JPH0134434B2 - - Google Patents

Info

Publication number
JPH0134434B2
JPH0134434B2 JP56041922A JP4192281A JPH0134434B2 JP H0134434 B2 JPH0134434 B2 JP H0134434B2 JP 56041922 A JP56041922 A JP 56041922A JP 4192281 A JP4192281 A JP 4192281A JP H0134434 B2 JPH0134434 B2 JP H0134434B2
Authority
JP
Japan
Prior art keywords
frequency
output
voltage
circuit
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56041922A
Other languages
Japanese (ja)
Other versions
JPS57155890A (en
Inventor
Noryuki Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56041922A priority Critical patent/JPS57155890A/en
Publication of JPS57155890A publication Critical patent/JPS57155890A/en
Publication of JPH0134434B2 publication Critical patent/JPH0134434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

カラー映像信号のうち搬送色信号(クロマ信
号)を低域変換した上で例えばFM変調された輝
度信号に重畳して記録するようにしたVTRでは、
その再生系に設けられるAPC回路を第1図のよ
うに構成することが考えられる。 図において、Siは再生クロマ信号で、これは周
波数変換器1において色副搬送波周波数fsc
3.58MHzのクロマ信号Soに変換される。このクロ
マ信号Soはバースト分離回路3に供給されてバ
ースト信号SB(3.58MHz)が分離され、これは基
準発振器4より得られた基準出力SR(3.58MHz)
と位相比較器5で位相比較され、その比較出力は
ローパスフイルタ6にて制御電圧VCに変換され、
この制御電圧VCは可変周波数発振器7に供給さ
れて、制御電圧VCに応じた周波数(3.58MHz+ジ
ツタ成分)が得られる。 これは低域変換用の信号SL(この例では688k
Hz)と共に周波数変換器8に供給されて、所定の
周波数(4.27MHz)を有するキヤリヤ信号SCに変
換され、そしてこれが再生クロマ信号Si(688k
Hz)の伝送路に設けられた周波数変換器1にキヤ
リヤ信号として供給される。 なお、9は低域信号SLを得る発振器(可変型)、
2は出力端子である。 可変周波数発振器としては周波数可変幅の広い
発振器(エミツタ結合型マルチバイブレータなど
の可変弛張発振器、セラミツクフイルタを使用し
た可変発振器など)が使用される。このタイプの
可変周波数発振器7は一般に温度ドリフトが大き
いので、この温度ドリフトによる周波数変動を抑
えるため、制御系20が設けられる。 すなわち、周波数差検出回路11で基準出力SR
と可変周波数発振器7の発振出力SVとの周波数
差Δfが検出される。この検出回路20は第2図
で示すように周波数差Δfに比例した検出出力
(電圧)VDを得るためのもので、検出出力VDは制
御電圧VCと共に高利得の差動増幅器12に供給
され、差動出力VYはローパスフイルタ13を通
じて制御感度調整用のアンプ14に供給され、こ
こで得られた出力電圧VXは加算器15にて上述
の制御電圧VCに加算された上で可変周波数発振
器7に供給される。 さて、このAPC回路10において、発振周波
数fVと制御電圧VC,VXとの関係は(1)式のように
なり、また検出回路11の検出出力VDと周波数
差Δfとの関係は(2)式のようになる。 fV=fR+K1VC+K2VX+fe ……(1) VD=K3Δf=K3(fV−fR) ……(2) ここに、 K1:制御電圧VCの端子からみた可変周波数発振
器7の変調感度 K2:制御電圧VXの端子からみた可変周波数発振
器7の変調感度、K2>K1 K3:検出回路11の復調感度 fe:ドリフトによるエラー周波数(ドリフト周波
数) (1)式より VC=1/K1(fV−fR−K2VX−fe) ……(3) また、差動出力VYは VY=K4(VC−VD) ……(4) ここに、 K4:差動増幅器12のゲイン (4)式に(2)、(3)式を代入して整理すると、(5)式の
ようになる。 VY=K4(1/K1−K3)(fV-fR)−K4/K1(K2VX+fe) ……(5) ここで、変調感度K1と復調感度K3の積を K1・K3=1 ……(6) のように選定すれば、(5)式は VY=−K4/K1(K2VX+fe) ……(7) となる。また、直流的には、VX=VYであるから、 VX=−K4/K1+K2K3・fe ……(8) 今、アンプゲインK4が十分大きいときは、(8)
式は VX=−1/K2・fe ……(9) となつて、これより(1)式は fV=fR+K1VC+K2(−1/K2fe)+fe =fR+K1VC ……(10) となつて、ドリフトによる発振周波数fVの変動が
除去される。 そして、制御電圧VCと検出出力VDの平均値同
士が一致するように制御電圧VXが制御されてこ
れにより発振周波数fVは常に基準周波数fRに等し
くなるように制御される。 第3図は上述した位相比較器5の具体例であつ
て、掛算器21を有し、一対の掛算出力は直列接
続された一対の電流源22,23に制御信号とし
て供給され、これら電流源22,23の接続中点
より位相比較出力vaが取出される。なお、Ra,
Rbはこの位相比較出力vaに一定の直流電圧VA
バイアス電圧として加えるための分圧用抵抗器で
ある。24はその電源端子を示す。 また、第4図は周波数差Δfの検出回路11の
具体例であつて、フリツプフロツプ回路30のセ
ツト端子Sに基準出力SR(第5図B)が供給され、
リセツト端子Rに基準出力SR(同図A)が供給さ
れて同図Cのパルス出力Paが形成され、これが
ローパスフイルタ31にて平滑され、その出力
Pb(同図D)が微分回路32に供給される。 発振周波数fVが基準周波数fRに比し低い場合と
高い場合とでは微分パルスPcの極性が相異する。 微分パルスPcは正のスライスレベルL1に選定
された第1のスライス回路33Aに供給されて同
図Fのスライス出力Pd1が形成され、そして負の
スライスレベルL2に選定された第2のスライス
回路33Bにて同図Gのスライス出力Pd2が形成
される。これらは夫々モノステーブルマルチバイ
ブレータ34A,34Bにて所定幅のパルス出力
Pe1,Pe2(同図H,I)となされたのち、合成回
路35においてパルス出力Pe1,Pe2のレベル通
りに合成される。パルス出力Pe1,Pe2の基準レ
ベルをEoとするならば合成出力Pfは同図Fの如
くなる。 従つて、この合成出力Pfをローパスフイルタ
36にて平滑すれば、発振周波数fVと基準周波数
fRとの周波数差に対応した直流出力(検出出力)
VD(同図F)が得られる。このように第4図に示
す構成にすれば第2図で示すような周波数差−検
出出力特性が得られる。 第6図は合成回路35の具体例であつて、VL
LM,VH(VL<VM<VH)の3値例えば4V−6V−
8Vを出力する基準電圧源40とスイツチング回
路41を有し、スイツチング回路41は図のよう
