JPH0135296Y2 - - Google Patents
Info
- Publication number
- JPH0135296Y2 JPH0135296Y2 JP1983169555U JP16955583U JPH0135296Y2 JP H0135296 Y2 JPH0135296 Y2 JP H0135296Y2 JP 1983169555 U JP1983169555 U JP 1983169555U JP 16955583 U JP16955583 U JP 16955583U JP H0135296 Y2 JPH0135296 Y2 JP H0135296Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- optical
- recording
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Optical Recording Or Reproduction (AREA)
Description
【考案の詳細な説明】
本考案は光学式記録情報読取装置に関し、特に
記録情報読取用光ビームの光軸と記録媒体の記録
面との直交関係を維持するサーボ系を有する光学
式記録情報読取装置に関する。[Detailed description of the invention] The present invention relates to an optical recorded information reading device, and in particular, an optical recorded information reading device having a servo system that maintains an orthogonal relationship between the optical axis of a recorded information reading light beam and the recording surface of a recording medium. Regarding equipment.
記録情報読取用光ビームの光軸と記録媒体であ
る記録デイスクとの間のなす角が直角からずれる
と、隣接記録トラツクからの情報が漏洩していわ
ゆるクロストーク現象が生じる。このように両者
のなす角が直交関係からずれる原因としては種々
あるが、例えば記録デイスクが経時変化により傘
型となること、再生装置のデツキ部の形状変化に
よつてデイスク回転軸が傾斜すること等に起因す
るものであり、製品出荷後の問題であるところか
らクロストークの発生は不可避となる。 If the angle between the optical axis of the recorded information reading light beam and the recording disk, which is a recording medium, deviates from a right angle, information from adjacent recording tracks will leak, resulting in a so-called crosstalk phenomenon. There are various causes for the angle between the two to deviate from the orthogonal relationship; for example, the recording disk may become umbrella-shaped due to changes over time, or the disk rotation axis may become tilted due to changes in the shape of the deck of the playback device. The occurrence of crosstalk is inevitable since it is a problem that occurs after the product is shipped.
そこで、当該クロストークを電気的に検出して
光ビーム光軸と記録デイスクとの直交関係を常に
正確に維持してクロストークを軽減するサーボ系
が設けられる。かかる技術が特開昭57−186237号
公報に詳細に開示されている。本例は、CLV(定
線速度)方式により記録された記録デイスクの再
生装置に適用されるものであつて、CAV(定角速
度)方式の記録デイスクにおいては同期信号記録
区間が全記録トラツクに亘つて同一半径線上に整
列して配列されるのに対し、CLV方式のもので
は同一半径線上に整列されないという事実を利用
してクロストークを検出している。すなわち、
CLV方式における隣接トラツクの同基信号情報
の漏洩成分を検出してクロストーク量を検知し、
この量がなくなるように読取用光ビームの光軸を
傾斜させるように構成されている。 Therefore, a servo system is provided that electrically detects the crosstalk and always accurately maintains the orthogonal relationship between the optical axis of the light beam and the recording disk to reduce the crosstalk. This technique is disclosed in detail in Japanese Patent Application Laid-Open No. 186237/1983. This example is applied to a playback device for a recording disc recorded using the CLV (Constant Linear Velocity) method, and in a recording disc using the CAV (Constant Angular Velocity) method, the synchronization signal recording section extends over the entire recording track. Crosstalk is detected by utilizing the fact that in the CLV method, they are not aligned on the same radius line, whereas in the CLV method, they are arranged on the same radius line. That is,
In the CLV method, the amount of crosstalk is detected by detecting leakage components of the same basic signal information of adjacent tracks.
The optical axis of the reading light beam is tilted so that this amount is eliminated.
かかる方式では、クロストークの検出のための
電気回路が複雑で高価となること、またCLV方
式のものに限定されCAV方式については適用で
きないこと等の欠点がある。 Such a method has disadvantages such as that the electric circuit for detecting crosstalk is complicated and expensive, and is limited to the CLV method and cannot be applied to the CAV method.
