JPH0134247B2 - - Google Patents

Info

Publication number
JPH0134247B2
JPH0134247B2 JP6622981A JP6622981A JPH0134247B2 JP H0134247 B2 JPH0134247 B2 JP H0134247B2 JP 6622981 A JP6622981 A JP 6622981A JP 6622981 A JP6622981 A JP 6622981A JP H0134247 B2 JPH0134247 B2 JP H0134247B2
Authority
JP
Japan
Prior art keywords
component
polymerization
polymer
catalyst
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6622981A
Other languages
Japanese (ja)
Other versions
JPS57180612A (en
Inventor
Mitsuyuki Matsura
Takashi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP6622981A priority Critical patent/JPS57180612A/en
Priority to US06/370,666 priority patent/US4399055A/en
Priority to GB08212343A priority patent/GB2102438B/en
Priority to DE3215893A priority patent/DE3215893C2/en
Publication of JPS57180612A publication Critical patent/JPS57180612A/en
Publication of JPH0134247B2 publication Critical patent/JPH0134247B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

〔〕 〔発明の背景〕 技術分野 本発明は、高掻性でしかもポリマヌ性状のよい
重合䜓を提䟛する觊媒成分に関するものである。 埓来、マグネシりム化合物、たずえば、マグネ
シりムハラむド、マグネシりムオキシハラむド、
ゞアルキルマグネシりム、アルキルマグネシりム
ハラむド、マグネシりムアルコキシド、たたは、
ゞアルキルマグネシりムず有機アルミニりムずの
錯䜓等をチタン化合物等の遷移金属化合物の担䜓
ずしお䜿甚するず、高掻性觊媒が埗られるこずが
知られおいお、倚くの提案がなされおいる。 これら先行技術では、觊媒掻性はある皋床高い
が、生成する重合䜓のポリマヌ性状は充分でな
く、改良が望たれる状態である。ポリマヌ性状
は、スラリヌ重合および気盞重合等においおは、
きわめお重芁である。たずえば、ポリマヌ性状が
悪いず、重合槜内におけるポリマヌ付着、重合槜
からのポリマヌ抜き出し䞍良等の問題が生じ易
い。たた、重合槜内のポリマヌ濃床はポリマヌ性
状ず密接な関係にあり、ポリマヌ性状がよくない
ず重合槜内のポリマヌ濃床は高くできない。ポリ
マヌ濃床が高くできないずいうこずは、工業生産
䞊きわめお䞍利なこずである。 生行技術 特公昭51−37195号公報によれば、マグネシり
ムハラむド等にチタンテトラアルコキシドを反応
させお、さらに有機アルミニりムを反応させる方
法が提案されおいる。 特開昭54−16393号公報によれば、マグネシり
ムハラむド等にチタンテトラアルコキシド等を反
応させお、さらにハロゲン含有化合物ず還元性化
合物ずを反応させる方法が提案されおいる。 〔〕 発明の抂芁 芁 æ—š 本発明は䞊蚘の点に解決を䞎えるこずを目的ず
し、特定の態様で぀く぀た担持遷移金属觊媒成分
によ぀おこの目的を達成しようずするものであ
る。 埓぀お、本発明によるオレフむン重合甚觊媒成
分は、䞋蚘の成分(A)〜(C)の接觊生成物であるこ
ず、を特城ずするものである。 成分(A) ゞハロゲン化マグネシりム、チタンテトラアル
コキシド、および
[Background of the Invention] Technical Field The present invention relates to a catalyst component that provides a highly active polymer with good polymer properties. Conventionally, magnesium compounds such as magnesium halide, magnesium oxyhalide,
dialkylmagnesium, alkylmagnesium halide, magnesium alkoxide, or
It is known that a highly active catalyst can be obtained by using a complex of dialkylmagnesium and organoaluminum as a carrier for a transition metal compound such as a titanium compound, and many proposals have been made. Although these prior art techniques have a certain degree of catalytic activity, the properties of the resulting polymers are not sufficient, and improvements are desired. Polymer properties are as follows in slurry polymerization, gas phase polymerization, etc.