に、フリツプフロツプ回路42、オア回路43そ
してデコーダ44で構成された制御回路45の出
力で所望の如く制御される。論理動作の一例を
(表−1)に示す。
In a VTR, the carrier color signal (chroma signal) of the color video signal is low frequency converted and then superimposed on, for example, an FM modulated luminance signal and recorded.
It is conceivable to configure the APC circuit provided in the reproduction system as shown in FIG. In the figure, Si is the reproduced chroma signal, which has a color subcarrier frequency f sc in the frequency converter 1.
Converted to 3.58MHz chroma signal So. This chroma signal So is supplied to the burst separation circuit 3 to separate the burst signal S B (3.58MHz), which is the reference output S R (3.58MHz) obtained from the reference oscillator 4.
The phase is compared by the phase comparator 5, and the comparison output is converted to the control voltage V C by the low-pass filter 6.
This control voltage V C is supplied to the variable frequency oscillator 7, and a frequency (3.58 MHz + jitter component) corresponding to the control voltage V C is obtained. This is the signal S L (688k in this example) for low frequency conversion.
Hz) and is supplied to the frequency converter 8, where it is converted into a carrier signal S C having a predetermined frequency (4.27MHz), which is then converted into a reproduced chroma signal Si (688k
Hz) is supplied as a carrier signal to a frequency converter 1 provided on a transmission path. In addition, 9 is an oscillator (variable type) that obtains the low frequency signal S L ,
2 is an output terminal. As the variable frequency oscillator, an oscillator with a wide frequency variable range (a variable relaxation oscillator such as an emitter-coupled multivibrator, a variable oscillator using a ceramic filter, etc.) is used. Since this type of variable frequency oscillator 7 generally has a large temperature drift, a control system 20 is provided to suppress frequency fluctuations due to this temperature drift. In other words, the frequency difference detection circuit 11 outputs the reference output S R
The frequency difference Δf between the oscillation output S V of the variable frequency oscillator 7 and the oscillation output S V of the variable frequency oscillator 7 is detected. This detection circuit 20 is used to obtain a detection output (voltage ) V D proportional to the frequency difference Δf , as shown in FIG. The differential output V Y is supplied to the control sensitivity adjustment amplifier 14 through the low-pass filter 13 , and the output voltage V is supplied to the variable frequency oscillator 7. Now, in this APC circuit 10, the relationship between the oscillation frequency f V and the control voltages V C and V X is as shown in equation (1), and the relationship between the detection output V D of the detection circuit 11 and the frequency difference Δf is It becomes as shown in equation (2). f V = f R + K 1 V C + K 2 V Modulation sensitivity of the variable frequency oscillator 7 seen from the terminal of C 2 : Modulation sensitivity of the variable frequency oscillator 7 seen from the terminal of control voltage V Error frequency (drift frequency) From formula (1), V C = 1/K 1 (f V −f R −K 2 V X −f e ) ...(3) Also, the differential output V Y is V Y = K 4 (V C −V D ) ...(4) Here, K 4 : Gain of differential amplifier 12 Substituting equations (2) and (3) into equation (4) and rearranging, we get equation (5). It becomes like this. V Y = K 4 (1/K 1K 3 )(f V -f R )−K 4 /K 1 (K 2 V X +f e )...(5) Here, modulation sensitivity K 1 and demodulation If the product of sensitivity K 3 is selected as K 1・K 3 = 1 ……(6), equation (5) becomes V Y = −K 4 /K 1 (K 2 V X +f e ) ……( 7) becomes. Also , in terms of direct current , V X = V Y , so V 8)
