JPH0135263B2 - - Google Patents

Info

Publication number
JPH0135263B2
JPH0135263B2 JP56087253A JP8725381A JPH0135263B2 JP H0135263 B2 JPH0135263 B2 JP H0135263B2 JP 56087253 A JP56087253 A JP 56087253A JP 8725381 A JP8725381 A JP 8725381A JP H0135263 B2 JPH0135263 B2 JP H0135263B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
pressure
control device
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56087253A
Other languages
Japanese (ja)
Other versions
JPS57203887A (en
Inventor
Mitsuhiro Hatsutori
Hiroya Kono
Hisao Kobayashi
Atsushi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP56087253A priority Critical patent/JPS57203887A/en
Publication of JPS57203887A publication Critical patent/JPS57203887A/en
Publication of JPH0135263B2 publication Critical patent/JPH0135263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は車両用冷房装置における可変容量圧縮
機の運転制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a variable capacity compressor in a vehicle cooling system.

一般に、車両用冷房装置においては、運転初期
などのように車室温度が高くて圧縮機にかかる冷
房負荷が冷房能力よりも大きいときには、圧縮機
は容量アツプ状態で運転され、車室温度が下がつ
て冷房負荷が冷房能力よりも小さくなつたら、圧
縮機は容量ダウン状態で運転されるが、この圧縮
機の容量切換制御方法として、従来冷房負荷が小
さくなると圧縮機へ吸入される冷媒の圧力が低下
することに着目して、圧力検出装置により吸入圧
力を検出し、この圧力が設定値以下になつたと
き、圧縮機の容量をダウンするようにしたもの
や、冷房負荷が小さくなると圧縮機へ吸入される
冷媒ガスの温度が下がるのに着目して温度センサ
により吸入ガス温度を検出し、この温度が設定値
以下になつたとき、圧縮機の容量ダウンを行なう
ようにしたものがあつた。
Generally, in a vehicle cooling system, when the cabin temperature is high and the cooling load on the compressor is greater than the cooling capacity, such as at the beginning of operation, the compressor is operated with increased capacity, causing the cabin temperature to drop. When the cooling load becomes smaller than the cooling capacity, the compressor is operated at reduced capacity. Conventionally, when the cooling load becomes smaller, the pressure of the refrigerant drawn into the compressor is reduced. Focusing on the decrease in air pressure, a pressure detection device detects the suction pressure, and when this pressure falls below a set value, the compressor capacity is reduced, and when the cooling load becomes small, the compressor There is a system that uses a temperature sensor to detect the temperature of the refrigerant gas being sucked into the engine, and when this temperature falls below a set value, the capacity of the compressor is reduced. .

ところが、前述した従来の2つの制御方法は、
いずれも圧縮機の吐出圧力が外気温の変化により
変動した場合、吸入圧力・温度もつられて変動す
るが、それに応じて容量切換えを行なうことがで
きないことがあり、湿り蒸気圧縮を起すという欠
陥があつた。この点について第1図及び第2図に
示すように横軸にエンタルピi、縦軸に絶対圧力
pをとり冷媒の種類によつて変化する飽和液線
L1、飽和蒸気線L2、等温線T、図示しないが等
圧線、等エンタルピ線あるいは等エントロピ線K
などを描いたモリエル(p―i)線図に表示され
た冷凍サイクル(A→B→C→D)を基に説明す
る。
However, the two conventional control methods mentioned above,
In either case, when the discharge pressure of the compressor fluctuates due to changes in the outside temperature, the suction pressure and temperature also fluctuate, but it may not be possible to change the capacity accordingly, resulting in the defect of causing wet vapor compression. It was hot. Regarding this point, as shown in Figures 1 and 2, the horizontal axis represents enthalpy i and the vertical axis represents absolute pressure p, and the saturated liquid line changes depending on the type of refrigerant.
L 1 , saturated vapor line L 2 , isothermal line T, isobaric line, isoenthalpy line or isentropic line K (not shown)
The explanation will be based on the refrigeration cycle (A→B→C→D) displayed on the Mollier (pi) diagram.