他の方法として、特開昭57−179954号公報に示
された技術がある。第1図にその概略が示されて
おり、光軸1と有する記録情報読取用光ビームを
記録デイスクの記録面2上に収束せしめる対物レ
ンズ3が設けられている。一方、光軸1と記録面
2との直交関係のずれを検出すべく検出用補助ビ
ーム用光源4が設けられており、この補助ビーム
を対物レンズ3を介して記録面2へ照射し、この
反射光を再び対物レンズ3を介して一対の受光素
子5,6へ入射するように構成されている。ここ
で、記録面2が光軸1と垂直であれば、補助ビー
ムは光軸に対し対称の方向に反射され実線で示す
ように光源4と光軸1に関して対称の位置へ戻さ
れる。これに対し、記録面が一点鎖線や破線の如
く傾斜していると、補助ビームは夫々一点鎖線や
破線の如く反射される。 Another method is the technique disclosed in Japanese Unexamined Patent Publication No. 179954/1983. The system is schematically shown in FIG. 1, and is provided with an objective lens 3 having an optical axis 1 and converging a recorded information reading light beam onto a recording surface 2 of a recording disk. On the other hand, a detection auxiliary beam light source 4 is provided to detect a deviation in the orthogonal relationship between the optical axis 1 and the recording surface 2, and this auxiliary beam is irradiated onto the recording surface 2 through the objective lens 3. The reflected light is configured to enter the pair of light receiving elements 5 and 6 via the objective lens 3 again. Here, if the recording surface 2 is perpendicular to the optical axis 1, the auxiliary beam is reflected in a direction symmetrical with respect to the optical axis and returned to a position symmetrical with respect to the light source 4 and the optical axis 1, as shown by a solid line. On the other hand, if the recording surface is inclined as shown by the dashed-dotted line or the broken line, the auxiliary beams are reflected as shown by the dashed-dotted line or the broken line, respectively.
そこで、これら反射ビームに対し図示のように
受光素子5,6が設けられ、これら受光出力が差
動アンプ7に供給されて検出出力が導出される。
この検出出力が減算器8において基準信号9と減
算され、この減算出力をもつて光軸傾斜機構10
を駆動するようにして光軸と記録面との直交関係
が維持されるである。 Therefore, light receiving elements 5 and 6 are provided for these reflected beams as shown in the figure, and the light receiving outputs are supplied to a differential amplifier 7 to derive a detection output.
This detection output is subtracted from the reference signal 9 in the subtracter 8, and the optical axis tilting mechanism 10 is
The orthogonal relationship between the optical axis and the recording surface is maintained by driving the optical axis.
この技術では、対物レンズを介して平行光であ
る補助ビームを記録面へ照射しているために、以
下の欠点を有する。 This technique has the following drawbacks because the auxiliary beam, which is parallel light, is irradiated onto the recording surface through the objective lens.
先ず、フオーカスサーボ系が安定に追従してい
ない限り記録情報読取用光ビームの光軸1を記録
面に垂直にするサーボ(以下チルトサーボと称
す)系は作動できないから、フオーカスサーボが
ロツクインしてからでないとチルトサーボは下可
能であり、極端な場合には、チルトサーボのみな
らずフオーカスサーボの引込みもできない場合が
生ずる。すなわち、光軸1に平行に照射された補
助ビームが受光素子5,6上の正確な位置に反射
するためには、デイスク面がレンズの焦点に位置
しなければならず、焦点位置より遠ざかつても接
近しても補助ビームの反射光の光検出器上での照
射位置が下適当となる(図中左右にずれる)。そ
のため、差動アンプ7からは誤つた出力が発生さ
れ、光軸1を不必要に傾斜させてしまうことにな
る。 First, unless the focus servo system is tracking stably, the servo system (hereinafter referred to as tilt servo) that makes the optical axis 1 of the recorded information reading light beam perpendicular to the recording surface cannot be operated, so the focus servo cannot be locked in. If this is not done, the tilt servo cannot be lowered, and in extreme cases, not only the tilt servo but also the focus servo may not be able to be retracted. That is, in order for the auxiliary beam irradiated parallel to the optical axis 1 to be reflected at the correct position on the light receiving elements 5 and 6, the disk surface must be located at the focal point of the lens, and the disk surface must be located at the focal point of the lens. Even if the auxiliary beam approaches the photodetector, the irradiation position of the reflected light of the auxiliary beam on the photodetector will be lower (shifted to the left and right in the figure). Therefore, an erroneous output is generated from the differential amplifier 7, and the optical axis 1 is unnecessarily tilted.
従つて、光軸が極端に傾斜した場合にはフオー
カスサーボ又はトラツキングサーボに制御信号を
供給する検出器(図示せず)への情報検出ビーム
の反射光の位置が変化する事となり、サーボのロ
ツクインに用いるエラー信号に不要な直流成分が
重畳されてしまうからである。 Therefore, if the optical axis is extremely tilted, the position of the reflected light of the information detection beam to the detector (not shown) that supplies the control signal to the focus servo or tracking servo will change, causing the servo This is because an unnecessary DC component is superimposed on the error signal used for lock-in.