extremely important. For example, if the polymer properties are poor, problems such as polymer adhesion within the polymerization tank and failure to extract the polymer from the polymerization tank are likely to occur. Further, the polymer concentration in the polymerization tank is closely related to the polymer properties, and if the polymer properties are not good, the polymer concentration in the polymerization tank cannot be increased. The inability to increase the polymer concentration is extremely disadvantageous in industrial production. According to Japanese Patent Publication No. 51-37195, a method has been proposed in which magnesium halide or the like is reacted with titanium tetraalkoxide and further reacted with organoaluminum. According to JP-A-54-16393, a method is proposed in which magnesium halide or the like is reacted with titanium tetraalkoxide or the like, and then a halogen-containing compound and a reducing compound are reacted. [] SUMMARY OF THE INVENTION The present invention aims to provide a solution to the above-mentioned problems, and attempts to achieve this object by means of a supported transition metal catalyst component prepared in a specific manner. Therefore, the catalyst component for olefin polymerization according to the present invention is characterized by being a contact product of the following components (A) to (C). Component (A) Magnesium dihalide, titanium tetraalkoxide, and

【匏】で瀺される構造を 有するポリマヌケむ玠化合物より構成される固䜓
組成物。 成分(B) チタンテトラハラむド化合物 成分(C) 匏
A solid composition composed of a polymeric silicon compound having a structure represented by the formula: Component (B) Titanium tetrahalide compound component (C) Formula

【匏】で瀺される構造を有するポリマ ヌケむ玠化合物ここで、各は同䞀たたは異な
る炭化氎玠残基である 効 果 本発明による固䜓觊媒成分をチヌグラヌ觊媒の
遷移金属成分ずしお䜿甚しおα−オレフむンの重
合を行なうず、高掻性でしかもポリマヌ性状の優
れた重合䜓が埗られる。高掻性でポリマヌ性状の
よい重合䜓が埗られる理由は必ずしも明らかでな
いが、本発明で䜿甚する成分の化孊的な盞互䜜
甚および䜿甚する固䜓成分(A)および生成觊媒成分
の特別な物理的な性状によるものず思われる。 〔〕 発明の具䜓的説明  成分(A) (1) 組成 成分(A)は、ゞハロゲン化マグネシりム、チ
タンテトラアルコキシドおよび特定のポリマ
ヌケむ玠化合物より構成される固䜓組成物で
ある。 この固䜓組成物(A)は、ゞハロゲン化マグネ
シりムでもなく、ゞハロゲン化マグネシりム
ずチタンテトラアルコキシドずの錯䜓でもな
く、別の固䜓である。珟状では、その内容は
充分に解析しおいないが、組成分析結果によ
れば、この固䜓組成物は、チタン、マグネシ
りム、ハロゲン、ケむ玠を含有し、ハロゲン
ずマグネシりムのモル比が0.4以䞊、未満、
奜たしくは1.0〜1.8の範囲内にあり、原料ず
しお䜿甚したゞハロゲン化マグネシりムず
は、別の化合物のようである。この成分(A)の
比衚面積は、倚くの堎合小さくお通垞m2
以䞋であり、倧郚分はm2以䞋であ
る。たた、線回析の結果によれば、ゞハロ
ゲン化マグネシりムを特城付けるピヌクは党
く芋られず、線的にみおもゞハロゲン化マ
グネシりムずは別の化合物ず思われる。 (2) 補造 成分(A)は、ゞハロゲン化マグネシりム、チ
タンテトラアルコキシドおよび特定のポリマ
ヌケむ玠化合物の盞互接觊により補造され
る。 (1) ゞハロゲン化マグネシりム たずえば、MgF2、MgCl2、MgBr2、等
がある。 (2) チタンテトラアルコキシド たずえば、TiOC2H54、Ti−
isoC3H74、Ti−nC4H94、Ti−
nC3H74、Ti−isoC4H94、Ti−
CH2CHCH324、Ti−CH334、
Ti−C5H114、Ti−C6H134、Ti