The formula is V _ _ _ _ _ _ e = f R + K 1 V C (10) Thus, the fluctuation in the oscillation frequency f V due to drift is removed. Then, the control voltage V X is controlled so that the average values of the control voltage V C and the detection output V D match, and thereby the oscillation frequency f V is controlled to always be equal to the reference frequency f R. FIG. 3 shows a specific example of the above-mentioned phase comparator 5, which has a multiplier 21, and a pair of multiplication outputs are supplied as control signals to a pair of series-connected current sources 22 and 23, and these current sources A phase comparison output va is taken out from the connection midpoint between 22 and 23. In addition, Ra,
Rb is a voltage dividing resistor for applying a constant DC voltage V A as a bias voltage to this phase comparison output va. 24 indicates its power terminal. FIG. 4 shows a specific example of the frequency difference Δf detection circuit 11, in which the reference output S R (FIG. 5B) is supplied to the set terminal S of the flip-flop circuit 30.
The reference output S R (A in the figure) is supplied to the reset terminal R to form the pulse output Pa shown in C in the figure, which is smoothed by the low-pass filter 31, and the output
Pb (D in the figure) is supplied to the differentiating circuit 32. The polarity of the differential pulse Pc is different when the oscillation frequency fV is lower than the reference frequency fR and when it is higher. The differential pulse Pc is supplied to the first slice circuit 33A selected at the positive slice level L 1 to form the slice output Pd 1 shown in FIG. A slice output Pd 2 of G in the figure is formed in the slice circuit 33B. These are pulse outputs of a predetermined width from the monostable multivibrators 34A and 34B, respectively.
Pe 1 and Pe 2 (H and I in the figure) are then synthesized in the synthesis circuit 35 according to the level of the pulse outputs Pe 1 and Pe 2 . If the reference level of the pulse outputs Pe 1 and Pe 2 is Eo, the combined output Pf will be as shown in F in the figure. Therefore, if this composite output Pf is smoothed by the low-pass filter 36, the oscillation frequency fV and the reference frequency
DC output (detection output) corresponding to the frequency difference with f R
V D (F in the same figure) is obtained. With the configuration shown in FIG. 4 as described above, the frequency difference-detection output characteristic as shown in FIG. 2 can be obtained. FIG. 6 shows a specific example of the synthesis circuit 35, in which V L ,
Three values of L M , V H (V L < V M < V H ), e.g. 4V-6V-
It has a reference voltage source 40 that outputs 8V and a switching circuit 41, and the switching circuit 41 is controlled as desired by the output of a control circuit 45 composed of a flip-flop circuit 42, an OR circuit 43, and a decoder 44, as shown in the figure. Ru. An example of logical operation is shown in (Table 1).