一般に、冷凍サイクルにおいては吸入圧力及び
温度によつて決定されるAの吸入状態のガスは圧
縮機に吸入されて圧縮され高温・高圧のBの状態
となり、この状態の冷媒は凝縮器で放熱して液化
しCの状態となり受液器にたまる。この液体は膨
張弁にて絞り膨張され低圧・低温の気液混合状態
Dとなり、蒸発器で周囲の被冷却媒体より熱を奪
つて気化し、状態Aとなり再び圧縮機に吸入され
る。圧縮機で圧縮されるガスの変化A―Bは断熱
的で等エントロピ線Kにほぼ一致しており、又膨
張弁での絞り膨張C―Dは等エンタルピ変化であ
る。冷媒ガスを湿り蒸気の状態で吸入するA′―
B′の圧縮を湿り圧縮、乾燥飽和あるいは過熱ガ
スの状態で吸入圧縮するA″―B″又はA―Bの変
化をかわき圧縮、A″―Aを過熱度(スーパーヒ
ート)といい、理論的にはA―Bの湿り圧縮は圧
縮効率がよいが圧縮機に液を吸入する液圧縮にな
り、バルブ割れ等の危険性がある。又、冷媒の
Cp/Cv(Cp:定圧熱容量、Cv:定積熱容量)が
1.18以下のものでは理論的には吸入ガスを加熱し
た方がかえつて冷凍能力が増大するので、フロン
冷媒などは5℃程度過熱するのが望ましい。
Generally, in a refrigeration cycle, gas in the suction state A determined by the suction pressure and temperature is sucked into a compressor and compressed to a high temperature and high pressure state B, and the refrigerant in this state radiates heat in the condenser. It liquefies and becomes state C and accumulates in the liquid receiver. This liquid is throttled and expanded by an expansion valve to become a low-pressure, low-temperature gas-liquid mixture state D, and is vaporized by taking heat from the surrounding medium to be cooled in an evaporator, becoming state A and being sucked into the compressor again. The change AB in the gas compressed by the compressor is adiabatic and almost coincides with the isentropic line K, and the throttle expansion CD in the expansion valve is an isenthalpic change. A′-- Inhaling refrigerant gas in a wet vapor state
The compression of B′ is called wet compression, the change in A″-B″ or A-B when the gas is sucked and compressed in a dry saturated or superheated state is dry compression, and A″-A is called superheat. Although A-B wet compression has good compression efficiency, it is liquid compression in which liquid is sucked into the compressor, and there is a risk of valve cracking.
Cp/Cv (Cp: heat capacity at constant pressure, Cv: heat capacity at constant volume)
If the temperature is 1.18 or less, heating the intake gas will theoretically increase the refrigerating capacity, so it is desirable to superheat the Freon refrigerant by about 5 degrees Celsius.