さらに、ピツクアツプの小型化により、ピツク
アツプ内にチルトサーボに用いる光学系を配置す
る事が困難である。これは、補助ビームを記録情
報読取用光ビームの対物レンズに照射することに
より、結果として記録情報読取用光ビームに用い
るためのレンズの視野角が狭められて光学系の設
計上の制約となる欠点がある。 Furthermore, as pickups become smaller, it is difficult to arrange an optical system used for tilt servo inside the pickup. This is because by irradiating the auxiliary beam onto the objective lens of the optical beam for reading recorded information, the viewing angle of the lens used for the optical beam for reading recorded information is narrowed, which becomes a constraint in the design of the optical system. There are drawbacks.
本考案の目的は、フオーカスサーボ系の動作と
は無関係に常に記録面と記録情報読取用光ビーム
の光軸との直交関係を検知し得るようにした極め
て簡単な構成の光学式記録情報読取装置を提供す
ることである。 The purpose of this invention is to provide an optical recording information reading system with an extremely simple configuration that can always detect the orthogonal relationship between the recording surface and the optical axis of the optical beam for reading recorded information, regardless of the operation of the focus servo system. The purpose is to provide equipment.
本考案による光学式記録情報読取装置は、記録
情報読取用光ビームの光軸と記録面との直交関係
のずれを検出しこのずれに応じて光軸の傾斜をな
す傾斜手段を制御して当該直交関係を維持するよ
うにしたチルトサーボ系を有する装置であつて、
その特徴とするところは、傾斜手段に連動して記
録デイスクの半径方向に傾斜するベース部材と、
発射光を記録面へ向けて照射する発光手段と、該
発光手段の発光軸角度を調整可能にして発光手段
をベース部材に対して保持する調整保持機構と、
ベース部材に設けられ発光手段の発射光の記録面
による反射光を受光する受光手段と、該受光手段
の出力に基づいて直交関係のずれを検出する検出
手段とを備えたことである。 The optical recorded information reading device according to the present invention detects a deviation in the orthogonal relationship between the optical axis of the recorded information reading light beam and the recording surface, and controls the tilting means that tilts the optical axis according to this deviation. A device having a tilt servo system configured to maintain an orthogonal relationship,
Its features include a base member that tilts in the radial direction of the recording disk in conjunction with the tilting means;
a light emitting means for irradiating emitted light toward a recording surface; an adjustment holding mechanism for holding the light emitting means with respect to a base member by making the light emitting axis angle of the light emitting means adjustable;
The light receiving means is provided on the base member and receives the light reflected by the recording surface of the light emitted from the light emitting means, and the detecting means detects a deviation in the orthogonal relationship based on the output of the light receiving means.
以下に本考案の実施例を図面に基づき説明す
る。 Embodiments of the present invention will be described below based on the drawings.
第2図は本考案の一実施例を示す図であり記録
デイスク11は変形によつて水平線に対し傾いて
いるものとして示されている。この記録デイスク
の記録情報を光学的に読取るための光学ヘツドユ
ニツト12が設けられており、これは支持部材1
3によつて回動軸14を中心にして回動自在に軸
支されている。この支持部材13はスライダ15
に固定されており、このスライダ15はヘツドユ
ニツト12をデイスク11の半径方向へ移動させ
るためのものである。例えば、スライダ15の一
部に形成されているラツク部16にピニオンギヤ
17が噛合するようになつており、スライダモー
タ18によりピニオンギヤ17の駆動によつてス
ライダ15がデイスク半径方向に移動制御される
のである。図示せぬトラツキングエラー信号発生
器からのエラー信号に含まれる直流成分を検出し
てスライダの通常送り信号を発生する通常送り信
号発生部20が設けられていると共に、記録情報
のアドレス検索やいわゆるスキヤン動作時等にお
けるスライダの高速送り信号を発生する高速送り
信号発生部21が設けられている。これら両信号
発生部の出力が加算器22を介してドライバ19
へ供給されスライダモータ18の回転駆動を行う
ようになつている。 FIG. 2 is a diagram showing an embodiment of the present invention, in which the recording disk 11 is shown as being tilted with respect to the horizontal line due to deformation. An optical head unit 12 is provided for optically reading the recorded information on the recording disk, and this head unit 12 is connected to the supporting member 1.
