JPH0135538Y2 - - Google Patents

Info

Publication number
JPH0135538Y2
JPH0135538Y2 JP5510284U JP5510284U JPH0135538Y2 JP H0135538 Y2 JPH0135538 Y2 JP H0135538Y2 JP 5510284 U JP5510284 U JP 5510284U JP 5510284 U JP5510284 U JP 5510284U JP H0135538 Y2 JPH0135538 Y2 JP H0135538Y2
Authority
JP
Japan
Prior art keywords
xlpe
capacitor
oil
cone
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5510284U
Other languages
Japanese (ja)
Other versions
JPS60171032U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5510284U priority Critical patent/JPS60171032U/en
Publication of JPS60171032U publication Critical patent/JPS60171032U/en
Application granted granted Critical
Publication of JPH0135538Y2 publication Critical patent/JPH0135538Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)

Description

【考案の詳細な説明】 この考案は、主として、150kV以上の、直流用
XLPEケーブルの終端部に関するものである。
[Detailed explanation of the invention] This invention is mainly used for direct current applications of 150kV or higher.
This concerns the termination of the XLPE cable.

考案の背景 直流の場合、電位分担は抵孔分圧されるので、
終端はXLPEの電界しやへい型のモールド品で作
ればよい。しかし、150kV以上の高電圧では、高
いインパルス性能が要求されるので、コンデンサ
型終端が使用されることになる。
Background of the idea In the case of direct current, the potential is divided by resistance, so
The termination can be made with an XLPE electric field shield type molded product. However, at high voltages above 150kV, high impulse performance is required, so capacitor-type terminations are used.

第1図は、従来のコンデンサ型終端の一例であ
る。10はケーブル導体、12はXLPEのケーブ
ル絶縁体、14はケーブルしやへい層である。
FIG. 1 is an example of a conventional capacitor type termination. 10 is a cable conductor, 12 is an XLPE cable insulator, and 14 is a cable hardening layer.

20がコンデンサコーンの全体、22はその絶
縁体、24は電極、26はしやへい層で、28は
絶縁油を示す。
20 is the entire capacitor cone, 22 is the insulator, 24 is the electrode, 26 is the insulation layer, and 28 is the insulating oil.

コンデンサコーン20には、絶縁体22が油浸
紙のものと、XLPEモールド品ののものとがあ
る。
The capacitor cone 20 has an insulator 22 of oil-impregnated paper and an XLPE molded product.

そのうちで、油浸紙コンデンサ型の方は、電気
的破壊強度があまり高くない。それはケーブル絶
縁体12との材質の違いのために起きるのであつ
て、第3図、第4図に示すように、油浸紙と
XLPEとでは絶縁抵抗が著しく異り、かつ上記の
ように、直流の場合は、電位分担は抵抗分担にな
るので、電位分担のアンバランスが生じ、局部的
に高電界が発生するからである。
Among these, the oil-immersed paper capacitor type does not have very high electrical breakdown strength. This occurs due to the difference in the material from the cable insulator 12, and as shown in Figures 3 and 4, oil-impregnated paper and
This is because the insulation resistance is significantly different from that of XLPE, and as mentioned above, in the case of direct current, potential sharing is resistance sharing, so an imbalance of potential sharing occurs and a high electric field is generated locally.

特に電気ストレスの強いストレスコーン部分2
7(しやへい層26に接する部分を言い、一点鎖
線で大体の範囲を示した)で、絶縁破壊が起きや
すい。
Stress cone part 2 with particularly strong electrical stress
7 (referring to the portion in contact with the insulation layer 26, the approximate range is indicated by a dashed line), dielectric breakdown is likely to occur.

これに対して、XLPEモールド型の方は、材質
がケーブル絶縁体12と同じであり、同じ絶縁抵
抗の材質でストレスコーンが形成されるので、電
圧分担のアンバランスが生ぜず、電気的性能がた
いへん良い。
On the other hand, with the XLPE mold type, the material is the same as the cable insulator 12, and the stress cone is formed of a material with the same insulation resistance, so there is no imbalance in voltage sharing and the electrical performance is improved. Very good.

ただし、電極入りコンデンサを一度でモールド
成形するのは、製造に長い日数がかかり、そのた
めにたいへんコスト高になるという短所がある。
However, molding a capacitor with electrodes all at once takes a long time to manufacture, which has the disadvantage of making the cost very high.