一方、膨張弁の絞り量が限界となり、圧縮動作
がA―Bの状態で行なわれるとすると、吐出圧力
が同一で冷房負荷が減少したときには、第2図
A1―B1に示すように吸入・吐出圧力は同一で吸
入・吐出温度が下降し過熱度が減少する。ところ
が、従来の制御方法のうち温度制御方式すなわち
第2図の等温線Tcを設定温度とした場合にはA
点がA1点になる以前に検出温度が設定値となつ
て圧縮機の容量ダウンが行なわれるので、過熱度
が0℃以下になるのを防ぐことができ別に問題は
起きないが、従来の圧力制御方式すなわち設定圧
力Pcになつたとき容量ダウンを行なうものでは、
AがA1になりさらに飽和蒸気線L2を越えてもそ
れを検出できないという欠陥がある。又、外気温
が上昇して吐出圧力が上昇し、冷房負荷が同じ場
合には第2図A2―B2に示すように吸入・吐出圧
力及び温度が上昇し、過熱度が若干減少するが、
この場合には吸入圧力又は温度が設定値にならな
いので圧縮機の容量ダウンは行なわれず、又過熱
度も充分確保されているから問題にならない。と
ころが、外気温が上昇して吐出圧力が上昇し、か
つ冷房負荷が減少した場合に、第2図A3―B3
示すように吸入・吐出圧力が上昇し吸入・吐出温
度が若干下がり、過熱度が非常に小さくなるが、
従来の2つの制御方法ではいずれも吸入圧力又は
温度が設定値に下らないので圧縮機の容量ダウン
は行なわれず、従つて冷房負荷がさらに減少して
A3が飽和蒸気線L2を越えると、湿り蒸気圧縮を
起すという欠陥があつた。
On the other hand, if the throttling amount of the expansion valve reaches its limit and the compression operation is performed in the state A-B, then when the discharge pressure remains the same and the cooling load decreases, as shown in Figure 2.
As shown in A 1 - B 1 , the suction and discharge pressures are the same, the suction and discharge temperatures decrease, and the degree of superheating decreases. However, among the conventional control methods, when the temperature control method, that is, the isothermal line Tc in Fig. 2 is used as the set temperature, A
Since the detected temperature reaches the set value and the capacity of the compressor is reduced before the point reaches point A1 , it is possible to prevent the degree of superheating from falling below 0°C, and there is no problem. In the pressure control method, which reduces the capacity when the set pressure Pc is reached,
There is a defect in that even if A becomes A1 and further exceeds the saturated vapor line L2 , it cannot be detected. Also, if the outside temperature rises and the discharge pressure increases, and the cooling load remains the same, the suction/discharge pressure and temperature will rise as shown in Figure 2 A 2 - B 2 , and the degree of superheat will decrease slightly. ,
In this case, the suction pressure or temperature does not reach the set value, so the capacity of the compressor is not reduced, and the degree of superheat is sufficiently ensured, so there is no problem. However, when the outside temperature rises, the discharge pressure increases, and the cooling load decreases, as shown in Figure 2 A3 - B3 , the suction and discharge pressures rise and the suction and discharge temperatures drop slightly. The degree of superheating becomes very small, but
In both conventional control methods, the suction pressure or temperature does not fall to the set value, so the compressor capacity is not reduced, and therefore the cooling load is further reduced.
There was a defect that when A 3 exceeded the saturated vapor line L 2 , wet vapor compression occurred.

このように、外気温が変動した場合、圧縮機の
吐出圧が変化し、吸入圧力・温度がつくられて変
動し、この結果過熱度も変化するが、従来の方法
では吸入圧力あるいは温度が設定値にならないと
容量ダウンしないので過熱度が許容し得る範囲か
ら外れても検出できず、湿り蒸気圧縮を誘発し、
バルブの破損あるいは余分な動力を消費するとい
う欠陥がある。
In this way, when the outside temperature fluctuates, the discharge pressure of the compressor changes, and the suction pressure and temperature are created and fluctuated, resulting in a change in the degree of superheat, but in conventional methods, the suction pressure or temperature is set. Since the capacity will not decrease unless the value is reached, it will not be detected even if the degree of superheat is outside the allowable range, which will induce wet vapor compression.
There are defects such as valve damage or extra power consumption.

本発明の目的は、吸入圧力及び温度を検出して
これらにより決定される実際の状態点がモリエル
線図上に予め設定された許容領域から外れたと
き、圧縮機の容量切換えを行なうことにより、外
気温の変動があつても過熱度を適正な状態に保つ
ことができ、湿り蒸気圧縮を防止し動力損失を少
なくでき、圧縮機の破損を防止することができる
車両用冷房装置における可変容量圧縮機の運転制
御方法を提供することにある。
The purpose of the present invention is to detect the suction pressure and temperature, and when the actual state point determined by these is out of the permissible range preset on the Mollier diagram, by switching the capacity of the compressor, Variable capacity compression in vehicle cooling systems that can maintain the appropriate degree of superheating even when the outside temperature fluctuates, prevent wet vapor compression, reduce power loss, and prevent compressor damage. The purpose of this invention is to provide a method for controlling the operation of a machine.