3 so as to be rotatable about a rotation shaft 14. This support member 13 is a slider 15
The slider 15 is used to move the head unit 12 in the radial direction of the disk 11. For example, a pinion gear 17 is designed to mesh with a rack portion 16 formed in a part of the slider 15, and the slider 15 is controlled to move in the disk radial direction by driving the pinion gear 17 by a slider motor 18. be. A normal feed signal generation section 20 is provided which detects a DC component included in an error signal from a tracking error signal generator (not shown) and generates a normal feed signal for the slider. A high-speed feed signal generating section 21 is provided that generates a high-speed feed signal for the slider during a scan operation or the like. The outputs of these two signal generators are sent to a driver 19 via an adder 22.
is supplied to rotate the slider motor 18.
デイスク11の傾きを検出すべく発光素子23
と受光素子24a,24bがベース部材としての
ヘツドユニツト12上に取付けられており、受光
素子24a,24bの受光出力a,bが差動アン
プ25に入力されてこの差出力cがドライバ26
を介してチルトモータ27を駆動する。このチル
トモータ27の回転軸に結合された雄ねじ部28
と光学ヘツドユニツト12の一部に設けられてい
る雌ねじ部とが互いに螺合しており、モータ27
の回動に伴つて光学ヘツドユニツト12が任意の
傾斜角をもつて傾斜するようになつている。この
時の傾斜中心をなす回動軸が支持部材13の軸1
4となるのである。尚、雄ねじ部28の周囲に巻
設されかつ光学ヘツドユニツト12とスライダー
15との間に介在しているスプリングSはバツク
ラツシユを防止するためのものである。 A light emitting element 23 to detect the inclination of the disk 11
The light receiving elements 24a and 24b are mounted on the head unit 12 as a base member, and the light receiving outputs a and b of the light receiving elements 24a and 24b are input to a differential amplifier 25, and this difference output c is sent to a driver 26.
The tilt motor 27 is driven via. A male threaded portion 28 connected to the rotating shaft of the tilt motor 27
and a female screw portion provided in a part of the optical head unit 12 are screwed together, and the motor 27
As the optical head unit 12 rotates, the optical head unit 12 is tilted at an arbitrary angle of inclination. The rotation axis forming the center of inclination at this time is the axis 1 of the support member 13.
It becomes 4. The spring S wound around the male threaded portion 28 and interposed between the optical head unit 12 and the slider 15 is for preventing backlash.
第3図は光学ヘツドユニツト12の斜視図であ
り、29は対物レンズである。ユニツト12の内
部にあるレーザ光源より発せられた記録情報読取
用光ビームはこの対物レンズ29によつて記録デ
イスク11の記録面上に収束せしめられる。この
対物レンズ29の中心は、光ビームの光軸31と
回動軸14とが交差する点に配置されている。光
ビームが常に記録面上にて収束するように対物レ
ンズ29を光軸31に平行な方向へ移動制御する
ために、いわゆるフオーカスアクチユエータ30
が設けられており、これは磁気回路やコイル等よ
りなる。 FIG. 3 is a perspective view of the optical head unit 12, and 29 is an objective lens. A recorded information reading light beam emitted from a laser light source inside the unit 12 is focused onto the recording surface of the recording disk 11 by the objective lens 29. The center of this objective lens 29 is located at the point where the optical axis 31 of the light beam and the rotation axis 14 intersect. A so-called focus actuator 30 is used to control the movement of the objective lens 29 in a direction parallel to the optical axis 31 so that the light beam is always converged on the recording surface.
is provided, which consists of magnetic circuits, coils, etc.
対物レンズ29の中心と発光素子23の中心と
を通る直線は、再生中の記録トラツクの接線方向
に略平行となつており、好ましくは、記録情報読
取時に光ビームの収束点すなわち情報検出点より
も先行する記録面を照射する位置に当該発光素子
23が取付けられており、この発光素子の発射光
及びその反射光はいずれも対物レンズ29を経な
いようになつている。 A straight line passing through the center of the objective lens 29 and the center of the light emitting element 23 is approximately parallel to the tangential direction of the recording track being reproduced, and preferably is closer to the convergence point of the light beam, that is, the information detection point when reading recorded information. The light emitting element 23 is attached at a position where it illuminates the preceding recording surface, and neither the emitted light from this light emitting element nor its reflected light passes through the objective lens 29.
また、記録情報読取用光ビームの光軸31と発
光素子23からの発射光軸とは互いに平行であ
り、同一として取扱つても問題はない。 Further, the optical axis 31 of the recorded information reading light beam and the emission optical axis from the light emitting element 23 are parallel to each other, and there is no problem even if they are treated as the same.
