JPH0134664B2 - - Google Patents

Info

Publication number
JPH0134664B2
JPH0134664B2 JP2194881A JP2194881A JPH0134664B2 JP H0134664 B2 JPH0134664 B2 JP H0134664B2 JP 2194881 A JP2194881 A JP 2194881A JP 2194881 A JP2194881 A JP 2194881A JP H0134664 B2 JPH0134664 B2 JP H0134664B2
Authority
JP
Japan
Prior art keywords
paint
dip coating
slurry
coated
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2194881A
Other languages
Japanese (ja)
Other versions
JPS57136973A (en
Inventor
Seiji Oku
Nobuo Yoshimura
Masafumi Kano
Teruyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Kansai Denryoku KK filed Critical Dai Nippon Toryo KK
Priority to JP2194881A priority Critical patent/JPS57136973A/en
Publication of JPS57136973A publication Critical patent/JPS57136973A/en
Publication of JPH0134664B2 publication Critical patent/JPH0134664B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は樹脂粒子を水中に分散させた、スラリ
ー状塗料を使用した浸漬塗装方法に関するもので
ある。 さらに詳しくはダレ、ムラ、タマリ、ワキのな
い、1回の塗装で均質な膜厚の厚塗り塗装が可能
なスラリー状塗料の浸漬塗装方法に関するもので
ある。 従来よりスラリー状塗料の浸漬塗装方法は、一
回で厚膜塗装出来、また塗着効率がよいことから
注目されている。 しかしながら、かかるスラリー状塗料の浸漬塗
装において、被塗物を浸漬塗装槽より引き上げた
時に被塗物の穴などの開口部、あるいは屈曲部に
膜を張り、その膜が破れた時、水等が一気に流下
するため、破膜箇所の下部の塗膜を押し流し、そ
の結果被塗物のスケが出たり、あるいは素地を露
出するという欠点があつた。そのためその箇所
は、塗装仕上りが悪いばかりでなく、錆の発生、
塗膜剥離等の原因となり長期耐久性の低下をもた
らしていた。 そこで前記欠点を解決するため、消泡剤をスラ
リー状塗料中に添加することが従来試みられた
が、消泡剤の影響により、塗膜にハジキ、クレー
ターが生じやすく、またスラリー状塗料中の樹脂
粒子の分散安定性が損なわれる傾向にあつた。加
えて、上記槽内の塗料は循環あるいは撹拌されて
いるので、消泡剤が分散され消泡効果が経時的に
減少するため、間欠的に消泡剤を添加する必要が
あつた。さらにスラリー状塗料中に含まれる消泡
剤の量が多くなり、その結果塗膜の耐食性、耐水
性等を低下させる原因となつた。それ故、消泡剤
の添加は、適切な解決法とは言えなかつた。 また、スラリー状塗料の浸漬塗装において、被
塗物の水平部等にタマリが生じやすいという欠点
もあつた。そこで、水平部のタレ、流れをよくす
るためスラリー状塗料の水希釈度を高めることに
よりタマリを解消することが試みられたが、スラ
リー状塗料の特徴である厚膜塗装が出来なくな
り、この方法は適切な解決法とは言えなかつた。 本発明の目的は、スラリー状塗料の組成を変え
ることなく、ダレ、ムラ、タマリ、ワキ等のな
い、均質な膜厚の厚塗り塗装が可能な塗装方法を
提供することにある。 すなわち、本発明はスラリー状塗料を入れた浸
漬塗装槽内に被塗物を浸漬して塗装する方法にお
いて、浸漬塗装槽より被塗物を引き上げた後、少
なくとも1分以内に被塗物を3〜50m/secの風
速の空気を当てることを特徴とするスラリー状塗
料の浸漬塗装方法に関する。 本発明の方法により、早期に破膜されダレや素
地のスケ等が防止され、タマリも解消されるので
均質な塗膜を得ることができる。 本発明において使用する塗料は、水を媒体とし
て1〜80μ程度の樹脂粒子を固形分濃度として10
〜70重量%の範囲で分散させ、さらに必要に応じ
て顔料あるいは微量の界面活性剤、増粘剤等の添
加剤を含有させたスラリー状塗料である。 上記スラリー状塗料の性状は次のものが特に本
発明の方法に適している。 すなわち塗装後の粘度100〜500CPS〔No.3ロー
ターにて60r.p.mの割合で撹拌し、1分後のB型
粘度計による粘度測定〕の構造粘性をもち、かつ
チキソ比〔No.3ローターにて6r.p.m及び60r.p.m
の割合で撹拌し、1分後のB型粘度による粘度比
(6r.p.mの粘度)/(60r.p.mの粘度)〕が1.5以上
のスラリー状塗料が本発明の方法に適している。 スラリー状塗料の前記樹脂としては自己硬化
型、硬化剤硬化型のいずれでもよく、例えばアク
リル樹脂、ポリエステル樹脂、アルキツド樹脂、
エポキシ樹脂、エポキシ変性ポリエステル樹脂、
ウレタン変性ポリエステル樹脂等が使用出来る。 特に本発明においては以下に説明するようなワ
キやクラツクが生じ難いスラリー状塗料が好適で
ある。 すなわち (A) (a) ビスフエノールAとエピクロルヒドリン
及び/又はメチルエピクロルヒドリンとの反
応により得られる、平均分子量900〜3000の
エポキシ樹脂と、 ジシアンジアミド、ブロツクイソシアネー
ト化合物、酸価40〜250のポリエステル樹脂
からなる群から選ばれた少なくとも1種類の
硬化物とからなる平均粒子径10〜80μの樹脂
粒子30〜55重量%と (b) 水70〜45重量% より成る組成物……100重量部、 (B) 平均分子量30万〜400万のポリエチレンオキ
サイド及び/又はベントナイト……0.05〜0.6
重量部、及び (C) HLB価12〜16の非イオン界面活性剤……0.1
〜0.5重量部 からなるスラリー状塗料を使用したものが好適で
ある。このスラリー状塗料の主要構成成分である
樹脂粒子はエポキシ樹脂と硬化剤とからなつてい
る。 エポキシ樹脂はビスフエノールAとエピクロル
ヒドリン及び/又はメチルエピクロルヒドリンと
の反応により得られる平均分子量が900〜3000の
ものを使用する。 平均分子量が前記範囲より小さいと、塗膜にワ
キが発生しやすくなり、厚膜塗装性が劣り、また
塗料の貯蔵安定性も劣るので好ましくなく、一方
前記範囲より大きいと、塗膜の平滑性、防食性が
悪くなり好ましくない。 また、硬化剤としてはジシアンジアミド、ブロ
ツクイソシアネート化合物、ポリエステル樹脂が
使用出来る。 ブロツクイソシアネート化合物は多価イソシア
ネート類を活性水素化合物でマスクしたものであ
る。該活性水素化合物は沸点140〜250℃、特に
150〜230℃のものが好ましい。 活性水素化合物としては、メチルエチルケトキ
シム、メチルイソブチルケトキシム、シクロヘキ
サノンオキシム等のオキシム系:γ−ブチロラク
タム、δ−バレロラクタム、ε−カプロラクタ
ム、ペプトラクタム等のラクタム系:フルフリー
ルアルコール、ベンジルアルコール、シクロヘキ
サノール等のアルコール系:ブチルセロソルブ、
フエニルセロソルブ、メチルカルビトール、カル
ビトール、ブチルカルビトール等のエーテルアル
コール系:ホルムアニリド、アセトアニリド、ベ
ンズアニリド、ラクトアニリド等のアミド系:ス
クシイミド、マレインイミド、フタルイミド等の
イミド系あるいはこれら2種以上の混合物が代表
的なものとして使用出来る。 また多価イソシアネート類としては、トリレン
ジイソシアネート、4,4′−ジフエニルメタンジ
イソシアネート、1,5−ナフタレンジイソシア
ネート、o−トリシジンジイソシアネート、ジア
ニシジンジイソシアネート、キシレンジイソシア
ネート、ヘキサメチレンジイソシアネート、リジ
ンジイソシアネート、イソホロンジイソシアネー
ト、1−メチル−2,4−ジイソシアネートシク
ロヘキサン、1−メチル−2,6−ジイソシアネ
ートシクロヘキサン、4,4′−メチレンビスシク
ロヘキシルイソシアネート、4,4′−エチレンビ
ス(シクロヘキシルイソシアネート)、ω,ω′−
ジイソシアネート−1,4−ジメチルシクロヘキ
サン、ω,ω′−ジイソシアネート−1,3−ジ
メチルシクロヘキサン、2,2,4−トリメチル
ヘキサメチレンジイソシアネート、ダイマー酸ジ
イソシアネート、イソプロピリデンシクロヘキシ
ルジイソシアネートあるいはこれら2種以上の混
合物が代表的なものとして使用出来る。 また前記ポリエステル樹脂は酸価40〜250のも
のが使用される。 ポリエステル樹脂の酸価が前記範囲より小さい
と、架橋密度が小さくなり、耐水性、耐食性、硬
度等が不足し、一方前記範囲より大きいと、過剰
のカルボキシル基により耐水性、耐食性が不足し
さらに浸漬塗装浴内における塗料の安定性が低下
するため好ましくない。 また、ポリエステル樹脂の軟化点は30〜120℃
のものが好ましい。軟化点が前記範囲より低いと
樹脂粒子が凝集しやすくなり塗料の安定性が低下
し、一方前記範囲より高いと、得られる塗膜にヒ
ビ割れが生じやすくなり、厚塗り塗装性が悪くな
り好ましくない。 ポリエステル樹脂の合成においては、カルボン
酸成分を好ましくは30〜70重量%の割合で反応せ
しめる。該成分の具体例としては、(無水)フタ
ル酸、イソフタル酸、(無水)トリメリツト酸、
(無水)ピロメリツト酸、テトラヒドロ(無水)
フタル酸、ヘキサヒドロ(無水)フタル酸、メチ
ルテトラヒドロ(無水)フタル酸、メチルヘキサ
ヒドロ(無水)フタル酸、無水ハイミツク酸(無
水)コハク酸、アジピン酸、セバシン酸、安息香
酸、パラ−ターシヤリーブチル安息香酸等があ
り、これらは1種もしくは2種以上の混合物を用
いてもよい。 ポリエステル樹脂の合成においては多価アルコ
ール成分を好ましくは30〜70重量%の割合で反応
せしめる。該成分の具体例としては、エチレング
リコール、ジエチレングリコール、プロピレング
リコール、ネオペンチルグリコール、ジプロピレ
ングリコール、グリセリン、トリメチロールエタ
ン、トリメチロールプロパン、ペンタエリスリト
ール、ジペンタエリスリトール、ブタンジオー
ル、ペンタンジオール、ヘキサンジオール、1,
4−シクロヘキサンジメタノール、(水素化)ビ
スフエノールA等があり、これらは1種もしくは
2種以上の混合物および必要に応じてカーデユラ
ーE(シエルケミカル社製 商品名)を併用した
ものを用いる。その他に、必要に応じてポリエス
テル樹脂の変性原料として動植物油類ならびにそ
れらの脂肪酸、石油樹脂、ロジン、等も使用する
ことが出来る。 エポキシ樹脂と硬化剤の混合割合は、エポキシ
樹脂100重量部に対し、ジシアンジアミドであれ
ば3〜10重量部、ブロツクイソシアネート化合物
又はポリエステル樹脂であれば10〜100重量部が
適当である。また、前記3種類の硬化剤を2種以
上混合したものを3〜100重量部加えることも可
能である。 さらに樹脂粒子には、必要により適宜、着色顔
料、体質顔料あるいは粉体塗料に一般に使用され
ている添加剤も包含させることが出来る。 樹脂粒子の平均粒径は10〜80μ、特に好ましく