以下、本発明の制御方法に使用される車両用冷
房装置の一実施例を第3図について説明すると、
図中1はエンジン、2はこのエンジンにより駆動
される可変容量圧縮機であつて、その吐出フラン
ジ3と吸入フランジ4の間には、冷凍サイクルを
構成する凝縮器5、受液器6、膨張弁7及び蒸発
器8が順次接続されている。前記可変容量圧縮機
2として、この実施例では容量を100%と50%に
切換できる斜板式圧縮機を使用しているが、3段
階以上あるいは無段階に切換えることができる圧
縮機を使用してもよい。9は前記蒸発器8と吸入
フランジ4を結ぶ管路10に配設した温度検出装
置であつて、圧縮機2内へ吸入される冷媒の温度
を検出するようにしている。11は同じく前記管
路10に配設した圧力検出装置であつて、吸入圧
力を検出するようにしている。
Hereinafter, one embodiment of a vehicle cooling system used in the control method of the present invention will be described with reference to FIG.
In the figure, 1 is an engine, and 2 is a variable capacity compressor driven by this engine. Between the discharge flange 3 and the suction flange 4, there are a condenser 5, a liquid receiver 6, an expansion A valve 7 and an evaporator 8 are connected in sequence. As the variable capacity compressor 2, in this embodiment, a swash plate type compressor whose capacity can be switched between 100% and 50% is used, but a compressor whose capacity can be switched in three or more stages or steplessly is used. Good too. Reference numeral 9 denotes a temperature detection device disposed in a conduit 10 connecting the evaporator 8 and the suction flange 4, and is adapted to detect the temperature of the refrigerant sucked into the compressor 2. Reference numeral 11 denotes a pressure detection device similarly disposed in the pipe line 10, and is adapted to detect suction pressure.

12は前記圧力検出装置9及び温度検出装置1
1に接続したマイクロコンピユータ等よりなる制
御装置であつて、その記憶回路(図示略)により
第4図に示す吸入状態点Aの平行四辺形状をなす
許容領域Eが記憶されており、検出された吸入圧
力及び温度によつて決定される状態点Aが前記許
容領域E内に存在するか否かを同制御装置12の
比較判別回路(図示略)により比較判別して許容
領域Eから外れると、同制御装置12の動作回路
(図示略)から圧縮機2の容量切換機構13へ切
換指令信号を出力するようにしている。
12 is the pressure detection device 9 and the temperature detection device 1
1 is a control device consisting of a microcomputer, etc. connected to 1, and its memory circuit (not shown) stores the parallelogram-shaped allowable region E of the inhalation state point A shown in FIG. A comparison and determination circuit (not shown) of the control device 12 compares and determines whether or not the state point A determined by the suction pressure and temperature is within the permissible range E, and if the state point A is outside the permissible range E, A switching command signal is output from an operating circuit (not shown) of the control device 12 to the capacity switching mechanism 13 of the compressor 2.