第4図はデイスク傾斜を検出する発光素子23
及び受光素子24a,24bの取付構造を示す平
面図であり、第5図は第4図のA−A線断面図、
第6図に第4図のB−B線断面図がそれぞれ示さ
れている。第4図乃至第6図において、発光素子
23は基板32にマウントされ、略T字形の基板
ホルダー33の中心部に固着される。基板ホルダ
ー33の3つの端部には平ワツシヤ34を介して
貫通しかつ光学ヘツドユニツト12に螺入した調
整ネジ35,36,37が設けられ、更にこれら
調整ネジの周りでかつ基板ホルダー33と光学ヘ
ツドユニツト12との間に調整ネジ38,39,
40が介在し、これらによつて発光素子23の三
次元方向における高さ、角度調整を行う調整機構
が構成されている。 Figure 4 shows a light emitting element 23 that detects the disk inclination.
5 is a plan view showing the mounting structure of the light-receiving elements 24a and 24b, and FIG. 5 is a cross-sectional view taken along the line A-A in FIG.
FIG. 6 shows a sectional view taken along the line B--B in FIG. 4, respectively. In FIGS. 4 to 6, the light emitting element 23 is mounted on a substrate 32 and fixed to the center of a substantially T-shaped substrate holder 33. As shown in FIGS. Adjustment screws 35, 36, and 37 are provided at three ends of the substrate holder 33, passing through flat washers 34 and screwed into the optical head unit 12, and further around these adjustment screws and connecting the substrate holder 33 and the optical head unit. Adjustment screws 38, 39,
40 are interposed, and these constitute an adjustment mechanism that adjusts the height and angle of the light emitting element 23 in three-dimensional directions.
一方、受光素子24a,24bは基板40a,
40b上に接着され、ネジ41a,41bによつ
て光学ヘツドユニツト12上に固定された略H字
形の基板ホルダ42上に、発光素子23に関して
左右対称になるように取り付けられる。 On the other hand, the light receiving elements 24a and 24b are connected to the substrate 40a,
40b, and is mounted symmetrically with respect to the light emitting element 23 on a substantially H-shaped substrate holder 42 fixed on the optical head unit 12 with screws 41a and 41b.
ここで、発光素子23と光源とレンズとの軸心
が完全に一致しているときは、発光素子23の発
射光の光軸は、第7図aに示す如く、デイスクの
記録面2に対して垂度(△θ=0)となるが、製
品の製造工程上、光源とレンズとの軸心のずれは
避けがたく、これにより前記光軸は、第7図bに
示す如く、デイスクの記録面2に対して角度誤差
△θを生じることになる。ところが、本考案装置
では、前記調整機構を具備しているので、調整ネ
ジ36,36,37を適当に調整し、発光素子2
3の角度を変えることによつて、光源とレンズと
の軸心のずれに伴う前記角度誤差△θ分を補正で
きるのである。 Here, when the axes of the light emitting element 23, the light source, and the lens are completely aligned, the optical axis of the emitted light from the light emitting element 23 is relative to the recording surface 2 of the disk, as shown in FIG. 7a. However, due to the manufacturing process of the product, misalignment between the axes of the light source and the lens is unavoidable, and as a result, the optical axis is aligned with the disc as shown in Figure 7b. An angular error Δθ will occur with respect to the recording surface 2. However, since the device of the present invention is equipped with the adjustment mechanism, the adjustment screws 36, 36, 37 can be appropriately adjusted to adjust the light emitting element 2.
By changing the angle 3, the angular error Δθ caused by the misalignment of the axes between the light source and the lens can be corrected.
以上の構成による本考案の作用を第8図乃至第
10図を用いて説明する。第8図a〜cは発光素
子23より発射された光束の反射状態をデイスク
の傾斜に応じて示した図であり、第9図a〜cは
この反射状態を夫々デイスク側から見た図であ
る。また、第10図は各受光素子24a,24b
の出力a,b及び差動アンプ25の出力cを夫々
デイスクの傾斜に応じて示した図であり、第10
図a,bが受光素子24a,24bの各出力をま
た同図cが差動アンプ25の出力を示すものであ
る。第8図及び第9図における各a,b及びcの
状態に夫々対応するものが第10図の点A,B及
びCであり、点Bはデイスクが水平であつてデイ
スクと光軸31とが垂直の場合である。 The operation of the present invention with the above configuration will be explained using FIGS. 8 to 10. 8a to 8c are diagrams showing the reflection state of the luminous flux emitted from the light emitting element 23 according to the inclination of the disk, and FIGS. 9a to 9c are diagrams showing the reflection state as viewed from the disk side, respectively. be. In addition, FIG. 10 shows each light receiving element 24a, 24b.