【表】 基準電圧源40は図のように抵抗分割型であつ
て、複数の抵抗器R1〜R4を有する。46は電源
端子である。 さて、上述のように発振周波数fVは制御電圧
(VC−VX)によつて制御され、制御電圧VXは(4)
式及びそれ以後の説明よりVDに関連したもので
あるから、中心周波数(そのときの制御電圧VX
はVM)を中心とする制御では fV=fR+K1(VC−VM) ……(11) ここで、 VC=va+VA ……(12) ∴fV=fR+K1(va+VA−VM) ……(13) である。そして、発振周波数fVが基準周波数fR
等しくなるように閉ループ制御されている場合に
は、検出出力VDは中間の電圧VMであり、また制
御電圧VCは可変周波数発振器7が中心周波数fv
発振するような電圧VAで、これは上述の電圧VM
に等しい。従つて、(13)式の右辺第2項は零であ
る。 ところで、上述の電圧VAは第3図に示すよう
に抵抗器Ra,Rbによつて決められており、電圧
VMは第6図に示すように基準電圧源40によつ
て決められているから、相互に独立した電源から
形成されたものを利用していることになる。従つ
て、温度ドリフト等による電圧VA,VMのバラツ
キも相互に全く関係なく生ずる場合があり、この
ような場合には正確に発振周波数fVを制御できな
くなり、またこれら電圧VA,VMの偏り方によつ
てはAPCループの動作点が移動して発振周波数fV
の制御範囲が狭まつてしまう欠点がある。 そこで、この発明では温度ドリフト等によつて
電圧VA,VMが独立して無関係にばらつくことの
ないようにしたものである。そのため、この発明
では第7図で示すように基準電圧VMに関連した
電圧を制御電圧VCのバイアス電圧VAとして供給
するようにしたもので、抵抗器Roは制御感度調
整用のものである。その等価回路を第8図に示
す。 この等価回路において、制御電圧VCを得る回
路、従つて位相比較器5は電流源として動作する
から、今その電流をiaとした場合には次式が成立
する。 fV=fR+K1(VC−VM) ……(14) ここに、 VC=VM+iaRo であるから、 fV=fR+K1(VM+iaRo−VM) =fR−K1iaRo ……(15) となつて、温度等によるドリフト成分K1(VM
VM)が零になる。従つて、基準電圧VM自体が変
動してもAPC回路10の動作点が一方に偏より、
周波数制御範囲が狭くなるようなことがない。 第9図はこの発明の具体例で、基準電圧源40
を構成する抵抗器R2とR3の接続中点pと電流源
22と23の接続中点qとの間が抵抗器Roで接
続されてなる。 以上説明したようにこの発明によれば、極めて
簡単な構成をもつて温度等によるドリフト成分を
零にできるから、APC回路10の動作が安定し、
従つて一方に偏ることによつて周波数制御範囲が
狭くなるようなことがない。従つて、この発明に
係る可変周波数発振器は第1図で示すような
APC回路に適用して極めて好適である。
[Table] As shown in the figure, the reference voltage source 40 is of a resistance division type and has a plurality of resistors R 1 to R 4 . 46 is a power terminal. Now, as mentioned above, the oscillation frequency f V is controlled by the control voltage (V C − V X ), and the control voltage V X is expressed as (4)
Since it is related to V D from the formula and the explanation that follows, the center frequency (the control voltage at that time V
In the control centering on V M _ _ _ _ +K 1 (v a +V A −V M ) ...(13). When the oscillation frequency f V is controlled in a closed loop so as to be equal to the reference frequency f R , the detection output V D is an intermediate voltage V M , and the control voltage V C is centered on the variable frequency oscillator 7. A voltage V A that oscillates at a frequency f v , which is the voltage V M
be equivalent to. Therefore, the second term on the right side of equation (13) is zero. By the way, the voltage V A mentioned above is determined by the resistors Ra and Rb as shown in Figure 3, and the voltage
Since V M is determined by the reference voltage source 40 as shown in FIG. 6, voltage sources formed from mutually independent power sources are used. Therefore, variations in the voltages V A and V M due to temperature drift, etc. may occur completely unrelated to each other, and in such a case, the oscillation frequency f V cannot be accurately controlled, and these voltages V A and V Depending on how M is biased, the operating point of the APC loop shifts and the oscillation frequency f V
The disadvantage is that the control range is narrowed. Therefore, the present invention is designed to prevent the voltages V A and VM from varying independently and unrelatedly due to temperature drift or the like. Therefore, in this invention, as shown in Fig. 7, a voltage related to the reference voltage V M is supplied as the bias voltage V A of the control voltage V C , and the resistor Ro is for adjusting the control sensitivity. be. The equivalent circuit is shown in FIG. In this equivalent circuit, the circuit for obtaining the control voltage VC , and therefore the phase comparator 5, operates as a current source, so if the current is now i a , the following equation holds true. f V = f R + K 1 (V C − V M ) ...(14) Here, since V C = V M + i a Ro, f V = f R + K 1 (V M + i a Ro− V M ) =f R −K 1 i a Ro ……(15) Then, the drift component K 1 (V M
