JPH0134787B2 - - Google Patents

Info

Publication number
JPH0134787B2
JPH0134787B2 JP11409080A JP11409080A JPH0134787B2 JP H0134787 B2 JPH0134787 B2 JP H0134787B2 JP 11409080 A JP11409080 A JP 11409080A JP 11409080 A JP11409080 A JP 11409080A JP H0134787 B2 JPH0134787 B2 JP H0134787B2
Authority
JP
Japan
Prior art keywords
weight
adhesive
resin
parts
nitrile rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11409080A
Other languages
Japanese (ja)
Other versions
JPS5738133A (en
Inventor
Tetsuzo Nakai
Kentaro Kobayashi
Shoji Kato
Takara Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP11409080A priority Critical patent/JPS5738133A/en
Publication of JPS5738133A publication Critical patent/JPS5738133A/en
Publication of JPH0134787B2 publication Critical patent/JPH0134787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、化学メツキ用積層板の製造方法に関
し、さらに詳しくは、特殊接着剤を使用して一体
成形した、金属の密着性、はんだ耐熱性及び耐菌
性のすぐれた、化学メツキ用積層板に関する。 従来、積層板の表面に化学メツキをする場合、
積層板表面に接着性向上剤、例えばブタジエン系
樹脂を溶剤に希釈した溶液を、浸漬法、ロールコ
ート法あるいは刷毛塗り法等により塗布乾燥した
後、化学メツキ処理を行つていたが、溶剤の不均
一な蒸発や、蒸発過程での樹脂の凝集などによ
り、しわやまだらを生じ平滑な表面が得難かつ
た。また、熱硬化性樹脂含浸プリプレグを所望枚
数積層し、該積層物の上に離型フイルムを載置し
て成形し、得られた積層板に化学メツキする方法
は、積層板表面が鏡面状となり、溶剤による膨潤
処理後、化学メツキ処理を行うため、金属の密着
強度が著しく小さいという欠点があると同時に、
高温多湿下で使用される場合に、菌(カビ、バク
テリア等)による回路の侵食がある。さらに、そ
の離型フイルム上に一般的接着剤の接着剤層を形
成させ、接着剤層をプリプレグと積層一体化する
方法も行われているが、接着剤層が一体化するの
に不適当で、化学メツキにより得られた金属層付
積層板を印刷回路板として用いた場合、密着強
度、はんだ耐熱性及び菌による回路の浸食度の面
で、信頼性が低いという欠点がある。 本発明は、かかる点に鑑みてなされたもので、
積層板表面に形成するメツキ用接着剤皮膜につき
鋭意検討の結果、特殊接着剤を使用することによ
り、積層板の製造と積層板表面の接着剤皮膜の形
成を同時に行つても、該積層板を化学メツキによ
り印刷回路板として用いた場合、密着強度、はん
だ耐熱性及び菌(カビ、バクテリア等)による回
路の浸食のない、十分な信頼性を有する積層板を
製造しうることを見出した。 すなわち、本発明は、熱硬化性樹脂を含浸させ
た複数枚のプリプレグを重ね合せ、接着剤樹脂分
中30〜60重量%のブタジエンニトリルラバー、接
着剤樹脂分中60〜10重量%のキシレン樹脂、接着
剤樹脂分中10〜30重量%のエポキシ樹脂、接着剤
樹脂分中0.01〜2重量%のイオウ及び除菌剤から
なる接着剤(ただし、接着剤樹脂分とはブタジエ
ンニトリルラバー、キシレン樹脂、エポキシ樹脂
3成分の合計量をいう)を用いて、離型フイルム
上に形成させた接着剤層を、前記重ね合せたプリ
プレグの少くとも一面に、該離型フイルムを外側
にして積層し、加熱加圧して一体化成形したの
ち、該離型フイルムを除去することを特徴とす
る、耐菌性を有する化学メツキ用積層板の製造方
法である。 以下に本発明を詳細に説明する。 本発明の熱硬化性樹脂を含浸させたプリプレグ
は、エポキシ樹脂、フエノール樹脂、メラミン樹
脂、ポリイミド樹脂等を、積層板用基材の紙、ガ
ラスクロス等に含浸させたプリプレグである。 本発明に使用する特殊な接着剤は、第一の成分
としてはブタジエンニトリルラバーであり、これ
はアクリルニトリルとブタジエンとの共重合、あ
るいはこの二成分系に例えばアクリル酸のような
第三成分を加えて共重合させたものである。この
ようなブタジエンニトリルラバーの市販品として
は、例えばニポール1042(日本ゼオン社製商品名)
ハイカー1072(グツドリツチ社製商品名)などが
ある。このブタジエンニトリルラバーの使用量
は、メツキ金属層の密着力、耐熱性および電気特
性を考慮して、樹脂分(接着剤第1〜第3成分の
合計量)中30〜60重量%となるよう適宜選択でき
る。 接着剤の第二の成分であるキシレン樹脂は、キ
シレンとホルムアルデヒドとを触媒の存在下に反
応させ、フエノール変性した樹脂で、ニカノール
(三菱ガス化学社製商品名)などが市販されてい
る。メツキ金属層の熱時の密着力、電気絶縁性を
考慮して、樹脂分中60〜10重量%使用するのが好
ましい。 第三の成分であるエポキシ樹脂としては、ビス
フエノール型エポキシ樹脂、エポキシ変性フエノ
ール樹脂、脂環状エポキシ樹脂などがあげられ、
メツキ金属層の密着力、耐熱性を考慮すれば、使
用量として樹脂分中10〜30重量%とするのがよ
い。これらエポキシ樹脂は酸無水物、ポリアミ
ン、ポリアミドもしくはルイス酸など適宜併用し
てもよい。さらに架橋剤として樹脂分中0.01〜2
重量%のイオウを添加することにより、耐熱性の
向上が認められる。 第四の成分である防菌剤として添加される化合
物としては、 (1) 10,10′−オキシビスフエノキサアルシン
(商品名バイナジン) (2) 2−(4−チアゾリル)ベンゾイミダゾール
(商品名T.B.Z.) (3) N−トリガクロロメチルチオ−4−シクロヘ
キセン−1,2−ジカルボンイミド(商品名バ
ンサイド89) (4) N−(フルオロジクロロメチルチオ)フタル
イミド(商品名プレペンドールA−3) が使用可能であり、これらの化合物は1種又は2
種以上の混合系で用いても良いが、メツキ金属層
の密着力、耐熱性、電気絶縁性および耐菌性を考
慮すれば、使用量として樹脂分に対し、0.02〜2
重量%に選択するのがよい。0.02重量%未満で
は、耐菌性が得られないし、一方2重量%を超過
しては、耐熱性、電気絶縁性等の特性に悪影響を
及ぼす。 本発明において、接着剤成分として上記のブタ
ジエンニトリルラバー、キシレン樹脂、エポキシ
樹脂、イオウ及び防菌剤からなる組成で充分その