−nC7H154、Ti〔OCHC3H72〕4、Ti
〔OCHCH3C4H9〕4、TiOC8H174、Ti
OC10H214、Ti〔OCH2CHC2H5
C4H9〕4等がある。 (3) ポリマヌケむ玠化合物 匏
A polymeric silicon compound having the structure of [Formula] (wherein each R is the same or different hydrocarbon residue) Effects Using the solid catalyst component according to the present invention as the transition metal component of a Ziegler catalyst When olefin is polymerized, a polymer with high activity and excellent polymer properties can be obtained. The reason why a polymer with high activity and good polymer properties can be obtained is not necessarily clear, but it is due to the chemical interaction of the four components used in the present invention and the special physical properties of the solid component (A) used and the catalyst component produced. This seems to be due to the characteristics. [] Detailed Description of the Invention 1 Component (A) (1) Composition Component (A) is a solid composition composed of magnesium dihalide, titanium tetraalkoxide, and a specific polymeric silicon compound. This solid composition (A) is neither a magnesium dihalide nor a complex of magnesium dihalide and titanium tetraalkoxide, but is another solid. At present, its contents have not been fully analyzed, but according to the compositional analysis results, this solid composition contains titanium, magnesium, halogen, and silicon, and the molar ratio of halogen to magnesium is 0.4 or more and less than 2. ,
It is preferably within the range of 1.0 to 1.8, and seems to be a different compound from the magnesium dihalide used as a raw material. The specific surface area of this component (A) is often small, usually 5 m 2 /
g or less, and most of them are less than 3 m 2 /g. Furthermore, according to the results of X-ray diffraction, no peaks characterizing magnesium dihalide were observed, and even from an X-ray perspective, it seems to be a different compound from magnesium dihalide. (2) Production Component (A) is produced by mutual contact of magnesium dihalide, titanium tetraalkoxide and certain polymeric silicon compounds. (1) Magnesium dihalide Examples include MgF 2 , MgCl 2 , MgBr 2 , etc. (2) Titanium tetraalkoxide For example, Ti(OC 2 H 5 ) 4 , Ti(O-
isoC 3 H 7 ) 4 , Ti(O-nC 4 H 9 ) 4 , Ti(O-
nC 3 H 7 ) 4 , Ti(O-isoC 4 H 9 ) 4 , Ti(O-
CH2CH ( CH3 ) 2 ) 4 , Ti(OC( CH3 ) 3 ) 4 ,
Ti(O-C 5 H 11 ) 4 , Ti(O-C 6 H 13 ) 4 , Ti
(O−nC 7 H 15 ) 4 , Ti [OCH(C 3 H 7 ) 2 ] 4 , Ti
[OCH ( CH3 ) C4H9 ] 4 ,Ti ( OC8H17 ) 4 ,Ti
(OC 10 H 21 ) 4 , Ti [OCH 2 CH (C 2 H 5 )
C 4 H 9 ] There are 4 etc. (3) Polymer silicon compound formula

【匏】で、は炭玠数〜10繋 床、特に〜皋床、の炭化氎玠残基であ