は12〜40μが適当である。平均粒径が前記範囲よ
り小さいと樹脂粒子同志の凝集性が大きくなり、
また加熱成膜時に発泡しやすくなり、一方前記範
囲より大きいと貯蔵安定性が悪くなり、また平滑
な塗膜が得にくくなるので好ましくない。 本発明で使用する前記樹脂粒子は公知の方法、
例えば前記固形樹脂を機械的に粉砕する方法、樹
脂溶液を噴霧乾燥する方法、樹脂溶液を水中に懸
濁させ、溶剤を除去し固形粒子を取り出す方法な
どにより製造される。 次に増粘剤としては、ポリエチレンオキサイド
またはベントナイトあるいは両者の併用が好適で
ある。 ポリエチレンオキサイドは、平均分子量30万〜
400万、特に好ましくは60万〜300万が適当であ
る。ポリエチレンオキサイドの平均分子量が前記
範囲より小さいと塗料の粘度が不足し、厚膜塗装
性が悪くなり、また塗装中の樹脂粒子が沈澱しや
すくなり、一方前記範囲より大きいと水に対する
溶解性が低下し、温度変化に対する塗料の安定性
が悪くなり、また塗料が糸引き性を帯び、タレ切
れが悪くなり浸漬塗装用として適さなくなるので
好ましくない。 ベントナイトは、3重量%水分散液としたとき
20℃における粘度が5センチポイズ以上のものが
好ましい。ベントナイトの前記粘度が5センチポ
イズより小さいと、塗料の粘度が不足し、前記ポ
リエチレンオキサイドと同様の問題点が出てきて
好ましくない。特にベントナイトの前記粘度は
200センチポイズ程度のものが好適である。 増粘剤の添加量は、塗料中約0.05〜0.6重量%
が適当である。 特にポリエチレンオキサイド単独の場合には
0.1〜0.5重量%、ベントナイト単独の場合には
0.05〜0.3重量%が適当である。増粘剤の添加量
が前記範囲より少ないと塗料の粘度が不足し、一
方前記範囲より多いと塗膜の耐水性、耐食性が悪
くなるので好ましくない。 次に非イオン界面活性剤はHLB価12〜16のも
のが好適である。HLB価が前記範囲より小さく
なると塗料の流動性が劣り、浸漬塗装に適さなく
なる。 該非イオン界面活性剤は塗料中に約0.1〜0.5重
量%添加するのが適当である。 非イオン界面活性剤としては、ポリオキシエチ
レンソルビタン脂肪酸エステル、ポリオキシエチ
レンソルビタール脂肪酸エステル、ポリオキシエ
チレン脂肪酸エステル、ポリオキシエチレン高級
アルコールエーテル、ポリオキシエチレンラノリ
ン誘導体、ポリオキシエチレンヒマシ油誘導体、
ポリオキシエチレンアルキルフエノールホルムア
ルデヒト縮合体、ポリオキシプロピレンポリオキ
シエチレンアルキルエーテル、ポリオキシエチレ
ンアルキルフエノールエーテル等が代表的なもの
として使用出来る。 次にスラリー状塗料の分散媒としては水を使用
する。水の量は塗料中に約45〜70重量%添加する
のが特に好ましく、この範囲で浸漬塗装作業性が
優れている。 本発明では、さらに平均分子量2000〜10000程
度のポリエチレングリコールを塗料中に1〜5重
量%加えることにより塗膜の平滑性をより一層向
上させることが出来る。 本発明においては以上説明した如き、スラリー
状塗料を浸漬塗装槽内に入れ被塗物をその中に浸
漬し、塗装する。 浸漬塗装槽としては撹拌装置をそなえており、
また温度調整装置やオーバーフロー槽等の塗料循
環装置をそなえているものが好ましい。スラリー
状塗料は構造粘性をもつているため、浴内の撹拌
を十分に実施し、浴内の粘度を一定に保つことが
必要であり、循環ポンプによる撹拌のみでなく、
プロペラ撹拌機やその他の強制撹拌装置を併用す
ることが好ましい。またスラリー状塗料は比較的
大きな粒子径の樹脂粒子を分散させたものである
ため、塗料循環ポンプとしてはダイヤフラムポン
プやローラーポンプ等の摺動部のないポンプを使
用するのが好ましい。塗装にあたつては通常塗料
温度を5〜35℃、好ましくは15〜25℃の範囲に調
整し、被塗物を均一に浸漬したのち0.5〜1.5m/
minで引き上げるのが適当である。 本発明においては、上記のようにして被塗物を
浸漬塗装槽より引き上げた直後、少なくとも1分
以内に、被塗物に、被塗物直前での風速が3〜50
m/secの空気を当て、被塗物の欠などの開口部、
屈曲部に形成された膜を破膜したり、被塗物の水
平部等に発生するタマリを除去する。 上記のとおり送風は引き上げ後、直に行うのが
好ましく、遅くとも1分以内に行う必要がある。
送風時期が遅くなると、自然に破膜され、流下す
る水等が、下部の塗膜を押し出し、ダレ跡が塗膜
に残り好ましくない。また、被塗物の水平部等に
発生したタマリは増粘され、送風によつても吹き
飛ばし難くなる。 また、風速は前記のとおり3〜50m/secが適
当である。 風速が前記範囲より遅いと破膜した水等を吹き
飛ばすことが出来ず本発明の目的が達成されな
い。一方、風速が前記範囲より速いと必要以上に
送風することになり、被塗物の揺れが大きくなつ
たり、また動力費が余分に必要となるので実用的
ではない。特に、被塗物の水平部等に発生するタ
マリ解消には5〜50m/sec、開口部に形成され
た膜の破膜のためには3〜30m/secの送風が適
当である。 尚、従来浸漬塗装した被塗物に数十cm/secの
送風を行なつて水の蒸発を促進させることが考え
られていたが、このような低速では、余部に付着
した塗料を吹き飛すことが出来ず適当でない。 前記の送風は飛散する水、塗料を回収するため
また送風する時期との関係上浸漬塗装槽の上方で
行なうのが適当である。この場合、被塗物が送風
と接する位置は浴中の塗料液面より少なくとも15
mm以上離す必要がある。この位置が液面に近すぎ
ると浴中の塗料に風が当たりその水が蒸発し塗料
が増粘しやすくなるので好ましくない。 また、送風時間は通常30秒前後が適当である。
更に被塗物への送風箇所は被塗物に余分に付着し
た塗料を吹き飛ばすためには、被塗物の穴などの
開口部、屈曲部等に形成した膜を破膜する箇所、
タマリを生じた水平部等だけでよいが、被塗物全
面であつてもよい。 送風手段としては、遠心フアン、軸流フアン等
のフアン;ターボブロアー等のブロアー;往復圧
縮機、遠心圧縮機、軸流圧縮機、回転圧縮機、噴
射圧縮機等の圧縮機;等の通常の気体輸送機より
発生させた風を配管を通して、ノズルあるいはス
リツトから吹き出す方式が適当である。この場
合、ノズルあるいはスリツトの吹出口の形状は特
に制限ないが円形もしくは線状のものが実用的で
ある。 また、ノズル口径は0.1〜10mm、特に1〜3mm
程度が適当である。ノズル口径が前記範囲より小
さいと被塗物直前の風速が低下し、その結果ノズ
ルを被塗物に相当近づけることが必要となり、コ
ンベアの遊び、被塗物のゆれを考慮すると適当で
ない。また、ノズル口径を前記範囲より大きくす
ると同様に風速が低くなり、気体輸送機の動力を
労費し実用的でない。 スリツトを使用する場合にも同様の理由により
スリツト巾0.05〜3mm、特に0.1〜2mm程度が適
当である。 本発明に於いて、同一形状の被塗物を連続的
に、浸漬塗装する場合は破膜する箇所、タマリ箇
所等がほぼ一定に流れるので、効率よく空気が被
塗物に当たるようにノズルあるいはスリツトの位
置を決定し固定すればよい。 一方、形状が異なる被塗物を浸漬塗装する場合
には、被塗物を回転させるか、もしくはノズルあ
るいはスリツトを移動させ効率よく空気が被塗物
に当たるように調節する。 第1図は、本発明の浸漬塗装方法の一例を示す
概略図であり、第2図は被塗物(コンベア)の流
れ方向と空気の流れ方向の関係を示すものであ
る。両図は浸漬塗装槽1内に被塗物2がコンベア
3より運ばれ、塗装された後、ノズル4と4′間
を通つて送風されることを示したものである。被
塗物の穴には膜が形成されやすく、それを効率よ
く破膜するため、被塗物の穴とノズルの口が同じ
高さになるように送風装置を設置している。 尚、本発明においては、100℃以下の加温され
た空気を送風すると、破膜後やタマリ部解消後の
タレた塗料の水の蒸発が促進されるため、スケの
ない均質な膜厚の仕上りが得られるので、さらに
好適である。 上記のようにして空気を被塗物に当てた後、被
塗物を常温〜120℃の雰囲気下で1〜20分セツテ
イングし、塗料をタレ切りし、水を蒸発させ、約
150〜220℃で約10〜30分間加熱することにより塗
膜を硬化させる。 本発明のスラリー状塗料の浸漬塗装方法により
塗装作業性がよく均質で、防食性に優れた厚膜の
塗膜が得られる。 以下、本発明を実施例により説明する。尚、実
施例中「部」及び「%」はそれぞれ「重量部」及
び「重量%」を示す。 〔樹脂粒子A〜Fの調製〕 表−1に示す配合物を120℃にて均一に混練し、
冷却固化後、機械的粉砕する方法(以下製法
()という)、又は()メチルエチルケトンに
溶解、練合分散し、多量の水(20℃)中に噴霧し
て、微粒状にすると共にメチルエチルケトンを水
相へ抽出して造粒する(含水樹脂粒子)方法(以
下製法()という)により樹脂粒子A〜Fを調
製した。 〔スラリー状塗料の配合物〕 表−2に示す配合物を使用した。
The present invention relates to a dip coating method using a slurry paint in which resin particles are dispersed in water. More specifically, the present invention relates to a method for dipping a slurry paint, which allows a thick coat of uniform thickness to be applied in one coat without sagging, unevenness, bulging, or wrinkles. Dip coating methods for slurry paints have been attracting attention because they allow thick coatings to be formed in one coat and have good coating efficiency. However, in dip coating with such slurry paint, when the object to be coated is pulled up from the dip coating tank, a film is applied to openings such as holes or bent parts of the object to be coated, and when the film is torn, water etc. Since it flows down all at once, it washes away the coating film below the membrane rupture point, which has the disadvantage of causing scratches on the object to be coated or exposing the substrate. As a result, not only is the paint finish poor in that area, but rust may occur as well.