この考案は、上記の問題を解決し、油浸紙コン
デンサ型とXLPEモールド型との良い面だけをと
り、電気的性能が良くて、しかも製造にあまり日
数のかからないコンデンサコーンを持つ、XLPE
ケーブルの終端部の提供を目的とするものであ
る。
This invention solves the above problems, takes only the good aspects of the oil-immersed paper capacitor type and the XLPE molded type, and uses XLPE with a capacitor cone that has good electrical performance and takes less time to manufacture.
Its purpose is to provide a termination section for cables.

実施例 第2図のように、コンデンサコーン30のうち
の、ストレスコーンの部分34(電気ストレスの
強い部分)だけを、XLPEをモールドして作つた
ソリツド品で形成する。
Embodiment As shown in FIG. 2, only the stress cone portion 34 (portion with strong electrical stress) of the capacitor cone 30 is formed of a solid product made by molding XLPE.

この部分は、現地でモールドしてもよいし、ま
た、あらかじめ作つておいて、現地で挿入するよ
うにしてもよい。
This part may be molded on site, or may be prefabricated and inserted on site.

そして、端子側の部分を、絶縁体38内に電極
40を入れた油浸紙巻きコンデンサ36で形成す
る。この部分も現地で組立ててもよいし、またあ
らかじめ作つておき、かつXLPEのストレスコー
ン部分34と一体化しておいて、現地で挿入して
もよい。
The terminal side portion is formed by an oil-immersed paper-wrapped capacitor 36 in which an electrode 40 is placed within an insulator 38. This part may also be assembled on-site, or may be prefabricated and integrated with the XLPE stress cone section 34 and inserted on-site.

なお、ソリツドのXLPEからなるストレスコー
ン部34と、油浸紙からなるコンデンサ部36と
の境界部42の電界は、図のようにステツピング
状にすることにより電界は小さくなり、電気的弱
点になる心配はない。
Note that the electric field at the boundary 42 between the stress cone section 34 made of solid XLPE and the capacitor section 36 made of oil-impregnated paper is made into a stepping shape as shown in the figure, so that the electric field becomes small and becomes an electrical weak point. No worries.

試験結果 直流154kVXLPEケーブル(絶縁厚23mm、導体
サイズ1000mm2)の場合。
Test results for DC 154kV XLPE cable (insulation thickness 23mm, conductor size 1000mm2 ).

試験条件 導体温度 80℃ 課電ステツプ 50kV/1時間 ● 従来品 :直流−600kVでストレスコーン
部破壊。
Test conditions Conductor temperature: 80℃ Voltage step: 50kV/1 hour ● Conventional product: Stress cone part destroyed at -600kV DC.

● 本発明品:−900kV OK。● Invention product: -900kV OK.

(従来品は油浸紙型コンデンサコーン) なお本考案は、交流ケーブルにおける直流耐圧
の試験用終端にも適用できる。
(The conventional product is an oil-immersed paper type capacitor cone.) The present invention can also be applied to the termination of an AC cable for testing DC withstand voltage.

発明の効果 (1) 電気的の弱点となり易いストレスコーン部分
をXLPEをモールドしたソリツド品で形成して
いるので、電位分担のアンバランスが生ぜず、
上記の試験結果にみられるように、油浸紙だけ
で作つたコンデンサコーンに比べて、性能が向
上する。
Effects of the invention (1) The stress cone part, which tends to be an electrical weak point, is made of a solid product molded with XLPE, so there is no imbalance in potential distribution.
As seen in the test results above, the performance is improved compared to a capacitor cone made only from oil-impregnated paper.

(2) ストレスコーン部分の材質が、ケーブル絶縁
体と同じなので、XLPEケーブルの大きな熱膨
張、収縮に追従し、機械的な損傷を受けない。
(2) Since the stress cone is made of the same material as the cable insulator, it follows the large thermal expansion and contraction of the XLPE cable and is not subject to mechanical damage.