FIG.
Figures a and b show the respective outputs of the light receiving elements 24a and 24b, and figure c shows the output of the differential amplifier 25. Points A, B, and C in FIG. 10 correspond to the states a, b, and c in FIGS. is vertical.
かかる垂直関係にある時、発光素子23からの
発射光は発散しつつデイスク11の記録面にて反
射されて受光素子24a,24bに均等に照射さ
れる。よつて、両素子の出力レベルは相等しく差
動アンプ25の出力レベルは零となる。 When such a vertical relationship exists, the light emitted from the light emitting element 23 is reflected by the recording surface of the disk 11 while being diverged, and is evenly irradiated onto the light receiving elements 24a and 24b. Therefore, the output levels of both elements are equal, and the output level of the differential amplifier 25 is zero.
一方、第8図a,cの如くデイスク11が傘型
に変形すると、デイスクと光軸31との直交関係
がずれる。例えば、第8図aの場合には、受光素
子24aのみに反射光が入射されており、その出
力レベルが最大となり、受光素子24bの出力レ
ベルは略零となる。よつて、差動アンプ25の出
力レベルは正極性で最大となる。他方、第8図c
の如くなつた場合には、受光素子24bのみに反
射光が入射されるから差動アンプ25の出力は負
極性の最大レベルとなる。 On the other hand, when the disk 11 is deformed into an umbrella shape as shown in FIGS. 8a and 8c, the orthogonal relationship between the disk and the optical axis 31 is shifted. For example, in the case of FIG. 8a, the reflected light is incident only on the light-receiving element 24a, and its output level is maximum, and the output level of the light-receiving element 24b is approximately zero. Therefore, the output level of the differential amplifier 25 is maximum at positive polarity. On the other hand, Fig. 8c
In this case, since the reflected light is incident only on the light receiving element 24b, the output of the differential amplifier 25 becomes the maximum level of negative polarity.
従つて、差動アンプ25の出力cには、デイス
クと光軸31との直交関係からのずれ量及びその
方向に応じてレベル及び極性が変化する信号が導
出される。この差動出力cが零となる様に閉ルー
プのチルトサーボを行えば、常にデイスク11に
対して光ビームの光軸31を直角とすることがで
きクロストークの除去が可能となるものである。
尚、発光素子23の発射光がガウス分布等の強度
分布を有すれば、差動アンプの出力特性の傾きが
大となつて検出感度が大となるから、受光素子2
4a,24bの大きさや配置の選定が容易とな
る。 Therefore, the output c of the differential amplifier 25 is a signal whose level and polarity change depending on the amount and direction of deviation from the orthogonal relationship between the disk and the optical axis 31. If closed-loop tilt servo is performed so that the differential output c becomes zero, the optical axis 31 of the light beam can always be made perpendicular to the disk 11, making it possible to eliminate crosstalk.
Note that if the light emitted from the light emitting element 23 has an intensity distribution such as a Gaussian distribution, the slope of the output characteristic of the differential amplifier becomes large and the detection sensitivity increases.
It becomes easy to select the size and arrangement of 4a and 24b.
この差動アンプ25の差動出力により、チルト
モータ27が駆動されて光学ヘツドユニツト12
が回動軸14を中心に回動されるから、チルトサ
ーボがなされるのである。 The differential output of the differential amplifier 25 drives the tilt motor 27 and the optical head unit 12
is rotated around the rotation axis 14, so that tilt servo is performed.
なお、上記実施例においては、発光素子23を
保持しかつ発光素子23の角度調整を行なう調整
機構を、各々3個の調整ネジ及び調整バネを用い
て構成したが、第11図に示す如く、基板ホルダ
ー33の長手方向の一端部に球状の突起43を突
設し、この突起43を球面受44にて支持する構
成としても、上記実施例と同様の効果を奏する。
また、第12図に示す様に、発光素子23と受光
素子24a,24bを同一基板上にマウントする
ように構成し、発光素子23を基板にマウントす
る際、デイスクからの反射光が受光素子24a,
23bに入射する量をモニターしつつ半田付けを
行うことによつても、発光素子23の光源とレン
ズとの軸心のずれに伴う発射光の光軸の角度誤差
△θを補正することができる。 In the above embodiment, the adjustment mechanism for holding the light emitting element 23 and adjusting the angle of the light emitting element 23 was constructed using three adjustment screws and three adjustment springs, but as shown in FIG. A configuration in which a spherical protrusion 43 is protruded from one longitudinal end of the substrate holder 33 and the protrusion 43 is supported by a spherical receiver 44 can also produce the same effects as in the above embodiment.