る。 このような構造単䜍を有するポリマヌケ
む玠化合物の具䜓䟋ずしおは、メチルヒド
ロポリシロキサン、゚チルヒドロポリシロ
キサン、プニルヒドロポリシロキサン、
シクロヘキシルヒドロポリシロキサン等が
あげられる。 それらの重合床は特に限定されるもので
はないが、取り扱いを考えれば、粘床が10
センチストヌクスから100センチストヌク
ス皋床ずなるものが奜たしい。たたヒドロ
ポリシロキサンの未端構造は、倧きな圱響
をおよがさないが、䞍掻性基たずえばトリ
アルキルシリル基で封鎖されるこずが望た
しい。 (4) 各成分の接觊 量比 各成分の䜿甚量は、本発明の効果が認め
られるかぎり、任意のものでありうるが、
䞀般的には、次の範囲内が奜たしい。 チタンテトラアルコキシドの䜿甚量は、
ゞハロゲン化マグネシりムに察しお、モル
比で0.1〜10の範囲内でよく、奜たしくは、
〜の範囲内である。 ポリマヌケむ玠化合物の䜿甚量は、ゞハ
ロゲン化マグネシりム察しお、モル比で
×10-2〜100の範囲内でよく、奜たしくは、
0.1〜10の範囲内である。 接觊方法 本発明の成分(A)は、前述の成分を接觊
させお埗られるものである。成分の接觊
は、䞀般に知られおいる任意の方法で行な
うこずができる。−100℃〜200℃奜たしく
は℃〜70℃の枩床範囲で接觊させればよ
い。接觊時間は、通垞10分から20時間皋
床、奜たしくは0.5時間〜時間、である。 成分の接觊は、撹拌䞋に行なうこずが
奜たしく、たたボヌルミル、振動ミル等に
よる機械的な粉砕によ぀お、接觊させるこ
ずもできる。成分の接觊の順序は、本発
明の効果が認められるかぎり、任意のもの
でありうるが、ゞハロゲン化マグネシりム
ずチタンテトラアルコキシドを接觊させ
お、次いでポリマヌケむ玠化合物を接觊さ
せるのが䞀般的である。 成分の接觊は、分散媒の存圚䞋に、行
なうこずもできる。その堎合の分散媒ずし
おは、炭化氎玠、ハロゲン化炭化氎玠、ゞ
アルキルポリシロキサン等があげられる。
炭化氎玠の具䜓䟋ずしおは、ヘキサン、ヘ
プタン、トル゚ン、シクロヘキサン等があ
り、ハロゲン化炭化氎玠の具䜓䟋ずしお
は、塩化−−ブチル、−ゞクロロ
゚チレン、四塩化炭玠、クロルベンれン等
があり、ゞアルキルポリシロキサンの具䜓
䟋ずしおは、ゞメチルポリシロキサン、メ
チル−プニルポリシロキサン等があげら
れる。  本発明觊媒成分の合成 本発明觊媒成分は、前蚘成分(A)ずチタンテト
ラハラむド成分(B)ず特定のポリマヌケむ玠
化合物成分(C)ずの接觊生成物である。 (1) チタンテトラハラむド化合物成分(B)た
ずえば、四塩化チタン、四臭化チタンその他
がある。液䜓の化合物が奜たしい。 (2) ポリマヌケむ玠化合物 匏
In the formula, R is a hydrocarbon residue having about 1 to 10 carbon atoms, particularly about 1 to 6 carbon atoms. Specific examples of polymeric silicon compounds having such structural units include methylhydropolysiloxane, ethylhydropolysiloxane, phenylhydropolysiloxane,
Examples include cyclohexylhydropolysiloxane. The degree of polymerization is not particularly limited, but considering handling, the viscosity is 10
Preferably, it is about centistokes to 100 centistokes. Further, although the unterminated structure of the hydropolysiloxane does not have a large effect, it is desirable that it is blocked with an inert group such as a trialkylsilyl group. (4) Contact (amount ratio) of each component The amount of each component used can be arbitrary as long as the effect of the present invention is recognized.
Generally, it is preferably within the following range. The amount of titanium tetraalkoxide used is
The molar ratio to magnesium dihalide may be within the range of 0.1 to 10, preferably,
It is within the range of 1 to 4. The amount of polymer silicon compound used is 1 molar ratio to magnesium dihalide.
It may be within the range of ×10 -2 to 100, preferably,