ここで、前記制御装置12に記憶された許容領
域Eの設定について説明すると、この実施例では
第4図に示すように許容領域Eの左右両辺の最小
許容過熱度線H1及び最大許容過熱度線H2が吸入
圧力に関係なくそれぞれ一定(例えばH1が5℃、
H2が15℃)にすなわち飽和蒸気線L2からの間隔
が一定になるように設定されている。そして、実
際の状態点Aが第4図左方へ移動して前記最小許
容過熱度線H1から外れたときには、制御装置1
2から圧縮機の容量ダウン指令信号を出力し反対
に状態点Aが第4図右方へ移動して前記最大許容
過熱度線H2から外れたときには、制御装置12
から容量アツプ信号を出力するようにしている。
又、許容領域Eの上下両辺の最大許容圧力線P1
及び最小許容圧力線P2が吸入温度に関係なくそ
れぞれ一定(例えばP1が4Kg/cm2、P2が1Kg/
cm2)に設定され、検出された吸入温度が許容領域
E内にあつても外気温の変動により状態点Aが第
4図において上(下)方へ移動して最大(最小)
許容圧力線P1(P2)から外れたとき、制御装置1
2から圧縮機の容量アツプ(ダウン)信号を出力
するようにしている。
Now, to explain the settings of the permissible region E stored in the control device 12, in this embodiment, as shown in FIG . The line H2 is constant regardless of the suction pressure (for example, if H1 is 5℃,
H2 is set to 15℃), that is, the distance from the saturated steam line L2 is set to be constant. When the actual state point A moves to the left in FIG. 4 and deviates from the minimum allowable superheat degree line H1 , the control device 1
2 outputs a compressor capacity down command signal, and conversely, when state point A moves to the right in FIG. 4 and deviates from the maximum allowable superheat degree line H2 ,
The capacitance up signal is output from the
Also, the maximum allowable pressure line P 1 on both the upper and lower sides of the allowable area E
and the minimum allowable pressure line P 2 are constant regardless of the suction temperature (for example, P 1 is 4Kg/cm 2 and P 2 is 1Kg/cm 2 ).
cm 2 ), and even if the detected intake temperature is within the allowable range E, due to fluctuations in the outside temperature, the state point A moves upward (downward) in Fig. 4 and reaches the maximum (minimum).
When it deviates from the allowable pressure line P 1 (P 2 ), the control device 1
2 outputs a compressor capacity up (down) signal.

次に、前記のように構成した車両用冷房装置の
運転制御方法について説明する。
Next, a method for controlling the operation of the vehicle cooling system configured as described above will be explained.

今、車室内の温度が高い状態で圧縮機が100%
稼働され、冷房能力と圧縮機にかかる冷房負荷が
ほぼ同一で、膨張弁7により吸入圧力・温度を適
正状態に調節できる場合には、吸入圧力・温度に
より決定される実際の状態点Aは許容領域E内に
あるので、圧縮機の容量切換えは行なわれない。
The compressor is running at 100% when the temperature inside the vehicle is high.
If the air conditioner is operated, the cooling capacity and the cooling load on the compressor are almost the same, and the expansion valve 7 can adjust the suction pressure and temperature to an appropriate state, the actual state point A determined by the suction pressure and temperature is acceptable. Since it is within region E, the capacity of the compressor is not switched.

その後、車室温度が下がつて冷房負荷が低下
し、冷房能力が大きくなると、吸入圧力及び温度
がともに下がつていくが、膨張弁7の絞り量を最
大にしても絞りきれなくなると、温度降下が助長
されて過熱度が小さくなり、状態点Aは許容領域
Eの過熱度線H1から外れる。すると、制御装置
12から容量ダウン信号が出力され、圧縮機の容
量が100%から50%に切換えられる。この結果吸
入温度は上昇に転じ、状態点Aは再び許容領域E
内へ復帰される。
After that, as the cabin temperature decreases, the cooling load decreases, and the cooling capacity increases, both the suction pressure and temperature decrease. The drop is promoted, the degree of superheating becomes small, and the state point A deviates from the degree of superheating line H 1 in the tolerance region E. Then, a capacity down signal is output from the control device 12, and the capacity of the compressor is switched from 100% to 50%. As a result, the suction temperature begins to rise, and state point A returns to the allowable region E.
be returned within.

さらに、圧縮機が50%稼働では冷房能力が冷房
負荷よりも小さく、吸入圧力・温度がともに上昇
し膨張弁7が全開しても流量不足の場合には、状
態点Aが許容領域Eの過熱度線H2から外れ、こ
のため制御装置12から容量アツプ信号が出力さ
れ、圧縮機が100%稼働に切換えられ、このため
吸入圧力、温度は下降に転じ、状態点Aは再び許
容範囲E内へ復帰される。
Furthermore, when the compressor is operating at 50%, the cooling capacity is smaller than the cooling load, and both the suction pressure and temperature rise and the flow rate is insufficient even if the expansion valve 7 is fully opened. As a result, the controller 12 outputs a capacity up signal and the compressor is switched to 100% operation, so the suction pressure and temperature start to fall, and the state point A is again within the tolerance range E. will be returned to.