目的を達成し得るが、さらにこれに微粉末の酸化
ケイ素を添加すれば、この積層板を化学メツキに
よる金属層付印刷回路板として用いた場合、はん
だ耐熱性が著しく向上することを見出した。 酸化ケイ素の混合比は、前記樹脂分100重量部
当り5〜20重量部の範囲が好ましい。5重量部未
満ではその添加効果が得られないし、一方20重量
部を超えては化学メツキに適した接着剤皮膜が形
成され難くなると共に種々の特性に悪影響を及ぼ
す。 次に実施例を挙げ、本発明を具体的に説明す
る。以下に部とあるは重量部を意味する。 実施例 1 ブタジエンニトリルラバー100部、エポキシ樹
脂50部をメチルエチルケトン500部、トルエン200
部に膨潤溶解した溶液に、キシレン樹脂50部、無
水クロレンデイツク酸15部、イオウ1部、加硫促
進剤1部、バイナジン1部、微粉末酸化ケイ素20
部を添加し、十分にかく拌混合し、接着剤溶液を
調製した。該接着剤溶液を厚さ40ミクロンの市販
のポリプロピレンフイルムに塗布膜の厚さが40〜
50ミクロンになるように塗布乾燥して接着剤皮膜
を形成させた。次に基材にガラス布を用いエポキ
シ樹脂を含浸させたプリプレグを8枚重ね、この
上下面に、ポリプロピレンフイルム上に形成させ
た接着剤皮膜を、フイルムが外側になるように重
畳し、170℃・40Kg/cm2で90分間加熱加圧して一
体成形して1.6mm厚さの積層板を得た。表面のポ
リプロピレンフイルムを剥離除去した該積層板
を、50℃のクロム硫酸溶液(無水クロム酸75g、
濃硫酸300ml、水700mlからなる)中に7分間浸漬
し、親水化後活性化処理および化学メツキ処理を
順次施して、厚さ0.5ミクロンの銅メツキ層を設
け、さらに電気メツキを施して約35ミクロンに肉
盛した。 上述の銅メツキ層を設けた積層板について、
JIS C−6481印刷回路用銅張積層板試験法に準じ
て引きはがし強さ試験及びはんだ耐熱性試験、並
びにASTM G−21−75により耐菌性試験を行つ
た。その結果を、既述のプリプレグと接着剤の組
成とともに、第1表に示す。 実施例 2 基材に紙を用い、フエノール樹脂を含浸させた
プリプレグ7枚を重ね、この上下面に、実施例1
で得たポリプロピレン上に形成させた接着剤皮膜
を重畳し、160℃・150Kg/cm2で75分間加熱加圧成
形して一体化し、1.6mm厚さの積層板を得た。実
施例1と同様に銅メツキ処理をして得た積層板の
試験結果を第1表に示す。 実施例 3〜6 実施例1における接着剤の組成のうち、防菌剤
の種類と添加量及び微粉末酸化ケイ素の添加量を
変えた接着剤溶液を調製し、実施例1と同様にし
てポリプロピレンフイルム上に接着剤皮膜を形成
させ、紙基材エポキシ樹脂含浸プリプレグ6枚重
ねた上下面に重畳し、150℃・110Kg/cm2・100分
の条件で加熱加圧成形して一体化し、1.6mm厚さ
の積層板を得た。実施例1と同様に銅メツキ処理
をして得た積層板の試験結果を第1表に示す。 実施例 7 接着剤の組成で微粉末酸化ケイ素を配合しない
こと以外は、実施例3〜6と同様にして得た積層
板についての試験結果を第1表に示す。 比較例 1 本発明の接着剤組成物の代りに、ニトリルラバ
ー100部、フエノール樹脂150部からなる接着剤組
成物を調製し、実施例3〜6と同様に成形一体化
し、かつメツキ処理をして得た積層板についての
試験結果を第1表に示す。 比較例 2〜5 接着剤の組成で防菌剤を配合しないこと以外
は、実施例3〜6と同様にして得た積層板につい
ての試験結果を第1表に示す。
The present invention relates to a method for manufacturing a laminate for chemical plating, and more specifically, a laminate for chemical plating that is integrally molded using a special adhesive and has excellent metal adhesion, solder heat resistance, and germ resistance. Regarding. Conventionally, when chemically plating the surface of a laminate,
A solution of an adhesion improver, such as a butadiene-based resin diluted in a solvent, was applied to the surface of the laminate using a dipping method, roll coating method, or brush coating method, followed by chemical plating treatment. Uneven evaporation and agglomeration of the resin during the evaporation process caused wrinkles and mottling, making it difficult to obtain a smooth surface. In addition, there is a method in which a desired number of prepregs impregnated with thermosetting resin are laminated, a release film is placed on the laminate, and the resulting laminate is chemically plated. Since the chemical plating treatment is performed after the swelling treatment with a solvent, there is a drawback that the adhesion strength of the metal is extremely low.
When used under high temperature and humidity, the circuit may be eroded by fungi (mold, bacteria, etc.). Furthermore, a method of forming an adhesive layer of a general adhesive on the release film and laminating the adhesive layer with the prepreg has been used, but this method is not suitable for integrating the adhesive layer. When a laminated board with a metal layer obtained by chemical plating is used as a printed circuit board, there is a drawback that reliability is low in terms of adhesion strength, solder heat resistance, and degree of corrosion of the circuit by bacteria. The present invention has been made in view of these points,