V M ) becomes zero. Therefore, even if the reference voltage V M itself fluctuates, the operating point of the APC circuit 10 will be biased to one side.
There is no possibility that the frequency control range will become narrower. FIG. 9 shows a specific example of this invention, in which a reference voltage source 40
A resistor Ro is connected between the connection midpoint p between the resistors R 2 and R 3 and the connection midpoint q between the current sources 22 and 23. As explained above, according to the present invention, the drift component due to temperature etc. can be reduced to zero with an extremely simple configuration, so that the operation of the APC circuit 10 is stabilized.
Therefore, the frequency control range will not be narrowed due to deviation to one side. Therefore, the variable frequency oscillator according to the present invention is as shown in FIG.
It is extremely suitable for application to APC circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の説明に供するAPC回路の
系統図、第2図はAPC制御動作の説明図、第3
図は位相比較器の系統図、第4図は周波数差検出
回路の系統図、第5図はその動作説明図、第6図
は加算器の系統図、第7図はこの発明に係る可変
周波数発振器をAPC回路に適用した場合の一例
を示す系統図、第8図はその等価回路図、第9図
は可変周波数発振器の一例を示す接続図である。 7は可変周波数発振器、VMは基準電圧、11
は周波数差検出回路、5は位相比較器である。
Fig. 1 is a system diagram of the APC circuit used to explain the present invention, Fig. 2 is an explanatory diagram of APC control operation, and Fig. 3 is a diagram explaining the APC control operation.
Figure 4 is a system diagram of the phase comparator, Figure 4 is a system diagram of the frequency difference detection circuit, Figure 5 is a diagram explaining its operation, Figure 6 is a system diagram of the adder, and Figure 7 is the variable frequency according to the present invention. FIG. 8 is a system diagram showing an example of the application of an oscillator to an APC circuit, FIG. 8 is an equivalent circuit diagram thereof, and FIG. 9 is a connection diagram showing an example of a variable frequency oscillator. 7 is a variable frequency oscillator, V M is a reference voltage, 11
5 is a frequency difference detection circuit, and 5 is a phase comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 入力信号と基準周波数信号とを位相比較する
位相比較器にバイアスとして供給される基準電圧
により中心周波数が決められた可変周波数発振器
に対して上記位相比較器の出力と共に上記基準周
波数信号と上記可変周波数発振器の出力との周波
数差検出回路の出力を供給して、上記可変周波数
発振器の発信周波数を制御するようになした回路
において、上記周波数差検出回路の出力に対する
バイアス電圧として上記基準電圧に基づく電圧を
用いたことを特徴とする可変周波数発振器。
1. A variable frequency oscillator whose center frequency is determined by a reference voltage supplied as a bias to a phase comparator that compares the phases of an input signal and a reference frequency signal. In a circuit configured to supply the output of a frequency difference detection circuit with the output of a frequency oscillator to control the oscillation frequency of the variable frequency oscillator, the bias voltage for the output of the frequency difference detection circuit is based on the reference voltage. A variable frequency oscillator characterized by using voltage.
JP56041922A 1981-03-23 1981-03-23 Variable frequency oscillator Granted JPS57155890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56041922A JPS57155890A (en) 1981-03-23 1981-03-23 Variable frequency oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56041922A JPS57155890A (en) 1981-03-23 1981-03-23 Variable frequency oscillator