Further, as shown in FIG. 12, the light emitting element 23 and the light receiving elements 24a and 24b are configured to be mounted on the same substrate, and when the light emitting element 23 is mounted on the substrate, the reflected light from the disk is transmitted to the light receiving element 24a. ,
By performing soldering while monitoring the amount of light incident on the light emitting element 23b, it is possible to correct the angular error Δθ of the optical axis of the emitted light due to the misalignment between the axes of the light source of the light emitting element 23 and the lens. .
叙上の如く、本考案によれば、極めて簡単な構
成により正確なチルトサーボが可能となつて、
CAVやCLVの各方式共にクロストークの除去が
可能となる他に以下の種々の利点を有する。チル
トサーボエラー信号すなわちチルト検出信号発生
用光束が対物レンズを通らないことから、フオー
カスサーボロツクイン前にもチルトサーボが可能
となり、デイスク装着後直ちにチルトサーボを働
かせることができることになつてデイスク面の傾
きが大きいものでも安定に各サーボが動作し得
る。またトラツキングによる対物レンズの移動に
よりチルトサーボが悪影響を受けることがなくな
り、更には光ヘツドユニツトの外周壁部にチルト
検出用の発光及び受光素子を取付け得るので、第
1図の従来例の如くユニツト内部に設ける必要が
なくなつて光ヘツドユニツトの小型化が図れる。 As mentioned above, according to the present invention, accurate tilt servo is possible with an extremely simple configuration.
In addition to being able to eliminate crosstalk, both the CAV and CLV systems have the following various advantages. Since the tilt servo error signal, that is, the light beam for generating the tilt detection signal, does not pass through the objective lens, tilt servo is possible even before focus servo lock-in, and tilt servo can be activated immediately after the disk is attached, thereby reducing the inclination of the disk surface. Each servo can operate stably even if the servo is large. In addition, the tilt servo is not adversely affected by the movement of the objective lens due to tracking, and furthermore, the light emitting and light receiving elements for tilt detection can be attached to the outer peripheral wall of the optical head unit, so that the tilt servo can be mounted inside the unit as in the conventional example shown in Fig. 1. Since it is not necessary to provide the optical head unit, the optical head unit can be made smaller.
また、発光素子の角度調整を行なう調整機構を
具備し、発光素子の光源とレンズとの軸心のずれ
に伴う発射光の光軸のずれを補正できるようにし
たので、デイスクの傾きを正確に検出することが
できる。 In addition, it is equipped with an adjustment mechanism that adjusts the angle of the light emitting element, making it possible to correct the deviation of the optical axis of the emitted light due to the misalignment of the axis between the light source of the light emitting element and the lens, so the tilt of the disk can be accurately adjusted. can be detected.
第1図は従来のチルト検出装置の概略を説明す
る図、第2図は本考案の一実施例の概略図、第3
図は第2図の光ヘツドユニツト部の斜視図、第4
図は本考案における調整機構を示す平面図、第5
図は第1図のA−A線断面図、第6図は第4図の
B−B線断面図、第7図は発射光の光軸のずれ状
態を示す図、第8図〜第10図は第2図の装置の
チルト検出部の検出動作を説明する図、第11図
及び第12図は本考案の他の実施例の一部を示す
断面図である。
主要部分の符号の説明、11……デイスク、2
3……発光素子、24a,24b……受光素子、
25……差動アンプ、27……チルトモータ、2
9……対物レンズ。
FIG. 1 is a diagram explaining the outline of a conventional tilt detection device, FIG. 2 is a schematic diagram of an embodiment of the present invention, and FIG.
The figure is a perspective view of the optical head unit shown in Figure 2, and a perspective view of the optical head unit shown in Figure 4.
The figure is a plan view showing the adjustment mechanism in the present invention.
The figures are a sectional view taken along the line A-A in Fig. 1, Fig. 6 is a sectional view taken along the line B-B in Fig. 4, Fig. 7 is a view showing the misalignment of the optical axis of the emitted light, and Figs. 8 to 10. The figure is a diagram for explaining the detection operation of the tilt detection section of the apparatus shown in FIG. 2, and FIGS. 11 and 12 are cross-sectional views showing a part of other embodiments of the present invention. Explanation of symbols of main parts, 11... Disk, 2
3... Light emitting element, 24a, 24b... Light receiving element,
25...Differential amplifier, 27...Tilt motor, 2
9...Objective lens.