This caused paint film peeling, etc., resulting in a decrease in long-term durability. In order to solve the above-mentioned drawbacks, attempts have been made to add antifoaming agents to slurry paints. The dispersion stability of the resin particles tended to be impaired. In addition, since the paint in the tank is circulated or stirred, the antifoaming agent is dispersed and the antifoaming effect decreases over time, making it necessary to add the antifoaming agent intermittently. Furthermore, the amount of antifoaming agent contained in the slurry paint increased, resulting in a decrease in corrosion resistance, water resistance, etc. of the paint film. Therefore, the addition of antifoaming agents was not a suitable solution. In addition, dip coating with a slurry paint has the disadvantage that clumps tend to form on the horizontal parts of the object to be coated. Therefore, an attempt was made to eliminate the sag by increasing the water dilution of the slurry paint in order to improve the sagging and flow in the horizontal areas, but this method made it impossible to achieve thick film coating, which is a characteristic of slurry paint. was not a suitable solution. An object of the present invention is to provide a coating method that enables thick coating with a uniform film thickness without sagging, unevenness, bulging, wrinkles, etc., without changing the composition of the slurry coating. That is, the present invention is a method of coating an object by dipping it into a dip coating tank containing a slurry-like paint, in which the object to be coated is immersed within at least 1 minute after being lifted from the dip coating tank. This invention relates to a dip coating method for slurry paint, which is characterized by applying air at a wind speed of ~50 m/sec. By the method of the present invention, a homogeneous coating film can be obtained because the film is broken at an early stage, sagging and sagging of the substrate are prevented, and sagging is also eliminated. The paint used in the present invention contains resin particles of about 1 to 80μ in water as a medium with a solid concentration of 10
It is a slurry-like paint that is dispersed in a range of ~70% by weight and further contains pigments or small amounts of additives such as surfactants and thickeners as necessary. The properties of the slurry paint described above are particularly suitable for the method of the present invention. That is, it has a structural viscosity of 100 to 500 CPS after painting (stirring at a rate of 60 rpm with a No. 3 rotor, and measuring the viscosity with a B-type viscometer after 1 minute), and a thixotropic ratio [No. 3 rotor]. at 6r.pm and 60r.pm
A slurry-like paint having a viscosity ratio (viscosity of 6 rpm)/(viscosity of 60 rpm) of 1.5 or more according to Type B viscosity after 1 minute is suitable for the method of the present invention. The resin of the slurry paint may be either a self-curing type or a curing agent-curing type, such as acrylic resin, polyester resin, alkyd resin,
Epoxy resin, epoxy modified polyester resin,
Urethane-modified polyester resin etc. can be used. Particularly in the present invention, a slurry paint that does not easily cause wrinkles or cracks as described below is suitable. That is, (A) (a) consists of an epoxy resin with an average molecular weight of 900 to 3,000 obtained by the reaction of bisphenol A and epichlorohydrin and/or methyl epichlorohydrin, dicyandiamide, a blocked isocyanate compound, and a polyester resin with an acid value of 40 to 250. A composition consisting of 30 to 55% by weight of resin particles with an average particle diameter of 10 to 80μ and (b) 70 to 45% by weight of water, consisting of at least one type of cured product selected from the group consisting of 100 parts by weight, (B ) Polyethylene oxide and/or bentonite with an average molecular weight of 300,000 to 4 million...0.05 to 0.6
Parts by weight, and (C) Nonionic surfactant with HLB value 12 to 16...0.1
It is preferable to use a slurry paint containing 0.5 parts by weight. The resin particles, which are the main components of this slurry paint, are composed of an epoxy resin and a curing agent. The epoxy resin used is one with an average molecular weight of 900 to 3,000 obtained by reacting bisphenol A with epichlorohydrin and/or methylepichlorohydrin. If the average molecular weight is smaller than the above range, it is undesirable because the coating film tends to have wrinkles, the thick film coating properties are poor, and the storage stability of the coating material is also poor. , corrosion resistance deteriorates, which is not preferable. Furthermore, dicyandiamide, blocked isocyanate compounds, and polyester resins can be used as curing agents. Blocked isocyanate compounds are polyvalent isocyanates masked with active hydrogen compounds. The active hydrogen compound has a boiling point of 140 to 250°C, especially
A temperature of 150 to 230°C is preferred. Active hydrogen compounds include oxime types such as methyl ethyl ketoxime, methyl isobutyl ketoxime, and cyclohexanone oxime; lactam types such as γ-butyrolactam, δ-valerolactam, ε-caprolactam, and peptolactam; furfuryl alcohol, benzyl alcohol, and cyclohexanol. Alcohol-based products such as: butyl cellosolve,