It is within the range of 0.1 to 10. (Contact method) Component (A) of the present invention is obtained by contacting the three components described above. Contacting the three components can be carried out by any generally known method. The contact may be made at a temperature range of -100°C to 200°C, preferably 0°C to 70°C. The contact time is usually about 10 minutes to 20 hours, preferably 0.5 hours to 5 hours. It is preferable to bring the three components into contact with each other while stirring, and they can also be brought into contact by mechanical grinding using a ball mill, vibration mill, or the like. The order of contacting the three components may be arbitrary as long as the effects of the present invention are observed, but it is common to contact the magnesium dihalide and the titanium tetraalkoxide, and then to contact the polymeric silicon compound. . Contacting the three components can also be carried out in the presence of a dispersion medium. Examples of the dispersion medium in this case include hydrocarbons, halogenated hydrocarbons, dialkylpolysiloxanes, and the like.
Specific examples of hydrocarbons include hexane, heptane, toluene, cyclohexane, etc., and specific examples of halogenated hydrocarbons include -n-butyl chloride, 1,2-dichloroethylene, carbon tetrachloride, chlorobenzene, etc. Specific examples of the dialkylpolysiloxane include dimethylpolysiloxane, methyl-phenylpolysiloxane, and the like. 2 Synthesis of Catalyst Component of the Present Invention The catalyst component of the present invention is a contact product of the component (A), titanium tetrahalide (component (B)), and a specific polymeric silicon compound (component (C)). (1) Titanium tetrahalide compound (component (B)) Examples include titanium tetrachloride, titanium tetrabromide, and others. Liquid compounds are preferred. (2) Polymer silicon compound formula

【匏】で、は成分(A)甚のず同 䞀たたは異なる炭玠数〜10皋床、特に〜
皋床、の炭化氎玠残基である。 このような構造単䜍を有するポリマヌケむ
玠化合物の具䜓䟋ずしおは、メチルヒドロポ
リシロキサン、゚チルヒドロポリシロキサ
ン、プニルヒドロポリシロキサン、シクロ
ヘキシルヒドロポリシロキサン等があげられ
る。 それらの重合床は特に限定されるものでは
ないが、取り扱いを考えれば、粘床が10セン
チストヌクスから100センチストヌクス皋床
ずなるものが奜たしい。たたヒドロポリシロ
キサンの未端構造は、倧きな圱響をおよがさ
ないが、䞍掻性基たずえばトリアルキルシリ
ル基で封鎖されるこずが望たしい。 (3) 固䜓成分(A)ず各成分の接觊 (1) 量比 各成分の䜿甚量は、本発明の効果が認め
られるかぎり、任意のものであるが、䞀般
的には、次の範囲内が奜たしい。 チタンテトラハラむド(B)の䜿甚量は、固
䜓成分(A)を構成するゞハロゲン化マグネシ
りムに察しお、モル比で×10-2〜10の範
囲内でよく、奜たしくは、0.1〜1.0の範囲
内である。 ポリマヌケむ玠化合物(C)の䜿甚量は、固
䜓成分(A)を構成するゞハロゲン化マグネシ
りムに察しお、モル比で×10-3〜10の範
囲内でよく、奜たしくは、0.05〜1.0の範
囲内である。 (2) 接觊方法 本発明の觊媒成分は、前述の固䜓成分(A)
に成分を接觊させお埗られるものであ
る。接觊方法は、䞀般に知られおいる任意
の方法で行なうこずができる。䞀般に、−
100℃〜200℃、奜たしくは℃〜70℃、の
枩床範囲で接觊させればよい。接觊時間
は、通垞10分から20時間皋床、奜たしくは
0.5時間〜時間、である。 固䜓成分(A)ず成分の接觊は、撹拌䞋に
行なうこずが奜たしく、たたボヌルミル、
振動ミル等による機械的な粉砕によ぀お、
接觊させるこずもできる。接觊の順序は、
本発明の効果が認められるかぎり、任意の
ものでありうる。固䜓成分(A)に察しお、チ
タンテトラハラむドを先に反応させおもよ
く、ポリマヌケむ玠化合物を先に反応させ
おもよい。たた、チタンテトラハラむドず
ポリマヌケむ玠化合物を同時に反応させお
もよい。 成分(A)〜(C)の接觊は、分散媒の存圚䞋