As a result of intensive studies on the adhesive film for plating formed on the surface of the laminate, we found that by using a special adhesive, even if the manufacturing of the laminate and the formation of the adhesive film on the surface of the laminate are carried out at the same time, the laminate will remain intact. It has been found that when used as a printed circuit board by chemical plating, it is possible to produce a laminated board with sufficient reliability due to adhesion strength, solder heat resistance, and no erosion of the circuit by fungi (mold, bacteria, etc.). That is, in the present invention, a plurality of prepregs impregnated with a thermosetting resin are stacked together, and 30 to 60% by weight of butadiene nitrile rubber in the adhesive resin and 60 to 10% by weight of xylene resin in the adhesive resin. , an adhesive consisting of 10 to 30% by weight of epoxy resin in the adhesive resin, 0.01 to 2% by weight of sulfur and a disinfectant in the adhesive resin (however, the adhesive resin includes butadiene nitrile rubber, xylene resin, etc.) , refers to the total amount of the three epoxy resin components), an adhesive layer formed on a release film is laminated on at least one surface of the stacked prepregs, with the release film on the outside, This is a method for manufacturing a laminate for chemical plating having antibacterial properties, characterized in that the release film is removed after integral molding by heating and pressing. The present invention will be explained in detail below. The prepreg impregnated with a thermosetting resin of the present invention is a prepreg obtained by impregnating paper, glass cloth, etc., which is a base material for a laminate, with an epoxy resin, a phenol resin, a melamine resin, a polyimide resin, or the like. The special adhesive used in the present invention is a butadiene nitrile rubber as the first component, which is a copolymer of acrylonitrile and butadiene, or a third component such as acrylic acid is added to this two-component system. In addition, it is copolymerized. As a commercial product of such butadiene nitrile rubber, for example, Nipole 1042 (trade name manufactured by Nippon Zeon Co., Ltd.)
There are Hiker 1072 (product name manufactured by Gutsudoritsuchi) and others. The amount of butadiene nitrile rubber to be used is determined to be 30 to 60% by weight of the resin content (total amount of the first to third adhesive components), taking into account the adhesion, heat resistance, and electrical properties of the plating metal layer. You can choose as appropriate. The xylene resin, which is the second component of the adhesive, is a phenol-modified resin obtained by reacting xylene and formaldehyde in the presence of a catalyst, and is commercially available as Nicanol (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.). Considering the adhesion and electrical insulation properties of the plating metal layer when heated, it is preferable to use the resin in an amount of 60 to 10% by weight based on the resin content. The epoxy resin that is the third component includes bisphenol type epoxy resin, epoxy-modified phenol resin, alicyclic epoxy resin, etc.
