtain a black graphite intercalation compound C 7 F (MgF 2 ) 0.10 . Example 2 Flaky natural graphite from Madagascar (297~
840 μm) and 0.6 g of powdered MgF 2 were mixed.
Place in a prepared reaction tube and evacuate. Fluorine gas was introduced into this at a temperature of 25°C to create a pressure of 1 atmosphere, and the temperature was increased to 320°C.
The temperature was raised at a heating rate of °C/min, and the reaction was carried out for 58 hours.
The reaction tube was then cooled to 25°C. Fluorine gas was replaced with nitrogen. After the reaction is complete, the product and unreacted
MgF 2 was separated using a 297 μm sieve to obtain a black graphite intercalation compound C 9 F (MgF 2 ) 0.08 . Example 3 42.9 mg of pyrolytic graphite (manufactured by Nippon Carbon Co., Ltd., thickness in the C-axis direction 0.671 mm, width 4.445 mm, and length 5.012 mm) and 100 g of powdered MgF 2 were mixed,
Place in a Ni reaction tube and evacuate. This has a temperature of 25
Fluorine gas was introduced at 0.degree. C. to create a pressure of 1 atm, and the reaction system was allowed to react at that temperature for 8 days. Fluorine gas was replaced with nitrogen. After the reaction is complete, the product and unreacted
MgF 2 was separated using a sieve to obtain a black graphite intercalation compound C 11 F (MgF 2 ) 0.05 . The specific resistance of the product was 4×10 -6 Ω·cm, while the specific resistance of the raw material pyrolytic carbon was 3.5×10 −5 Ω·cm. The product was from the first stage. Example 4 51.0 mg of pyrolytic graphite (manufactured by Nippon Carbon Co., Ltd., thickness in the C-axis direction 0.928 mm, width 4.457 mm, and length 5.125 mm) and 100 g of powdered MgF 2 were mixed,
Place in a Ni reaction tube and evacuate. The reaction system was heated to 232°C at a heating rate of 4°C/min, and at that temperature fluorine gas was introduced to bring the pressure to 1 atmosphere. The reaction system was allowed to react at that temperature for 8 days. Fluorine gas was replaced with nitrogen. After the reaction is complete, the product and unreacted
MgF 2 was separated using a sieve to obtain a black graphite intercalation compound C 38 F (MgF 2 ) 0.03 . The specific resistance of the product was 2×10 -6 Ω·cm, while that of the raw material pyrolytic carbon was 3.5×10 −5 Ω·cm. The product was of a mixed stage of the first stage and the second stage. Example 5 66.7 mg of pyrolytic graphite (manufactured by Nippon Carbon Co., Ltd., thickness in the C-axis direction 0.950 mm, width 5.081 mm, and length 5.237 mm) and 100 g of powdered MgF 2 were mixed,
Place in a Ni reaction tube and evacuate. This has a temperature of 25
Fluorine gas was introduced at 0.degree. C. to create a pressure of 1 atmosphere, and the reaction system was allowed to react at that temperature for 2 days. Fluorine gas was replaced with nitrogen. After the reaction is complete, the product and unreacted
MgF 2 was separated using a sieve to obtain a black graphite intercalation compound C 30 F (MgF 2 ) 0.19 . The specific resistance of the product was 2×10 -6 Ω·cm, while that of the raw material pyrolytic carbon was 3.5×10 −5 Ω·cm. The products are first stage, second stage, third stage
It was a mixed stage of stage and fourth stage. Example 6 Mix 80.4 mg of pyrolytic graphite (manufactured by Nippon Carbon Co., Ltd., thickness in the C-axis direction 0.950 mm, width 5.427 mm, and length 6.175 mm) and 100 g of powdered MgF 2 .
Place in a Ni reaction tube and evacuate. This has a temperature of 25
Fluorine gas was introduced at a temperature of 1 atm, and the reaction system was allowed to react at that temperature for 2 days. Fluorine gas was replaced with nitrogen. After the reaction is complete, the product and unreacted
MgF 2 was separated using a sieve to obtain a black graphite intercalation compound C 32 F (MgF 2 ) 0.17 . The specific resistance of the product was 9×10 -7 Ω·cm, while the specific resistance of the raw material pyrolytic carbon was 3.5×10 -5 Ω·cm. The products are 1st stage, 2nd stage, 3rd stage
It was a mixed stage of stage and fourth stage. By the way, the ESCA study described here was conducted using the Mg-K line using a DuPont 650B electron spectrometer. Regarding DTA, α in the air
-Al2O3 was used as a control. Analysis of Al was performed by atomic absorption method. From the above examples, it is clear that the present invention has the formula C x F(MgF 2 ) y
It is clear that the present invention provides a novel graphite intercalation compound having excellent properties and a method for producing the same. The features and benefits of the present invention are also apparent from the extensive experimental data set forth in the foregoing detailed description.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明による3成分系黒鉛層間化合物
の一例であるC9F(MgF20.08及びC5F(MgF20.10
のX線回折パターンをフツ化黒鉛のそれと対比し
て示す。第2図に本発明による3成分系黒鉛層間
化合物の他の例であるC7F(MgF20.14及びC9F
(MgF20.08のDTA曲線をフツ化黒鉛のそれと対
比して示す。第3図にフツ化金属としてMgF2
それぞれ含有する本発明の第1ステージ及び第2
ステージ化合物のESCAスペクトルをフツ化黒鉛
のそれと対比して示す。
FIG. 1 shows examples of ternary graphite intercalation compounds according to the present invention, C 9 F (MgF 2 ) 0.08 and C 5 F (MgF 2 ) 0.10.
The X-ray diffraction pattern of fluorinated graphite is shown in comparison with that of graphite fluoride. Figure 2 shows other examples of ternary graphite intercalation compounds according to the present invention, C 7 F (MgF 2 ) 0.14 and C 9 F.
The DTA curve of (MgF 2 ) 0.08 is shown in comparison with that of graphite fluoride. FIG. 3 shows the first stage and second stage of the present invention, each containing MgF 2 as the metal fluoride.
The ESCA spectrum of the stage compound is shown in comparison with that of graphite fluoride.