Ether alcohols such as phenyl cellosolve, methyl carbitol, carbitol, and butyl carbitol; Amides such as formanilide, acetanilide, benzanilide, and lactoanilide; Imides such as succinimide, maleimide, and phthalimide; or combinations of two or more of these. Mixtures can typically be used. Examples of polyvalent isocyanates include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, o-tricidine diisocyanate, dianisidine diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, and isophorone. Diisocyanate, 1-methyl-2,4-diisocyanate cyclohexane, 1-methyl-2,6-diisocyanate cyclohexane, 4,4'-methylenebiscyclohexyl isocyanate, 4,4'-ethylenebis(cyclohexylisocyanate), ω, ω' −
Diisocyanate-1,4-dimethylcyclohexane, ω,ω'-diisocyanate-1,3-dimethylcyclohexane, 2,2,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, isopropylidenecyclohexyl diisocyanate, or a mixture of two or more of these It can be used as a representative. Further, the polyester resin used has an acid value of 40 to 250. If the acid value of the polyester resin is lower than the above range, the crosslinking density will be low, resulting in insufficient water resistance, corrosion resistance, hardness, etc. If it is larger than the above range, water resistance and corrosion resistance will be insufficient due to excess carboxyl groups, and further immersion will be difficult. This is undesirable because it reduces the stability of the paint in the paint bath. In addition, the softening point of polyester resin is 30~120℃
Preferably. If the softening point is lower than the above range, resin particles tend to aggregate and the stability of the paint decreases, while if it is higher than the above range, cracks tend to occur in the resulting coating film and the thick coating properties deteriorate, which is preferable. do not have. In the synthesis of polyester resins, the carboxylic acid component is preferably reacted in a proportion of 30 to 70% by weight. Specific examples of the components include (anhydrous) phthalic acid, isophthalic acid, (anhydrous) trimellitic acid,
(anhydrous) pyromellitic acid, tetrahydro (anhydrous)
Phthalic acid, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride, succinic acid, adipic acid, sebacic acid, benzoic acid, para-tertiary butyl Examples include benzoic acid, and these may be used alone or in a mixture of two or more. In the synthesis of polyester resin, the polyhydric alcohol component is preferably reacted in a proportion of 30 to 70% by weight. Specific examples of the components include ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, dipropylene glycol, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, butanediol, pentanediol, hexanediol, 1,
There are 4-cyclohexanedimethanol, (hydrogenated) bisphenol A, etc., and these may be used alone or in a mixture of two or more, and if necessary, in combination with Cardular E (trade name, manufactured by Schiel Chemical Co., Ltd.). In addition, animal and vegetable oils, their fatty acids, petroleum resins, rosin, etc. can also be used as modified raw materials for polyester resins, if necessary. The appropriate mixing ratio of the epoxy resin and curing agent is 3 to 10 parts by weight for dicyandiamide and 10 to 100 parts by weight for blocked isocyanate compounds or polyester resins, per 100 parts by weight of the epoxy resin. It is also possible to add 3 to 100 parts by weight of a mixture of two or more of the three types of curing agents. Furthermore, the resin particles can also contain coloring pigments, extender pigments, or additives commonly used in powder coatings, if necessary. The average particle diameter of the resin particles is suitably 10-80μ, particularly preferably 12-40μ. If the average particle size is smaller than the above range, the cohesiveness of the resin particles will increase,
Further, foaming tends to occur during heating film formation, and on the other hand, if it is larger than the above range, storage stability becomes poor and it becomes difficult to obtain a smooth coating film, which is not preferable. The resin particles used in the present invention can be prepared by a known method,
For example, it is manufactured by mechanically pulverizing the solid resin, spray drying the resin solution, suspending the resin solution in water, removing the solvent, and taking out the solid particles. Next, as the thickener, polyethylene oxide, bentonite, or a combination of both is suitable. Polyethylene oxide has an average molecular weight of 300,000~
4 million, particularly preferably 600,000 to 3 million. If the average molecular weight of polyethylene oxide is smaller than the above range, the viscosity of the paint will be insufficient, the thick film coating properties will be poor, and the resin particles during coating will tend to precipitate, while if it is larger than the above range, the solubility in water will decrease. However, this is not preferable because the stability of the coating material against temperature changes becomes poor, the coating material becomes stringy, and the coating becomes difficult to drip off, making it unsuitable for dip coating. When bentonite is made into a 3% by weight aqueous dispersion