(3) ストレスコーン部分34の端子側の部分を油
浸紙コンデンサ36で形成しているので、全体
をXLPEのモールド品で作るのに比べて、製造
時間が短縮される。
(3) Since the terminal side portion of the stress cone portion 34 is formed from the oil-immersed paper capacitor 36, the manufacturing time is reduced compared to making the entire structure from an XLPE molded product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の説明図、第2図は本考案の
実施例の説明図、第3図はXLPEと油浸紙の絶縁
抵抗−電界特性図、第4図はXLPEと油浸紙の絶
縁抵抗−温度特性図。 12…ケーブル絶縁体、30…コンデンサコー
ン、32…しやへい層、34…ストレスコーン部
分、36…油浸紙コンデンサ、38…絶縁体、4
0…電極。
Fig. 1 is an explanatory diagram of the prior art, Fig. 2 is an explanatory diagram of the embodiment of the present invention, Fig. 3 is an insulation resistance-electric field characteristic diagram of XLPE and oil-impregnated paper, and Fig. 4 is a diagram of XLPE and oil-impregnated paper. Insulation resistance-temperature characteristic diagram. DESCRIPTION OF SYMBOLS 12... Cable insulator, 30... Capacitor cone, 32... Shrinking layer, 34... Stress cone part, 36... Oil-immersed paper capacitor, 38... Insulator, 4
0...electrode.

Claims (1)

【実用新案登録請求の範囲】 コンデンサコーンを設けたXLPEケーブルの終
端部において、 前記コンデンサコーンのうち、ケーブル側のス
トレスコーン部分をXLPEのモールド品で形成
し、端子側の部分を油浸紙コンデンサで形成した
ことを特徴とする、XLPEケーブルの終端部。
[Claim for Utility Model Registration] At the terminal end of an XLPE cable provided with a capacitor cone, the stress cone part on the cable side of the capacitor cone is formed of a molded XLPE product, and the part on the terminal side is made of an oil-immersed paper capacitor. A termination part of an XLPE cable characterized by being formed with.
JP5510284U 1984-04-14 1984-04-14 XLPE cable termination Granted JPS60171032U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5510284U JPS60171032U (en) 1984-04-14 1984-04-14 XLPE cable termination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5510284U JPS60171032U (en) 1984-04-14 1984-04-14 XLPE cable termination

Publications (2)

Publication Number Publication Date
JPS60171032U JPS60171032U (en) 1985-11-13
JPH0135538Y2 true JPH0135538Y2 (en) 1989-10-30

Family

ID=30577461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5510284U Granted JPS60171032U (en) 1984-04-14 1984-04-14 XLPE cable termination

Country Status (1)

Country Link
JP (1) JPS60171032U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173041A1 (en) 2011-06-13 2012-12-20 株式会社ジェイ・パワーシステムズ Terminal connecting section for dc cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805905B2 (en) * 1989-10-30 1998-09-30 住友電気工業株式会社 Power cable connection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173041A1 (en) 2011-06-13 2012-12-20 株式会社ジェイ・パワーシステムズ Terminal connecting section for dc cable

Also Published As

Publication number Publication date
JPS60171032U (en) 1985-11-13

Similar Documents

Publication Publication Date Title
JPH0715310Y2 (en) Terminated high voltage cable
US4370514A (en) High-voltage bushing with double-layered potential control inserts
JPH0135538Y2 (en)
KR100241295B1 (en) High voltage noise filter and magnetron device using it
US3975653A (en) Creeping discharge and partial discharge prevention means for a coil end of a rotary electric machine
JPH0365106B2 (en)
JP2019204781A (en) Solid insulation bus, and method for producing solid insulation bus
US1798367A (en) Insulator
JPS6259450B2 (en)
JPS5845143B2 (en) Cable connection
RU215571U1 (en) Coupling of the conductor with solid insulation
RU211165U1 (en) Coupling of the conductor with solid insulation
JPS605460Y2 (en) Bushing ground side shield structure
JP2548743B2 (en) Cross-linked polyethylene insulated power cable withstand voltage test method
JPH0134513Y2 (en)
JPS5929305Y2 (en) overhead power distribution line
JPH0411299Y2 (en)
JPS622754Y2 (en)
JPH076676Y2 (en) Cable terminal
JPS589476Y2 (en) Oil filled pipe busbar
JPH0130831Y2 (en)
JPS5834657Y2 (en) power cable
JPS5838747Y2 (en) insulation spacer
JPS62185Y2 (en)
JPH029459Y2 (en)