Claims (1)

【特許請求の範囲】 1 式CxF(MgF2yで表わされる黒鉛とフツ化
マグネシウム及びフツ素との3成分系黒鉛層間化
合物。 2 xが約3〜100でyが約0.0001〜0.20である
ことを特徴とする特許請求の範囲第1項に記載の
3成分系黒鉛層間化合物。 3 該3成分系黒鉛層間化合物が、第1ステージ
化合物、第2ステージ化合物、第3ステージ化合
物及び第4ステージ化合物より成る群から選ばれ
た少なくとも2種より成る混合ステージ化合物で
あることを特徴とする特許請求の範囲第1項に記
載の3成分系黒鉛層間化合物。 4 原料黒鉛をフツ素雰囲気下に0〜400℃の温
度で少なくとも該黒鉛に重量増加を起こさせる時
間MgF2と接触せしめることを特徴とする式Cx
(MgF2yで表わされる黒鉛とフツ化マグネシウム
及びフツ素との3成分系黒鉛層間化合物の製造方
法。 5 原料黒鉛とフツ化マグネシウムの重量比が
1:0.4〜1:10であることを特徴とする特許請
求の範囲第4項に記載の方法。 6 温度が15〜350℃であることを特徴とする特
許請求の範囲第4項に記載の方法。 7 フツ素雰囲気のフツ素圧が0.5〜10atmであ
ることを特徴とする特許請求の範囲第4項に記載
の方法。 8 式CxF(MgF2yで表わされる黒鉛とフツ化
マグネシウム及びフツ素との3成分系黒鉛層間化
合物より成る電導材料。
[Claims] 1. A ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine represented by the formula C x F (MgF 2 ) y . 2. The ternary graphite intercalation compound according to claim 1, wherein x is about 3 to 100 and y is about 0.0001 to 0.20. 3. The ternary graphite intercalation compound is a mixed stage compound consisting of at least two types selected from the group consisting of a first stage compound, a second stage compound, a third stage compound and a fourth stage compound. A ternary graphite intercalation compound according to claim 1. 4 A formula C x F characterized in that raw graphite is brought into contact with MgF 2 in a fluorine atmosphere at a temperature of 0 to 400°C for at least a period of time to cause the graphite to increase in weight.
(MgF 2 ) A method for producing a ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine, represented by y . 5. The method according to claim 4, wherein the weight ratio of raw material graphite to magnesium fluoride is 1:0.4 to 1:10. 6. The method according to claim 4, wherein the temperature is 15 to 350°C. 7. The method according to claim 4, wherein the fluorine pressure of the fluorine atmosphere is 0.5 to 10 atm. 8 A conductive material made of a ternary graphite intercalation compound of graphite, magnesium fluoride, and fluorine represented by the formula C x F (MgF 2 ) y .
JP56157808A 1981-10-03 1981-10-03 Interlaminar compound of magnesium fluoride and fluorine in graphite and its preparation Granted JPS5860608A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP56157808A JPS5860608A (en) 1981-10-03 1981-10-03 Interlaminar compound of magnesium fluoride and fluorine in graphite and its preparation
US06/394,530 US4477374A (en) 1981-10-03 1982-07-02 Ternary intercalation compound of a graphite with a metal fluoride and fluorine, a process for producing the same, and an electrically conductive material comprising the ternary intercalation compound
GB08219748A GB2107296B (en) 1981-10-03 1982-07-08 A ternary intercalation compound of graphite with a metal fluoride and fluorine a process for producing the same and an electrically conductive material comprising the ternary intercalation compound
IT22633/82A IT1152305B (en) 1981-10-03 1982-07-29 GRAPHITE INTERCALAR TERNARY COMPOUND WITH A METALLIC FLUORIDE AND FLUOR, PROCEDURE FOR ITS PRODUCTION AND ELECTRICALLY CONDUCTING MATERIAL INCLUDING THE INTERCALAR TERNARY COMPOUND
FR8213413A FR2513981B1 (en) 1981-10-03 1982-07-30 TERNARY COMPOUND OF INTERCALATION OF A GRAPHITE WITH A FLUORIDE OF A METAL AND FLUOR, METHOD FOR THE PRODUCTION THEREOF AND ELECTRICALLY CONDUCTIVE MATERIAL CONTAINING THE SAME
NL8203056A NL8203056A (en) 1981-10-03 1982-07-30 NEW INTERCALAR JOINT OF GRAPHITE.
DE3235596A DE3235596A1 (en) 1981-10-03 1982-09-25 TERNAERE STORAGE LINK, METHOD FOR THEIR PRODUCTION AND ELECTRICALLY CONDUCTIVE MATERIAL, CONTAINING THE LINK
NL8603066A NL8603066A (en) 1981-10-03 1986-12-01 NEW INTERCALATION JOINTS OF GRAPHITE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157808A JPS5860608A (en) 1981-10-03 1981-10-03 Interlaminar compound of magnesium fluoride and fluorine in graphite and its preparation