Considering the adhesion and heat resistance of the plating metal layer, the amount used is preferably 10 to 30% by weight based on the resin content. These epoxy resins may be used in combination with acid anhydrides, polyamines, polyamides, Lewis acids, etc. as appropriate. In addition, as a crosslinking agent, 0.01 to 2% of the resin content is added.
By adding sulfur in a weight percent, an improvement in heat resistance is observed. Compounds added as the fourth component, an antibacterial agent, include: (1) 10,10′-oxybisphenoxaarsine (trade name: Vinazine); (2) 2-(4-thiazolyl)benzimidazole (trade name TBZ) (3) N-Trigachloromethylthio-4-cyclohexene-1,2-dicarbonimide (trade name Banside 89) (4) N-(fluorodichloromethylthio)phthalimide (trade name Prependol A-3) can be used, and one or two of these compounds can be used.
It may be used in a mixed system of more than one species, but considering the adhesion, heat resistance, electrical insulation and germ resistance of the plating metal layer, the amount used is 0.02 to 2% of the resin content.
It is preferable to select the percentage by weight. If it is less than 0.02% by weight, no bacterial resistance can be obtained, while if it exceeds 2% by weight, properties such as heat resistance and electrical insulation will be adversely affected. In the present invention, the composition consisting of the above-mentioned butadiene nitrile rubber, xylene resin, epoxy resin, sulfur, and antibacterial agent as adhesive components is sufficient to achieve the purpose, but if finely powdered silicon oxide is further added to this, found that when this laminate was used as a printed circuit board with a metal layer formed by chemical plating, the solder heat resistance was significantly improved. The mixing ratio of silicon oxide is preferably in the range of 5 to 20 parts by weight per 100 parts by weight of the resin. If it is less than 5 parts by weight, no effect can be obtained, while if it exceeds 20 parts by weight, it becomes difficult to form an adhesive film suitable for chemical plating, and various properties are adversely affected. Next, the present invention will be specifically explained with reference to Examples. In the following, parts refer to parts by weight. Example 1 100 parts of butadiene nitrile rubber, 50 parts of epoxy resin, 500 parts of methyl ethyl ketone, 200 parts of toluene
50 parts of xylene resin, 15 parts of chlorendic acid anhydride, 1 part of sulfur, 1 part of vulcanization accelerator, 1 part of binazine, and 20 parts of finely powdered silicon oxide
The adhesive solution was prepared by stirring and mixing thoroughly. The adhesive solution is applied to a commercially available polypropylene film with a thickness of 40 microns.