Preferably, the viscosity at 20°C is 5 centipoise or more. If the viscosity of bentonite is less than 5 centipoise, the viscosity of the coating material will be insufficient and the same problems as those of polyethylene oxide will arise, which is not preferable. In particular, the viscosity of bentonite is
Approximately 200 centipoise is suitable. The amount of thickener added is approximately 0.05 to 0.6% by weight in the paint.
is appropriate. Especially in the case of polyethylene oxide alone
0.1-0.5% by weight, for bentonite alone
0.05-0.3% by weight is suitable. If the amount of the thickener added is less than the above range, the viscosity of the paint will be insufficient, while if it is more than the above range, the water resistance and corrosion resistance of the coating film will deteriorate, which is not preferable. Next, the nonionic surfactant preferably has an HLB value of 12 to 16. If the HLB value is smaller than the above range, the fluidity of the paint will be poor, making it unsuitable for dip coating. The nonionic surfactant is suitably added to the paint in an amount of about 0.1 to 0.5% by weight. Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbital fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene higher alcohol ether, polyoxyethylene lanolin derivative, polyoxyethylene castor oil derivative,
Typical examples that can be used include polyoxyethylene alkylphenol formaldehyde condensates, polyoxypropylene polyoxyethylene alkyl ethers, and polyoxyethylene alkylphenol ethers. Next, water is used as a dispersion medium for the slurry paint. It is particularly preferable that the amount of water is about 45 to 70% by weight added to the paint, and within this range the dip coating workability is excellent. In the present invention, the smoothness of the coating film can be further improved by adding 1 to 5% by weight of polyethylene glycol having an average molecular weight of about 2,000 to 10,000 to the coating material. In the present invention, as explained above, a slurry-like paint is placed in a dip coating tank, and the object to be coated is dipped therein to be coated. The immersion coating tank is equipped with a stirring device.
It is also preferable to have a temperature control device and a paint circulation device such as an overflow tank. Slurry paint has structural viscosity, so it is necessary to sufficiently stir the bath to keep the viscosity constant.
It is preferable to use a propeller stirrer or other forced stirring device in combination. Furthermore, since the slurry paint is made by dispersing resin particles with a relatively large particle size, it is preferable to use a pump without sliding parts, such as a diaphragm pump or a roller pump, as the paint circulation pump. When painting, the paint temperature is usually adjusted to a range of 5 to 35 degrees Celsius, preferably 15 to 25 degrees Celsius, and the object to be coated is immersed uniformly, then 0.5 to 1.5 m/s
It is appropriate to raise it by min. In the present invention, immediately after the object to be coated is lifted from the dip coating bath as described above, within at least one minute, the object to be coated is exposed to a wind speed of 3 to 50 mph immediately before the object to be coated.
Apply air at m/sec to open areas such as cracks in the object to be coated,
Breaks the film formed on bent parts and removes clumps that occur on horizontal parts of the object to be coated. As mentioned above, it is preferable to blow air immediately after lifting, and it is necessary to blow the air within one minute at the latest.
If the air blowing period is delayed, the film will naturally rupture, and the water flowing down will push out the underlying paint film, leaving undesirable sagging marks on the paint film. In addition, the scum generated on the horizontal portions of the object to be coated becomes thickened and becomes difficult to blow away even by blowing air. Moreover, as mentioned above, the appropriate wind speed is 3 to 50 m/sec. If the wind speed is lower than the above range, water etc. from the membrane rupture cannot be blown away, and the object of the present invention cannot be achieved. On the other hand, if the wind speed is higher than the above range, the air will be blown more than necessary, the object to be coated will shake more, and additional power costs will be required, which is not practical. In particular, it is appropriate to blow air at a rate of 5 to 50 m/sec to eliminate bulges that occur on horizontal areas of the object to be coated, and to blow air at a rate of 3 to 30 m/sec to break the membrane formed at the openings. Conventionally, it was thought to accelerate the evaporation of water by blowing air at several tens of cm/sec onto the dip-coated object, but at such low speeds, the remaining paint would be blown away. I can't do that and it's not appropriate. The above-mentioned air blowing is preferably carried out above the immersion coating tank in order to collect scattered water and paint, and also because of the timing of the air blowing. In this case, the position where the object to be coated is in contact with the air should be at least 15 mm above the level of the paint in the bath.