一方、外気温の変動により、吸入温度は許容領
域E内に保持されているが、吸入圧力が異常に高
(低)くなつて状態点Aが最大(最小)許容圧力
線P1(P2)から外れたときには、制御装置12か
ら容量アツプ(ダウン)信号が出力され、状態点
Aが許容領域E内へ復帰される。
On the other hand, due to fluctuations in outside temperature, the suction temperature is maintained within the permissible range E, but the suction pressure becomes abnormally high (low) and the state point A changes to the maximum (minimum) permissible pressure line P 1 (P 2 ), a capacity up (down) signal is output from the control device 12, and the state point A is returned to within the allowable range E.

このように本発明実施例においては、モリエル
線図上に決定された状態点Aの許容領域Eを制御
装置12により記憶しておき、吸入圧力・温度に
よつて決まる実際の状態点Aが前記許容領域Eか
ら外れたとき圧縮機の容量を切換えて許容領域に
復帰させるようにしたので、過熱度の異常を検知
して湿り蒸気圧縮をなくし圧縮機の運転を適正に
行なうことができる効果がある。
In this embodiment of the present invention, the allowable range E of the state point A determined on the Mollier diagram is stored by the control device 12, and the actual state point A determined by the suction pressure and temperature is Since the capacity of the compressor is changed to return it to the permissible range when it deviates from the permissible range E, it is possible to detect an abnormality in the degree of superheat, eliminate wet vapor compression, and operate the compressor properly. be.

なお、本発明は、次のような実施例で具体化す
ることも可能である。
Note that the present invention can also be embodied in the following embodiments.

(1) 第5図に示すように、許容領域Eの最小(最
大)許容過熱度線H1(H2)を等エントロピ線
Kとほぼ平行に設定すること。
(1) As shown in FIG. 5, the minimum (maximum) permissible superheat degree line H 1 (H 2 ) of the permissible region E should be set almost parallel to the isentropic line K.

(2) 前記実施例では許容領域Eの上下両限界を吸
入圧力によつて規定したが、この圧力のかわり
に第6図に示すように最大許容温度線T1、最
小許容温度線T2を使用すること。
(2) In the above embodiment, both the upper and lower limits of the allowable region E were defined by the suction pressure, but instead of this pressure, the maximum allowable temperature line T 1 and the minimum allowable temperature line T 2 were defined as shown in FIG. to use.

(3) 50%稼働時においてH1,P2,T2より領域E
外に外れた場合は能力過剰ということで圧縮機
の運転を停止すること。
(3) Area E from H 1 , P 2 , T 2 at 50% operation
If it comes off, it means that the compressor is over capacity and you should stop operating the compressor.

(4) スーパーヒート過大なH3線を設定し、この
線より第4図において右へ越えた場合は冷媒不
足と判断し、異常信号を発するようにすること
もできる。
(4) It is also possible to set the H3 line for excessive superheating, and if it crosses this line to the right in Figure 4, it will be determined that there is a refrigerant shortage and an abnormal signal will be issued.