It was applied to a thickness of 50 microns and dried to form an adhesive film. Next, eight sheets of prepreg impregnated with epoxy resin using glass cloth as the base material were stacked, and an adhesive film formed on a polypropylene film was superimposed on the top and bottom surfaces with the film facing outward. - A laminate plate with a thickness of 1.6 mm was obtained by heating and pressing at 40 kg/cm 2 for 90 minutes and integrally molding it. The laminate, from which the polypropylene film on the surface had been peeled off, was heated to 50°C in a chromium sulfuric acid solution (75 g of chromic anhydride,
(consisting of 300 ml of concentrated sulfuric acid and 700 ml of water) for 7 minutes, and after making it hydrophilic, it was sequentially subjected to activation treatment and chemical plating treatment to form a 0.5 micron thick copper plating layer. Filled to micron size. Regarding the laminate with the above-mentioned copper plating layer,
A peel strength test and a soldering heat resistance test were conducted in accordance with JIS C-6481 Test Method for Copper Clad Laminates for Printed Circuits, and a bacteria resistance test was conducted in accordance with ASTM G-21-75. The results are shown in Table 1 along with the compositions of the prepreg and adhesive described above. Example 2 Using paper as the base material, seven sheets of prepreg impregnated with phenol resin were stacked, and Example 1 was placed on the upper and lower surfaces of the sheets.
The adhesive film formed on the polypropylene obtained in step 1 was superimposed and integrated by heating and pressure molding at 160° C. and 150 kg/cm 2 for 75 minutes to obtain a 1.6 mm thick laminate. Table 1 shows the test results of the laminates obtained by copper plating in the same manner as in Example 1. Examples 3 to 6 Adhesive solutions were prepared in which the type and amount of the antibacterial agent and the amount of finely powdered silicon oxide added were changed from the composition of the adhesive in Example 1, and polypropylene was prepared in the same manner as in Example 1. An adhesive film is formed on the film, and it is superimposed on the top and bottom surfaces of six paper-based epoxy resin-impregnated prepregs, and is integrated by heating and pressure molding at 150℃ and 110Kg/cm 2 for 100 minutes. A laminate with a thickness of mm was obtained. Table 1 shows the test results of the laminates obtained by copper plating in the same manner as in Example 1. Example 7 Table 1 shows test results for laminates obtained in the same manner as Examples 3 to 6, except that fine powder silicon oxide was not blended in the composition of the adhesive. Comparative Example 1 Instead of the adhesive composition of the present invention, an adhesive composition consisting of 100 parts of nitrile rubber and 150 parts of phenolic resin was prepared, integrally molded and plated in the same manner as in Examples 3 to 6. Table 1 shows the test results for the laminates obtained. Comparative Examples 2 to 5 Table 1 shows test results for laminates obtained in the same manner as Examples 3 to 6, except that no antibacterial agent was added to the adhesive composition.