に、行なうこずもできる。その堎合の分散
媒ずしおは、炭化氎玠、ハロゲン化炭化氎
玠、ゞアルキルポリシロキサン等があげら
れる。炭化氎玠の具䜓䟋ずしおは、ヘキサ
ン、ヘプタン、トル゚ン、シクロヘキサン
等があり、ハロゲン化炭化氎玠の具䜓䟋ず
しおは、塩化−ブチル、−ゞクロ
ロ゚チレン、四塩化炭玠、クロルベンれン
等があり、ゞアルキルポリシロキサンの具
䜓䟋ずしおは、ゞメチルポリシロキサン、
メチル−プニルポリシロキサン等があげ
られる。 接觊生成物すなわち本発明觊媒成物は、
比范的衚面積が小さく、20m2以䞋であ
る。  α−オレフむンの重合 (1) 觊媒の圢成 本発明の觊媒成分は、共觊媒である有機金
属化合物ず組合せおα−オレフむンの重合に
䜿甚するこずができる。共觊媒ずしお知られ
おいる呚期埋衚第〜族の金属の有機金属
化合物のいずれでも䜿甚できる。特に、有機
アルミニりム化合物が奜たしい。 有機アルミニりム化合物の具䜓䟋ずしお
は、䞀般匏R33−nAlXnたたは、R43−mAl
OR5ここでR3、R4、R5は同䞀たたは
異぀おもよい炭玠数〜20皋床の炭化氎玠残
基たたは氎玠、はハロゲン原子、および
はそれぞれ、の数で
あるで衚わされるものがある。具䜓的に
は、(ã‚€)トリメチルアルミニりム、トリ゚チル
アルミニりム、トリむ゜ブチルアルミニり
ム、トリオクチルアルミニりム、トリデシル
アルミニりム等のトリアルキルアルミニり
ム、(ロ)ゞ゚チルアルミニりムモノクロラむ
ド、ゞむ゜ブチルアルミニりムモノクロラむ
ド、゚チルアルミニりムセスキクロラむド、
゚チルアルミニりムゞクロラむド、等のアル
キルアルミニりムハラむド、(ハ)ゞ゚チルアル
ミニりムハむドラむド、ゞむ゜ブチルアルミ
ニりムハむドラむド、等のゞアルキルハむド
ラむド、(ニ)ゞ゚チルアルミニりム゚トキシ
ド、ゞ゚チルアルミニりムブトキシド、ゞ゚
チルアルミニりムプノキシド等のアルキル
アルミニりムアルコキシド等があげられる。 これら(ã‚€)〜(ハ)の有機アルミニりム化合物に
他の有機金属化合物、䟋えばR73−aAl
OR8a、R7およびR8は、同䞀
たたは異な぀おもよい炭玠数〜20皋床の炭
化氎玠残基であるで衚わされるアルキルア
ルミニりムアルコキシドを䜵甚するこずもで
きる。たずえば、トリ゚チルアルミニりムず
ゞ゚チルアルミニりム゚トキシドずの䜵甚、
ゞ゚チルアルミニりムモノクロラむドずゞ゚
チルアルミニりム゚トキシドずの䜵甚、゚チ
ルアルミニりムゞクロラむドず゚チルアルミ
ニりムゞ゚トキシドずの䜵甚、トリ゚チルア
ルミニりムずゞ゚チルアルミニりムクロラむ
ドずゞ゚チルアルミニりム゚トキシドずの䜵
甚があげられる。 これらの有機金属化合物の䜿甚量は特に制
限はないが、本発明の固䜓觊媒成分に察し
お、重量比で0.5〜1000の範囲内が奜たしい。 (2) α−オレフむン 本発明の觊媒系で重合するα−オレフむン
は、䞀般匏−CHCH2ここで、は氎玠
原子たたは炭玠数〜10の炭化氎玠残基であ
り、眮換基を有しおもよい。で衚わされる
ものである。具䜓的には、゚チレン、プロピ
レン、プテン−、ベンテン−、ヘキセン
−、−メチルベンテン−などのオレフ
むン類がある。特に奜たしくは、゚チレンお
よびプロピレンである。これらの重合の堎合
に、゚チレンに察しお50重量パヌセント、奜
たしくは20重量パヌセント、たでの䞊蚘α−
オレフむンずの共重合を行なうこずができ
る。たた䞊蚘α−オレフむン以倖の共重合性
モノマヌたずえば、酢酞ビニル、ゞオレフ
むンずの共重合を行なうこずもできる。 (3) 重合 この発明の觊媒系は、通垞のスラリヌ重合
に適甚されるのはもちろんであるが、実質的
に溶媒を甚いない液盞無溶媒重合、溶液重
合、たたは気盞重合法にも連続重合にも、回
分匏重合にも、あるいは予備重合を行なう方
匏にも適甚される。 スラリヌ重合の堎合の重合溶媒ずしおは、
ヘキサン、ヘプタン、シクロヘキサン、ベン
れン、トル゚ン等の飜和脂肪族たたは芳銙族
炭化氎玠の単独あるいは混合物が甚いられ
る。重合枩床は宀枩から200℃皋床、奜たし
くは50℃〜150℃であり、そのずきの分子量
調節剀ずしお補助的に氎玠を甚いるこずがで
きる。 たた重合時に少量のTiOR4−nXnここ
では炭玠数〜10皋床の炭化氎玠残基、
はハロゲン、はの数であるの
添加により、重合するポリマヌの密床をコン
トロヌルするこずが可胜である。具䜓的には
0.890〜0.965皋床の範囲内でコントロヌル可
胜である。  実隓䟋 実斜䟋  (1) 固䜓成分(A)の合成 充分に窒玠眮換したフラスコに脱氎および脱
酞玠した−ヘプタンを50ミリリツトルに導入
し、次いでMgCl2を0.1モル、TiO-oBu4を0.2
モル導入しお、90℃にお時間反応させた。反
応終了埌、40℃に枩床を䞋げ、次いでメチルハ
むドロゞ゚ンポリシロキサン20センチストヌ
クスのものを12ミリリツトル導入しお、時
間反応させた。生成した固䜓成分を−ヘプタ
ンで掗浄し、䞀郚分を取り出しお組成分析した
ずころ、Ti14.3重量パヌセント、Cl11.7重
量パヌセント、Mg5.3重量パヌセント、およ
びSi1.5重量パヌセントであ぀た。たた、
BET法により比衚面積を枬定したずころ、比
衚面積が小さすぎお枬定できなか぀たけれど
も、掚定ではm2皋床である。 (2) 觊媒成分の補造 充分に蓄玠眮換したフラスコに脱氎および脱
酞玠した−ヘプタンを50ミリリツトル導入
し、䞊蚘で合成した固䜓成分(A)を党量導入し
た。次いでTiCl40.04モルず−ヘプタン50ミ
リリツトルを導入し、さらにメチルハむドロゞ
゚ンポリシロキサン12ミリリツトルを導入し
お、70℃で時間反応させた。反応終了埌、
−ヘプタンで掗浄しお、觊媒成分ずした。その
䞀郚分をずり出しお組成分析したずころ、Ti
14.9重量パヌセント、Cl31.2重量パヌセン
ト、Mg5.9重量パヌセントおよびSi6.6重
量パヌセントであ぀た。たたBET法により、
比衚面積を枬定したずころ、5.6m2であ