Must be separated by at least mm. If this position is too close to the liquid surface, wind will hit the paint in the bath and the water will evaporate, making the paint more likely to thicken, which is undesirable. In addition, the appropriate air blowing time is usually around 30 seconds.
Furthermore, in order to blow off excess paint adhering to the object, the air blowing point to the object to be coated is a point where the membrane formed at openings such as holes, bends, etc. of the object to be coated is ruptured;
It may be applied only to the horizontal part where the bulging occurs, but it may be applied to the entire surface of the object to be coated. The blowing means includes fans such as centrifugal fans and axial fans; blowers such as turbo blowers; compressors such as reciprocating compressors, centrifugal compressors, axial compressors, rotary compressors, and injection compressors; It is appropriate to use a method in which the air generated by a gas transporter passes through piping and is blown out from a nozzle or slit. In this case, the shape of the nozzle or slit outlet is not particularly limited, but circular or linear shapes are practical. Also, the nozzle diameter is 0.1 to 10 mm, especially 1 to 3 mm.
The degree is appropriate. If the nozzle diameter is smaller than the above range, the wind speed in front of the object to be coated will decrease, and as a result, it will be necessary to bring the nozzle quite close to the object to be coated, which is not appropriate in view of the play of the conveyor and the shaking of the object to be coated. Furthermore, if the nozzle diameter is made larger than the above range, the wind speed similarly decreases and the power of the gas transporter becomes labor-intensive, making it impractical. When using a slit, the slit width is preferably about 0.05 to 3 mm, particularly about 0.1 to 2 mm, for the same reason. In the present invention, when continuously dip-coating objects of the same shape, the air flows almost constantly at areas where the membrane ruptures or stagnates, so a nozzle or slit is used so that air can hit the object efficiently. All you have to do is decide the position and fix it. On the other hand, when dip-coating objects of different shapes, the object is rotated or the nozzle or slit is moved so that air can efficiently hit the object. FIG. 1 is a schematic diagram showing an example of the dip coating method of the present invention, and FIG. 2 shows the relationship between the flow direction of the object to be coated (conveyor) and the flow direction of air. Both figures show that a workpiece 2 to be coated is conveyed by a conveyor 3 into a dip coating tank 1, and after being coated, air is blown through between nozzles 4 and 4'. A film tends to form in the holes of the object to be coated, and in order to break the film efficiently, the blower is installed so that the hole of the object to be coated and the nozzle opening are at the same height. In addition, in the present invention, blowing heated air at 100°C or less accelerates the evaporation of water in the dripping paint after membrane rupture or removal of sag, so that a uniform film thickness with no scratches can be achieved. This method is more suitable because it provides a good finish. After applying air to the workpiece as described above, the workpiece is set in an atmosphere of room temperature to 120℃ for 1 to 20 minutes, the paint is drained, water is evaporated, and the workpiece is set for 1 to 20 minutes.
The coating film is cured by heating at 150-220°C for about 10-30 minutes. By the dip coating method of the slurry paint of the present invention, a thick coating film with good coating workability, homogeneity, and excellent corrosion resistance can be obtained. The present invention will be explained below using examples. In the examples, "parts" and "%" indicate "parts by weight" and "% by weight," respectively. [Preparation of resin particles A to F] The formulations shown in Table 1 were uniformly kneaded at 120°C,
After cooling and solidifying, there is a method of mechanically crushing (hereinafter referred to as manufacturing method (2)), or (2) dissolving in methyl ethyl ketone, kneading and dispersing, and spraying it into a large amount of water (20°C) to make it into fine particles, and methyl ethyl ketone is dissolved in water. Resin particles A to F were prepared by a method (hereinafter referred to as manufacturing method ()) of extracting into a phase and granulating (water-containing resin particles). [Slurry paint formulation] The formulation shown in Table 2 was used.