【表】【table】

【表】 *1 ニトリルラバー
[Table] *1 Nitrile rubber

Claims (1)

【特許請求の範囲】 1 熱硬化性樹脂を含浸させた複数枚のプリプレ
グを重ね合せ、接着剤樹脂分中30〜60重量%のブ
タジエンニトリルラバー、接着剤樹脂分中60〜10
重量%のキシレン樹脂、接着剤樹脂分中10〜30重
量%のエポキシ樹脂、接着剤樹脂分中0.01〜2重
量%のイオウ及び除菌剤からなる接着剤(ただ
し、接着剤樹脂分とはブタジエンニトリルラバ
ー、キシレン樹脂、エポキシ樹脂3成分の合計量
をいう)を用いて、離型フイルム上に形成させた
接着剤層を、前記重ね合せたプリプレグの少くと
も一面に、該離型フイルムを外側にして積層し、
加熱加圧して一体化成形したのち、該離型フイル
ムを除去することを特徴とする、耐菌性を有する
化学メツキ用積層板の製造方法。 2 防菌剤が、10,10′−オキシビスフエノキサ
アルシン、2−(4−チアゾリル)ベンゾイミダ
ゾール、N−トリクロロメチルチオ−4−シクロ
ヘキセン、−1,2−ジカルボンイミド及びN−
(フルオロジクロロメチルチオ)フタルイミドか
らなる群から選ばれた1種又は2種以上の化合物
である、特許請求の範囲第1項記載の製造方法。 3 接着剤が、ブタジエンニトリルラバー、キシ
レン樹脂、エポキシ樹脂及びイオウからなる組成
分を100重量部、防菌剤を0.02〜2重量部、及び
微粉末酸化ケイ素を5〜20重量部の割合に混合し
たものである、特許請求の範囲第1項記載の製造
方法。
[Scope of Claims] 1. A plurality of prepregs impregnated with thermosetting resin are stacked together, and butadiene nitrile rubber with an adhesive resin content of 30 to 60% by weight and an adhesive resin content of 60 to 10% by weight is used.
An adhesive consisting of xylene resin (weight%), epoxy resin (10 to 30% by weight in the adhesive resin content), sulfur (0.01 to 2% by weight in the adhesive resin content), and a disinfectant (however, the adhesive resin content refers to butadiene). An adhesive layer formed on a release film (referring to the total amount of three components of nitrile rubber, xylene resin, and epoxy resin) is applied to at least one surface of the stacked prepregs, and the release film is placed on the outside. and stack them,
1. A method for producing a laminate for chemical plating having antibacterial properties, which comprises removing the release film after integral molding by heating and pressing. 2 The antibacterial agent is 10,10′-oxybisphenoxaarsine, 2-(4-thiazolyl)benzimidazole, N-trichloromethylthio-4-cyclohexene, -1,2-dicarboximide, and N-
The manufacturing method according to claim 1, which is one or more compounds selected from the group consisting of (fluorodichloromethylthio)phthalimide. 3 The adhesive consists of 100 parts by weight of butadiene nitrile rubber, xylene resin, epoxy resin, and sulfur, 0.02 to 2 parts by weight of an antibacterial agent, and 5 to 20 parts by weight of finely powdered silicon oxide. The manufacturing method according to claim 1, wherein the manufacturing method is as follows.
JP11409080A 1980-08-21 1980-08-21 Manufacture of laminated board for chemical plating having fungs-proofing property Granted JPS5738133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11409080A JPS5738133A (en) 1980-08-21 1980-08-21 Manufacture of laminated board for chemical plating having fungs-proofing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11409080A JPS5738133A (en) 1980-08-21 1980-08-21 Manufacture of laminated board for chemical plating having fungs-proofing property

Publications (2)

Publication Number Publication Date
JPS5738133A JPS5738133A (en) 1982-03-02
JPH0134787B2 true JPH0134787B2 (en) 1989-07-20

Family

ID=14628842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11409080A Granted JPS5738133A (en) 1980-08-21 1980-08-21 Manufacture of laminated board for chemical plating having fungs-proofing property

Country Status (1)

Country Link
JP (1) JPS5738133A (en)

Also Published As

Publication number Publication date
JPS5738133A (en) 1982-03-02

Similar Documents

Publication Publication Date Title
US4029845A (en) Printed circuit base board and method for manufacturing same
JPS6331367B2 (en)
JPH0134787B2 (en)
JPH0126332B2 (en)
JPS6021220A (en) Manufacture of chemical plating laminated sheet
JPH0247543B2 (en)
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JPH02187485A (en) Adhesive composition for flexible printed circuit board
JPS6079080A (en) Adhesive composition
JPH0138136B2 (en)
JP3779555B2 (en) Method for producing printed circuit board
JPS6336934B2 (en)
JPS58119852A (en) Film or sheet for chemical plating
JPS58199151A (en) Manufacture of laminated board for chemical plating
JPH0361588B2 (en)
JPS62116682A (en) Metal foil adhesive for laminate
JPH0192237A (en) Production of copper-clad laminated sheet
JPH06270337A (en) Highly heat-resistant prepreg
JPH06244561A (en) Flex/rigid compound wiring board
JPS6260877A (en) Laminated sheet for chemical plating
JPH05304360A (en) Manufacture of multi-layer printed wiring board
JPH024887A (en) Adhesive composition
JPH02243334A (en) Multi-layer copper-clad laminate
JPH09260856A (en) Multilayered copper-clad laminated board
JPH03162423A (en) Prepreg for laminate