぀た。 (3) ゚チレンの重合 撹拌および枩床制埡装眮を有する内容積1.5
リツトルのステンレス鋌補オヌトクレヌブに、
真空−゚チレン眮換を数回くり返したのち、充
分に脱氎および脱酞玠した−ヘプタンを800
ミリリツトル導入し、続いおトリ゚チルアルミ
ニりム200ミリグラム、䞊蚘で合成した觊媒成
分10ミリグラムを導入した。85℃に昇枩し、氎
玠を分圧で4.5Kgcm2導入し、さらに゚チレン
を導入しお、党圧でKgcm2ずした。時間重
合を行な぀た。重合䞭、これらの反応条件を同
䞀に保぀た。ただし、重合が進行するに埓い䜎
䞋する圧力は、゚チレンだけを導入するこずに
より䞀定の圧力に保぀た。重合終了埌、゚チレ
ンおよび氎玠をパヌゞしお、オヌトクレヌブよ
り内容物をずり出し、このポリマヌスラリヌを
過しお、真空也燥機で䞀昌倜也燥した。105
グラムのポリマヌPEが埗られた。察觊媒
収率PE固䜓觊媒成分は、10500ずい
うこずになる。 このポリマヌに぀いお、190℃で荷重2.16Kg
のメルトフロヌレシオMFRを枬定したず
ころ、MFR7.2であ぀た。ポリマヌ嵩比重
0.47ccであ぀た。ポリマヌの粒埄分垃
を枬定したずころ、䞋蚘の通りであ぀た。
In [Formula], R has about 1 to 10 carbon atoms, which is the same as or different from R for component (A), especially 1 to 10 carbon atoms.
There are about 6 hydrocarbon residues. Specific examples of polymeric silicon compounds having such structural units include methylhydropolysiloxane, ethylhydropolysiloxane, phenylhydropolysiloxane, and cyclohexylhydropolysiloxane. The degree of polymerization is not particularly limited, but in consideration of handling, it is preferable to have a viscosity of about 10 centistokes to 100 centistokes. Further, although the unterminated structure of the hydropolysiloxane does not have a large effect, it is desirable that it is blocked with an inert group such as a trialkylsilyl group. (3) Contact between solid component (A) and each component (1) Amount ratio The amount of each component to be used is arbitrary as long as the effect of the present invention is recognized, but generally it is within the following range. is preferred. The amount of titanium tetrahalide (B) to be used may be in a molar ratio of 1 x 10 -2 to 10, preferably in a range of 0.1 to 1.0, relative to the magnesium dihalide constituting the solid component (A). It is within. The amount of the polymer silicon compound (C) to be used may be in a molar ratio of 1 x 10 -3 to 10, preferably in a range of 0.05 to 1.0, relative to the magnesium dihalide constituting the solid component (A). It is within. (2) Contact method The catalyst component of the present invention is the solid component (A) described above.
It is obtained by bringing two components into contact with each other. The contacting method can be carried out by any generally known method. In general, -
The contact may be carried out at a temperature range of 100°C to 200°C, preferably 0°C to 70°C. The contact time is usually about 10 minutes to 20 hours, preferably
0.5 hours to 5 hours. The contact between the solid component (A) and the two components is preferably carried out under stirring, and is preferably carried out using a ball mill,
By mechanical grinding using a vibrating mill etc.