以上詳述したように、本発明は外気温の変動が
あつても過熱度を適正状態に保持して湿り圧縮を
防止することができ、動力損失を少なくし液圧縮
による吐出弁の破損を防止することができる効果
がある。
As described in detail above, the present invention can maintain the degree of superheat at an appropriate level even when the outside temperature fluctuates, preventing wet compression, reducing power loss, and preventing damage to the discharge valve due to liquid compression. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷凍サイクルの一般的特性を説明する
ためのモリエル線図、第2図は従来の可変容量圧
縮機の運転制御方法を説明するためのモリエル線
図、第3図は本発明の制御方法に使用される車両
用冷房装置の一実施例を示す略体回路図、第4図
は本発明の運転制御方法を説明するためのモリエ
ル線図、第5図及び第6図は本発明の別の実施例
を示すモリエル線図である。 可変容量圧縮機…2、温度検出装置…9、圧力
検出装置…11、制御装置…12、容量切換機構
…13、許容領域…E、状態点…A、最大(最
小)許容過熱度線…H2(H1)、最大(最小)許容
圧力線…P1(P2)、最大(最小)許容温度線…T1
(T2)。
Fig. 1 is a Mollier diagram for explaining the general characteristics of a refrigeration cycle, Fig. 2 is a Mollier diagram for explaining the conventional operation control method of a variable capacity compressor, and Fig. 3 is a Mollier diagram for explaining the control method of the present invention. FIG. 4 is a Mollier diagram for explaining the operation control method of the present invention, and FIGS. 5 and 6 are schematic circuit diagrams showing one embodiment of a vehicle cooling system used in the method. FIG. 7 is a Mollier diagram showing another example. Variable capacity compressor...2, temperature detection device...9, pressure detection device...11, control device...12, capacity switching mechanism...13, allowable area...E, state point...A, maximum (minimum) allowable superheat degree line...H 2 (H 1 ), maximum (minimum) allowable pressure line...P 1 (P 2 ), maximum (minimum) allowable temperature line...T 1
( T2 ).

Claims (1)

【特許請求の範囲】 1 可変容量圧縮機により冷凍サイクル内を循環
する冷媒の凝縮・蒸発により熱交換をして冷房作
用をなす車両用冷房装置において、前記圧縮機に
吸入される冷媒の圧力及び温度を圧力検出装置及
び温度検出装置により検出し、これらの吸入圧力
及び温度によつて決定されるモリエル線図上の実
際の吸入状態点が、制御装置によつて予め記憶さ
れ所定の過熱度をもつて設定された許容領域内に
あるか否かを同制御装置により比較判別して許容
領域から外れたときに、前記制御装置から容量切
換指令を出力して圧縮機の容量切換えを行ない、
前記吸入状態点を許容領域内へ復帰させることを
特徴とする可変容量圧縮機の運転制御方法。 2 制御装置によつて記憶されたモリエル線図の
許容領域は、吸入圧力に関係なく一定の最大・最
小許容過熱度線によつて設定されている特許請求
の範囲第1項記載の車両用冷房装置における可変
容量圧縮機の運転制御方法。 3 制御装置によつて記憶されたモリエル線図の
許容領域の最大・最小許容過熱度線は、等エント
ロピ線に沿つてほぼ平行に設定されている特許請
求の範囲第1項記載の車両用冷房装置における可
変容量圧縮機の運転制御方法。 4 制御装置によつて記憶されたモリエル線図の
許容領域の上限と下限は、吸入温度に関係なく最
大・最小許容圧力線によつて設定されている特許
請求の範囲第1項記載の車両用冷房装置における
可変容量圧縮機の運転制御方法。 5 制御装置によつて記憶されたモリエル線図の
許容領域の上限と下限は、吸入圧力に関係なく最
大・最小許容温度線によつて設定されている特許
請求の範囲第1項記載の車両用冷房装置における
可変容量圧縮機の運転制御方法。 6 小容量で運転されている状態で、最小許容過
熱度線、最小許容圧力線もしくは最小許容温度線
から外れたときは、圧縮機の運転停止命令を出す
ようにした特許請求の範囲第1項ないし第5項の
いずれかに記載された車両用冷房装置における可
変容量圧縮機の運転制御方法。
[Scope of Claims] 1. In a vehicle cooling system that performs cooling by exchanging heat through condensation and evaporation of refrigerant circulating in a refrigeration cycle using a variable capacity compressor, the pressure of the refrigerant drawn into the compressor and the The temperature is detected by a pressure detection device and a temperature detection device, and the actual suction state point on the Mollier diagram determined by these suction pressures and temperatures is stored in advance by the control device and a predetermined degree of superheat is maintained. The control device compares and determines whether or not the compressor is within a set allowable range, and when the compressor falls outside the allowable range, outputs a capacity switching command from the control unit to switch the capacity of the compressor;
A method for controlling operation of a variable capacity compressor, characterized in that the suction state point is returned to within an allowable range. 2. The vehicle air conditioner according to claim 1, wherein the permissible region of the Mollier diagram stored by the control device is set by constant maximum and minimum permissible superheat degree lines regardless of the suction pressure. A method for controlling the operation of a variable capacity compressor in an apparatus. 3. The vehicle air conditioner according to claim 1, wherein the maximum and minimum permissible superheat degree lines of the permissible region of the Mollier diagram stored by the control device are set substantially parallel to the isentropic line. A method for controlling the operation of a variable capacity compressor in an apparatus. 4. The vehicle according to claim 1, wherein the upper and lower limits of the allowable region of the Mollier diagram stored by the control device are set by the maximum and minimum allowable pressure lines, regardless of the suction temperature. A method for controlling the operation of a variable capacity compressor in a cooling system. 5. The vehicle according to claim 1, wherein the upper and lower limits of the allowable range of the Mollier diagram stored by the control device are set by the maximum and minimum allowable temperature lines, regardless of the suction pressure. A method for controlling the operation of a variable capacity compressor in a cooling system. 6 Claim 1 provides that, when the compressor deviates from the minimum permissible superheat line, minimum permissible pressure line, or minimum permissible temperature line while operating at a small capacity, a command to stop operation of the compressor is issued. 6. A method for controlling the operation of a variable capacity compressor in a vehicle cooling system according to any one of items 5 to 6.
JP56087253A 1981-06-05 1981-06-05 Operation controlling method for variable displacement compressor used in automotive space-cooling device Granted JPS57203887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56087253A JPS57203887A (en) 1981-06-05 1981-06-05 Operation controlling method for variable displacement compressor used in automotive space-cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56087253A JPS57203887A (en) 1981-06-05 1981-06-05 Operation controlling method for variable displacement compressor used in automotive space-cooling device