Claims (1)
クの記録面との直交関係のずれを検出しこのず
れに応じて前記光軸の傾斜を変化させる傾斜手
段を制御して前記直交関係を維持するようにし
たサーボ系を有する光学式記録情報読取装置で
あつて、前記傾斜手段に連動して記録デイスク
の半径方向に傾斜するベース部材と、発射光を
前記記録面へ向けて照射する発光手段と、前記
発光手段の発光軸角度を調整可能にして前記発
光手段を前記ベース部材に対して保持する調整
保持機構と、前記ベース部材に設けられ前記発
射光の前記記録面による反射光を受光する受光
手段と、前記受光手段の出力に基づいて前記直
交関係のずれを検出する検出手段とを備えたこ
とを特徴とする光学式記録情報読取装置。 (2) 前記受光手段は前記ベース部材において前記
発光手段に関して対称に設けられた2つの受光
素子からなり、前記検出手段は前記受光素子の
各出力の差を出力することを特徴とする実用新
案登録請求の範囲第1項記載の光学式記録情報
読取装置。[Claims for Utility Model Registration] (1) A tilting means that detects a deviation in the orthogonal relationship between the optical axis of the optical beam for reading recorded information and the recording surface of the recording disk, and changes the inclination of the optical axis in accordance with this deviation. The optical recorded information reading device has a servo system configured to control the orthogonal relationship to maintain the orthogonal relationship, the base member tilting in the radial direction of the recording disk in conjunction with the tilting means, and the base member tilting in the radial direction of the recording disk in conjunction with the tilting means; a light emitting means for emitting light toward a recording surface; an adjusting and holding mechanism for holding the light emitting means with respect to the base member by making the light emitting axis angle of the light emitting means adjustable; An optical recording information reading device comprising: a light receiving means for receiving light reflected by the recording surface; and a detecting means for detecting a deviation in the orthogonal relationship based on the output of the light receiving means. (2) Registration of a utility model characterized in that the light receiving means includes two light receiving elements arranged symmetrically with respect to the light emitting means on the base member, and the detecting means outputs a difference between outputs of the light receiving elements. An optical recording information reading device according to claim 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16955583U JPS6077027U (en) | 1983-11-01 | 1983-11-01 | Optical recording information reading device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16955583U JPS6077027U (en) | 1983-11-01 | 1983-11-01 | Optical recording information reading device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6077027U JPS6077027U (en) | 1985-05-29 |
| JPH0135296Y2 true JPH0135296Y2 (en) | 1989-10-27 |
Family
ID=30370393
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16955583U Granted JPS6077027U (en) | 1983-11-01 | 1983-11-01 | Optical recording information reading device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6077027U (en) |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6064415U (en) * | 1983-10-07 | 1985-05-07 | ソニー株式会社 | Skew detection device for optical disk device |
-
1983
- 1983-11-01 JP JP16955583U patent/JPS6077027U/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6077027U (en) | 1985-05-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH0516647Y2 (en) | ||
| US4425043A (en) | Device for detecting the position of an object | |
| JPH0313864Y2 (en) | ||
| US5027336A (en) | Optical information reading apparatus with tracking adjustment system | |
| US5136559A (en) | Optical information recording and reproducing apparatus using tracking mirror | |
| US6167003A (en) | Optical disc apparatus for installing two types of optical discs | |
| JPH0433548Y2 (en) | ||
| US5880765A (en) | Multi-beam optical head | |
| JPH0135296Y2 (en) | ||
| JPH07129966A (en) | Multi beam optical head | |
| US6292447B1 (en) | Head for optical disc drive | |
| JPH0766554B2 (en) | Recorded information reader | |
| JPH0743900B2 (en) | Tracking controller | |
| JPH064416Y2 (en) | Optical recording information reader | |
| JP2835778B2 (en) | Optical head and its adjustment method | |
| JP2731405B2 (en) | Optical axis deviation correction method in separation type optical pickup device | |
| US5559783A (en) | An optical head having a rotating mirror | |
| JP2549249B2 (en) | Light modulator and optical head adjusting method | |
| JP2827186B2 (en) | Optical disk warpage detection method and optical pickup | |
| JP2006512713A (en) | Optical scanning device | |
| JPS6114575B2 (en) | ||
| KR840001862B1 (en) | Video disc player | |
| JP3939873B2 (en) | Tracking sensor position adjustment device | |
| JPS61283045A (en) | Optical data memory and correction apparatus | |
| JP3100769B2 (en) | Optical pickup adjustment method |