Publications (2)

Publication Number Publication Date
JPS57155890A JPS57155890A (en) 1982-09-27
JPH0134434B2 true JPH0134434B2 (en) 1989-07-19

Family

ID=12621732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56041922A Granted JPS57155890A (en) 1981-03-23 1981-03-23 Variable frequency oscillator

Country Status (1)

Country Link
JP (1) JPS57155890A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033830B2 (en) 2002-12-03 2008-01-16 ホシデン株式会社 Microphone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357914A (en) * 1976-11-05 1978-05-25 Matsushita Electric Ind Co Ltd Synchronous oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357914A (en) * 1976-11-05 1978-05-25 Matsushita Electric Ind Co Ltd Synchronous oscillator

Also Published As

Publication number Publication date
JPS57155890A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
JPH0787332B2 (en) Automatic time constant adjustment circuit for filter circuit
US4388596A (en) Frequency controlled signal generating circuit
EP0393717A2 (en) Active filter circuit
US4451792A (en) Auto-tuned frequency discriminator
JP2729028B2 (en) Method and circuit for demodulating FM carrier
US4404430A (en) FM Stereo demodulation circuit with voltage dividing and multiplexing techniques
US4629914A (en) Phase comparing circuit
US5243412A (en) Circuit for generating a clock signal which is locked to a specific phase of a color burst signal in a color video signal
JPH0681317B2 (en) Color synchronization circuit
GB2174855A (en) Wide range digital phase/frequency detector
KR960012797B1 (en) Controlled oscillator
JPS6013555B2 (en) Burst signal level detection circuit
US4156851A (en) Constant-phase delay network
JPH0249060B2 (en)
JPH0134434B2 (en)
US4362906A (en) FM Receiver
US4124780A (en) FM stereophonic receiver providing a test signal
JPS60261281A (en) Color signal processor
US5122865A (en) Chroma key signal generator for a video editing apparatus
US5274338A (en) Integrated FM detector including an oscillator having a capacitor and Schmitt trigger
JP2693775B2 (en) Video receiving circuit
JP3420618B2 (en) Doubler circuit having 90 ° phase shift means and NTSC / PAL converter circuit
JPS59827Y2 (en) phase synchronized circuit
JP3152929B2 (en) FM signal demodulation method and FM detector
EP0643540B1 (en) Automatic phase control apparatus