【表】【table】

【表】 実施例 1 舟形浸漬塗装槽(高さ2m、底辺長さ2m、上
辺長さ4m、巾2m)に表−2に示す塗料No.1を
入れ、循環ポンプによつて浴中の塗料を循環させ
ながら被塗物〔2.3(板厚)×70(巾)×500(長さ)
mmの板状物で上端から250mmの箇所に直径18mmの
穴を有し、かつ上端から100mmの箇所に2.3(板厚)
×70(巾)×20(長さ)mmの板状物を垂直に溶接し
た小ダル鋼板〕を浴中に浸漬し、引き上げて、20
秒後に塗料液面より60cmの浸漬塗装槽上で、被塗
物の水平部及び穴に向けて往復式圧縮機により圧
縮空気を送風した。 送風条件 ノズル口径:1.5mm ノズル口と被塗物の距離:15cm 被塗物直前の風速:5m/秒 送風時間:30秒 送風後被塗物を100℃、10分間放置後、180℃、
30分間焼付処理した。その結果を表−3に示す。 実施例 2 実施例1において塗料No.1の代りに塗料No.2を
使用し、ブロアーにより下記条件の送風を行なう
以外は実施例1と同様に塗装した。 送風条件 スリツト巾:2.5mm スリツト口と被塗物の距離:15cm 被塗物直前の風速:5m/秒 送風時間:30秒 その結果を表−3に示す。 実施例 3 実施例2においてブロアーに加熱ヒーターを内
蔵し、60℃の空気を送風する以外は、実施例2と
同様に塗装した。 その結果を表−3に示す。 比較例 1 実施例1において被塗物を引き上げて、80秒後
に送風する以外は、実施例1と同様に塗装した。
その結果を表−3に示す。 比較例 2 実施例1において塗料液面より10cmの浸漬塗装
槽上で送風する以外は、実施例1と同様に塗装し
た。 その結果を表−3に示す。 比較例 3 実施例1において風速2m/secにする以外は
実施例1と同様に塗装した。その結果を表−3に
示す。 比較例 4 実施例1において風速55m/secにする以外は
実施例1と同様に塗装した。その結果を表−3に
示す。 尚、圧縮機1台では能力不足であつたので、圧
縮機を2台直列に設置する必要があつた。 比較例 5 実施例1においてノズル口径0.05mmとする以外
は実施例1と同様に塗装した。その結果を表−3
に示す。 比較例 6 実施例1においてノズル口径12mmとし、風速
4.5m/sec(風量を最大にしてもそれ以上の風速
は得られなかつた。)とする以外は実施例1と同
様に塗装した。その結果を表−3に示す。 比較例 7 実施例2においてスリツト巾0.03mmとする以外
は実施例2と同様に塗装した。その結果を表−3
に示す。 比較例 8 実施例2においてスリツト巾4mmとしスリツト
口と被塗物の距離を8cmとする以外は実施例2と
同様に塗装した。その結果を表−3に示す。 比較例 9 実施例2に於て塗料No.2に消泡剤(商品名「フ
オーマスターV」、ノプコケミカル社製)を0.05
%添加した塗料を使用し、引き上げ後送風せずそ
の他は実施例2と同様に塗装した。その結果を表
−3に示す。 表−3より明らかの如く本発明に従つて塗装処
理した実施例1、2、3は塗膜状態、浴内塗料状
態、塗装状態等が良好であつた。 一方、比較例1の如く、送風時期が遅いと穴の
下部の塗膜はタレ、スケがあり、水平部にタマリ
等があり、均質な塗膜が得られなかつた。 また、比較例2の如く、塗料液面に近いところ
で送風したものは浴中塗料が増粘した。翌日、同
じ浸漬塗装槽で同様に塗装処理したところ塗膜状
態は不良であつた。 また比較例3の如く風速が小さいと比較例1と
同様塗膜状態は不良であつた。 また比較例4の如く風速の大きいものは被塗物
のゆれが大きく、塗装作業性が不良であり必要以
上の動力を労費し、また浴中塗料が増粘した。 また比較例5、7の如く、ノズル口径、スリツ
ト巾の小さいものは比較例1と同様塗膜状態が不
良であつた。 また比較例6、8の如くノズル口径、スリツト
巾の大きいものは被塗物のゆれが大きく塗装作業
性が不良であり、余分の動力を労費した。 また、比較例9の如く、消泡剤を添加したもの
は水平部にタマリが残り、また耐塩水噴霧性が不
良であつた。 尚、表−2の塗料No.3〜12につき実施例1と同
様に塗装したところ、塗料No.9、10、12において
乾燥塗膜の平滑性が悪く、また塗料No.11、12は、
浴内の塗料に凝集物が発生した以外は実施例1と
同様の結果が得られた。
[Table] Example 1 Paint No. 1 shown in Table 2 was placed in a boat-shaped dip coating tank (height: 2 m, base length: 2 m, top length: 4 m, width: 2 m), and the paint in the bath was pumped by a circulation pump. While circulating the coating material [2.3 (board thickness) x 70 (width) x 500 (length)
A plate-like object with a diameter of 18 mm at a location 250 mm from the top edge, and a hole of 2.3 mm (plate thickness) at a location 100 mm from the top edge.
A small dull steel plate made by vertically welding a plate-like material of × 70 (width) × 20 (length) mm] was immersed in the bath, pulled up, and
After a few seconds, compressed air was blown by a reciprocating compressor toward the horizontal part of the object to be coated and the holes on the immersion coating tank 60 cm above the paint liquid surface. Air blowing conditions Nozzle diameter: 1.5mm Distance between nozzle opening and object to be coated: 15cm Air speed just before the object to be coated: 5 m/sec Air blowing time: 30 seconds After blowing, leave the object to be coated at 100℃ for 10 minutes, then 180℃,
Baked for 30 minutes. The results are shown in Table-3. Example 2 Painting was carried out in the same manner as in Example 1, except that paint No. 2 was used instead of paint No. 1 in Example 1, and air was blown under the following conditions using a blower. Air blowing conditions Slit width: 2.5 mm Distance between slit opening and object to be coated: 15 cm Wind speed just before the object to be coated: 5 m/sec Air blowing time: 30 seconds The results are shown in Table 3. Example 3 Painting was carried out in the same manner as in Example 2, except that the blower had a built-in heater and 60°C air was blown. The results are shown in Table-3. Comparative Example 1 Coating was carried out in the same manner as in Example 1, except that the object to be coated was pulled up and air was blown 80 seconds later.
The results are shown in Table-3. Comparative Example 2 Coating was carried out in the same manner as in Example 1, except that air was blown on the immersion coating tank 10 cm from the paint liquid level. The results are shown in Table-3. Comparative Example 3 Painting was carried out in the same manner as in Example 1 except that the wind speed was 2 m/sec. The results are shown in Table-3. Comparative Example 4 Painting was carried out in the same manner as in Example 1 except that the wind speed was 55 m/sec. The results are shown in Table-3. In addition, since one compressor did not have enough capacity, it was necessary to install two compressors in series. Comparative Example 5 Painting was carried out in the same manner as in Example 1 except that the nozzle diameter was 0.05 mm. Table 3 shows the results.
Shown below. Comparative example 6 In Example 1, the nozzle diameter was 12 mm, and the wind speed was
Painting was carried out in the same manner as in Example 1, except that the air velocity was 4.5 m/sec (even if the air volume was maximized, a higher wind speed could not be obtained). The results are shown in Table-3. Comparative Example 7 Coating was carried out in the same manner as in Example 2 except that the slit width was 0.03 mm. Table 3 shows the results.
Shown below. Comparative Example 8 Coating was carried out in the same manner as in Example 2 except that the slit width was 4 mm and the distance between the slit opening and the object to be coated was 8 cm. The results are shown in Table-3. Comparative Example 9 In Example 2, 0.05% of antifoaming agent (trade name "Formaster V", manufactured by Nopko Chemical Co., Ltd.) was added to paint No. 2.
Coating was carried out in the same manner as in Example 2, except that a paint containing 10% of the total amount was used, and no air was blown after lifting. The results are shown in Table-3. As is clear from Table 3, Examples 1, 2, and 3, which were coated according to the present invention, had good coating film condition, paint condition in the bath, coating condition, etc. On the other hand, as in Comparative Example 1, when the air blowing time was late, the coating film at the bottom of the hole had sagging and sagging, and there were sag in the horizontal part, and a homogeneous coating film could not be obtained. Furthermore, as in Comparative Example 2, when air was blown close to the paint liquid surface, the paint in the bath thickened. The next day, when the same coating treatment was carried out in the same dip coating tank, the condition of the coating film was poor. Further, when the wind speed was low as in Comparative Example 3, the coating film condition was poor as in Comparative Example 1. In addition, when the wind velocity was high as in Comparative Example 4, the object to be coated was shaken greatly, the coating workability was poor, more power was required than necessary, and the paint in the bath increased in viscosity. Also, in Comparative Examples 5 and 7, which had small nozzle diameters and slit widths, the coating film condition was poor as in Comparative Example 1. Further, in Comparative Examples 6 and 8, which had a large nozzle diameter and a large slit width, the object to be coated shook greatly and the coating workability was poor, and extra power was required. In addition, as in Comparative Example 9, in which an antifoaming agent was added, lumps remained in the horizontal portions, and salt water spray resistance was poor. Furthermore, when paints Nos. 3 to 12 in Table 2 were painted in the same manner as in Example 1, paints Nos. 9, 10, and 12 had poor dry coating smoothness, and paints Nos. 11 and 12 had poor smoothness.
The same results as in Example 1 were obtained except that aggregates were generated in the paint in the bath.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の浸漬塗装装置の一例を示す概
略図であり、第2図は被塗物(コンベア)の流れ
方向と空気の流れ方向の関係を示すものである。
第2図の矢印F1は被塗物(コンベア)の流れ方
向を示す。 1:浸漬塗装槽、2:被塗物、3:コンベア、
4,4′:ノズル。
FIG. 1 is a schematic diagram showing an example of the dip coating apparatus of the present invention, and FIG. 2 shows the relationship between the flow direction of the object to be coated (conveyor) and the flow direction of air.
Arrow F1 in FIG. 2 indicates the flow direction of the object to be coated (conveyor). 1: Dip coating tank, 2: Object to be coated, 3: Conveyor,
4, 4': Nozzle.