Publications (2)

Publication Number Publication Date
JPS57203887A JPS57203887A (en) 1982-12-14
JPH0135263B2 true JPH0135263B2 (en) 1989-07-24

Family

ID=13909625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56087253A Granted JPS57203887A (en) 1981-06-05 1981-06-05 Operation controlling method for variable displacement compressor used in automotive space-cooling device

Country Status (1)

Country Link
JP (1) JPS57203887A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637759U (en) * 1986-06-30 1988-01-19
FR2951669B1 (en) * 2009-10-26 2011-10-28 Valeo Systemes Thermiques METHOD FOR CONTROLLING THE OPERATION OF A CLIMATE LOOP OF A VEHICLE

Also Published As

Publication number Publication date
JPS57203887A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
US7000413B2 (en) Control of refrigeration system to optimize coefficient of performance
US6829903B2 (en) Air conditioner and method for operating air conditioner in cooling mode
WO1999034156A1 (en) Refrigerating cycle
WO2008019689A2 (en) A transcritical refrigeration system with a booster
WO2003083382A1 (en) Operating method for cascade refrigeration system
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
CN102620458A (en) Refrigeration cycle apparatus
US5499508A (en) Air conditioner
JPH074756A (en) Air-conditioning device
JP2002228282A (en) Refrigerating device
JP2016048131A (en) Steam compression type refrigeration cycle
JPH0135263B2 (en)
CN113883579B (en) Water system air conditioner
JP2904525B2 (en) Method of controlling refrigerant flow rate in heat pump air conditioner and heat pump air conditioner
JPH0135264B2 (en)
CN114857665A (en) Multi-split system
CN114151935A (en) Air conditioning system
CN1019894C (en) Refrigerating device using temperature difference type expansion valve as throttle control
KR102532023B1 (en) Supercritical refrigeration system and control method of same
WO2023032138A1 (en) Refrigeration cycle device
JP7297162B1 (en) Refrigeration cycle device and control method
JP3353367B2 (en) Air conditioner
JP7224503B2 (en) refrigeration cycle equipment
EP3978828B1 (en) Refrigeration cycle device
JPS6230690Y2 (en)