Publications (2)

Publication Number Publication Date
JPS5860608A JPS5860608A (en) 1983-04-11
JPH0135769B2 true JPH0135769B2 (en) 1989-07-27

Family

ID=15657733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157808A Granted JPS5860608A (en) 1981-10-03 1981-10-03 Interlaminar compound of magnesium fluoride and fluorine in graphite and its preparation

Country Status (1)

Country Link
JP (1) JPS5860608A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598792B2 (en) * 1987-08-27 1997-04-09 日機装 株式会社 Conductive ink

Also Published As

Publication number Publication date
JPS5860608A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
WO1996022314A1 (en) An acetylenic carbon allotrope
JPH0677458B2 (en) Battery active material
JPH0413289B2 (en)
US4477374A (en) Ternary intercalation compound of a graphite with a metal fluoride and fluorine, a process for producing the same, and an electrically conductive material comprising the ternary intercalation compound
US4515709A (en) Ternary intercalation compound of a graphite with an alkali metal fluoride and fluorine, a process for producing the same, and an electrically conductive material comprising the ternary intercalation compound
JP2608515B2 (en) Fluoride pitch
US4128499A (en) Lewis acid-fluorine compounds of carbon
JPH0135769B2 (en)
JPH0135768B2 (en)
Fujimoto et al. New fluorine-carbon compound prepared by the direct fluorination of mesophase pitch
JP3010532B2 (en) Liquid fluorocarbon and method for producing the same
KR102529546B1 (en) Producing method of graphene using organic compound having low molecular weight
US4950814A (en) Liquid fluorocarbon and a method for producing the same
JPS63295412A (en) Novel graphite intralaminar compound and production thereof
Kumar et al. Structure, Composition, and Functionalization of MXenes
Konarev et al. Molecular complexes of C 60 with tetrasulfur tetranitride
JPH0362791B2 (en)
JPH05116904A (en) Production of interlayer compound
CA1156246A (en) Pyrolysis of aromatic compounds and resultant products
JPH0986915A (en) Production of iron-carbon complex ferromagnetic fine particle
JP2000026985A (en) Production of carbon material
JPS63295411A (en) Graphite intralaminar compound
JP2000247618A (en) Production of carbon material
JPS63295410A (en) Graphite intralaminar compound
JPH02153812A (en) Graphite interlaminar compound into which two kinds or more of metal halides are simultaneously inserted and production thereof