Claims (1)

【特許請求の範囲】 1 スラリー状塗料を入れた浸漬塗装槽内に被塗
物を浸漬して塗装する方法において、浸漬塗装槽
より被塗物を引き上げた後、少なくとも1分以内
に、被塗物に3〜50m/secの風速の空気を当て
ることを特徴とするスラリー状塗料の浸漬塗装方
法。 2 ノズル口径0.1〜10mmのノズルもしくはスリ
ツト巾0.05〜3mmのスリツトより空気を射出し、
被塗物に空気を当てることを特徴とする特許請求
の範囲第1項記載のスラリー状塗料の浸漬塗装方
法。 3 被塗物に100℃以下の加温した空気を当てる
ことを特徴とする特許請求の範囲第1項記載のス
ラリー状塗料の浸漬塗装方法。 4 浸漬塗装槽の上方でしかも塗料液面より少な
くとも15cm以上の位置で被塗物に空気を当てるこ
とを特徴とする特許請求の範囲第1項記載のスラ
リー状塗料の浸漬塗装方法。 5 スラリー状塗料が、 (A) (a) ビスフエノールAとエピクロルヒドリン
及び/又はメチルエピクロルヒドリンとの反
応により得られる、平均分子量900〜3000の
エポキシ樹脂と、 ジシアンジアミド、ブロツクイソシアネー
ト化合物、酸価40〜250のポリエステル樹脂
からなる群から選ばれた少なくとも1種類の
硬化剤とからなる平均粒子径10〜80μの樹脂
粒子30〜55重量と (b) 水70〜45重量% よりなる組成物……100重量部 (B) 平均分子量30万〜400万のポリエチレンオキ
サイド及び/又はベントナイト……0.05〜0.6
重量部、及び (C) HLB価12〜16の非イオン界面活性剤……0.1
〜0.5重量部 からなることを特徴とする特許請求の範囲第1項
記載のスラリー状塗料の浸漬塗装方法。 6 ベントナイトは、3重量%水分散液としたと
き、20℃における粘度が5センチポイズ以上とな
るものであることを特徴とする特許請求の範囲第
5項記載のスラリー状塗料の浸漬塗装方法。
[Scope of Claims] 1. In a method of painting by dipping an object to be coated in a dip coating tank containing a slurry-like paint, within at least one minute after lifting the object from the dip coating tank, A dip coating method for slurry paint, which is characterized by exposing objects to air at a wind speed of 3 to 50 m/sec. 2 Inject air through a nozzle with a nozzle diameter of 0.1 to 10 mm or a slit with a slit width of 0.05 to 3 mm,
2. A method for dip coating a slurry-like paint according to claim 1, characterized in that the object to be coated is exposed to air. 3. A method for dip coating a slurry paint according to claim 1, which comprises applying heated air of 100° C. or less to the object to be coated. 4. The dip coating method for slurry paint according to claim 1, characterized in that air is applied to the object to be coated at a position above the dip coating tank and at least 15 cm above the paint liquid level. 5 A slurry paint is made of (A) (a) an epoxy resin with an average molecular weight of 900 to 3000 obtained by the reaction of bisphenol A and epichlorohydrin and/or methyl epichlorohydrin, dicyandiamide, a blocked isocyanate compound, and an acid value of 40 to 250. A composition consisting of 30 to 55 weight percent of resin particles with an average particle size of 10 to 80 μ and (b) 70 to 45 percent water by weight, consisting of at least one type of curing agent selected from the group consisting of polyester resins... 100 weight percent Part (B) Polyethylene oxide and/or bentonite with an average molecular weight of 300,000 to 4 million...0.05 to 0.6
Parts by weight, and (C) Nonionic surfactant with HLB value 12 to 16...0.1
The dip coating method for a slurry-like paint according to claim 1, characterized in that the amount is 0.5 parts by weight. 6. The dip coating method for a slurry paint according to claim 5, wherein the bentonite has a viscosity of 5 centipoise or more at 20°C when made into a 3% by weight aqueous dispersion.
JP2194881A 1981-02-17 1981-02-17 Immersion painting method for slurry paint Granted JPS57136973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194881A JPS57136973A (en) 1981-02-17 1981-02-17 Immersion painting method for slurry paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194881A JPS57136973A (en) 1981-02-17 1981-02-17 Immersion painting method for slurry paint

Publications (2)

Publication Number Publication Date
JPS57136973A JPS57136973A (en) 1982-08-24
JPH0134664B2 true JPH0134664B2 (en) 1989-07-20

Family

ID=12069277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194881A Granted JPS57136973A (en) 1981-02-17 1981-02-17 Immersion painting method for slurry paint

Country Status (1)

Country Link
JP (1) JPS57136973A (en)

Also Published As

Publication number Publication date
JPS57136973A (en) 1982-08-24

Similar Documents

Publication Publication Date Title
US4527712A (en) Method and apparatus for dispensing liquid compositions
JPH03504691A (en) Supercritical fluids as diluents in liquid spray applications of adhesives
KR930010197B1 (en) Supercritical fluids as diluents in liquid spray application of coatings
EP0388915B1 (en) Precursor coating compositions
JPH03504878A (en) Precursor coating composition suitable for spraying with supercritical fluid as diluent
EP0586694A1 (en) Process and device for low-emission spraying.
DE4133704A1 (en) CATALYST-FREE ONE-COMPONENT COATING AGENT AND THE USE THEREOF FOR THE PRODUCTION OF ACID-RESISTANT PAINTINGS
US4505957A (en) Coating by atomization of high (i.e., about 70-99% by weight) solids film-forming compositions
JPS6241543B2 (en)
Hamburg Hess’s Paint Film Defects: Their Causes and Cure
JPS6086174A (en) Manufacture of storable concentrate
JPS60227869A (en) Method for coating surface of heatable article and coating composition used therein
JPH0134664B2 (en)
JPS61223059A (en) Production of powdery coating agent having substantially uniform particle size based on polyamide having 10 or more aliphatic bonded carbon atoms per carbonamide group
JPS5936732B2 (en) Manufacturing method of photographic material
JPH0380875B2 (en)
JPS6334230B2 (en)
US5372637A (en) Aqueous compositions for delivering active ingredients and methods of making and using same
US2136681A (en) Film deposition
JPS6121977B2 (en)
JPS5850552B2 (en) Dip coating method for granular paint
CN110819179A (en) Environment-friendly coating, preparation method, application and use method
JPS6019774B2 (en) Method for producing epoxy resin dispersion
CN110819178A (en) Environment-friendly coating, preparation method, application and use method
JPH0978290A (en) Cationic electrodeposition coating method