It can also be brought into contact. The order of contact is
Any material may be used as long as the effect of the present invention is recognized. The solid component (A) may be reacted with titanium tetrahalide or with a polymer silicon compound first. Further, titanium tetrahalide and the polymer silicon compound may be reacted simultaneously. Components (A) to (C) can also be brought into contact in the presence of a dispersion medium. Examples of the dispersion medium in this case include hydrocarbons, halogenated hydrocarbons, dialkylpolysiloxanes, and the like. Specific examples of hydrocarbons include hexane, heptane, toluene, cyclohexane, etc., and specific examples of halogenated hydrocarbons include n-butyl chloride, 1,2-dichloroethylene, carbon tetrachloride, chlorobenzene, etc. Specific examples of dialkylpolysiloxane include dimethylpolysiloxane,
Examples include methyl-phenyl polysiloxane. The contact product, i.e. the catalyst composition of the invention, is
It has a relatively small surface area, less than 20 m 2 /g. 3 Polymerization of α-olefin (1) Formation of catalyst The catalyst component of the present invention can be used in the polymerization of α-olefin in combination with an organometallic compound as a cocatalyst. Any of the organometallic compounds of metals from groups 1 to 10 of the periodic table, which are known as cocatalysts, can be used. Particularly preferred are organic aluminum compounds. Specific examples of organoaluminum compounds include the general formula R 3 3−nAlXn or R 4 3−mAl
(OR 5 )m (where R 3 , R 4 , R 5 are hydrogen or hydrocarbon residues having about 1 to 20 carbon atoms, which may be the same or different; X is a halogen atom; n and m are each 0n<2 , 0m1). Specifically, (a) trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trioctylaluminum, tridecylaluminum, etc., (b) diethylaluminum monochloride, diisobutylaluminum monochloride, ethylaluminum sesquichloride,
Alkyl aluminum halides such as ethyl aluminum dichloride, (c) dialkyl hydrides such as diethyl aluminum hydride and diisobutyl aluminum hydride, (d) alkyl aluminum alkoxides such as diethyl aluminum ethoxide, diethylaluminum butoxide, and diethylaluminum phenoxide, etc. can give. Other organometallic compounds may be added to these organoaluminum compounds (a) to (c), such as R 7 3−aAl.
An alkyl aluminum alkoxide represented by (OR) 8 a (1a3, R 7 and R 8 are hydrocarbon residues having about 1 to 20 carbon atoms which may be the same or different) can also be used in combination. For example, the combination of triethylaluminum and diethylaluminum ethoxide,
Examples include a combination of diethylaluminum monochloride and diethylaluminum ethoxide, a combination of ethylaluminum dichloride and ethylaluminum diethoxide, and a combination of triethylaluminum, diethylaluminum chloride, and diethylaluminium ethoxide. The amount of these organometallic compounds to be used is not particularly limited, but it is preferably within the range of 0.5 to 1000 in weight ratio to the solid catalyst component of the present invention. (2) α-Olefin The α-olefin polymerized using the catalyst system of the present invention has the general formula R-CH=CH 2 (where R is a hydrogen atom or a hydrocarbon residue having 1 to 10 carbon atoms, and is substituted with may have a group). Specifically, there are olefins such as ethylene, propylene, butene-1, bentene-1, hexene-1, and 4-methylbentene-1. Particularly preferred are ethylene and propylene. In these polymerizations, up to 50% by weight, preferably 20% by weight, of the α-
Copolymerization with olefins can be carried out. Further, copolymerization with copolymerizable monomers other than the above-mentioned α-olefins (eg, vinyl acetate, diolefins) can also be carried out. (3) Polymerization The catalyst system of the present invention is of course applicable to ordinary slurry polymerization, but can also be continuously applied to liquid-phase solvent-free polymerization, solution polymerization, or gas-phase polymerization that uses substantially no solvent. It can be applied to polymerization, batch polymerization, or prepolymerization. As a polymerization solvent in the case of slurry polymerization,
Saturated aliphatic or aromatic hydrocarbons such as hexane, heptane, cyclohexane, benzene, and toluene may be used alone or in mixtures. The polymerization temperature is from room temperature to about 200°C, preferably from 50°C to 150°C, and hydrogen can be used as an auxiliary molecular weight regulator at this time. Also, during polymerization, a small amount of Ti(OR) 4 -nXn (where R is a hydrocarbon residue having about 1 to 10 carbon atoms,
is a halogen, n is the number 0n4), it is possible to control the density of the polymerized polymer. in particular
It can be controlled within a range of about 0.890 to 0.965. 4 Experimental Examples Example 1 (1) Synthesis of solid component (A) 50 milliliters of dehydrated and deoxygenated n-heptane was introduced into a flask that had been sufficiently purged with nitrogen, and then 0.1 mol of MgCl 2 and Ti(O -o Bu) 4 to 0.2
mol was introduced and the reaction was carried out at 90°C for 2 hours. After the reaction was completed, the temperature was lowered to 40°C, and then 12 ml of methylhydrodiene polysiloxane (20 centistokes) was introduced, and the reaction was allowed to proceed for 2 hours. The produced solid components were washed with n-heptane, and a portion was taken out for compositional analysis, which revealed that Ti = 14.3% by weight, Cl = 11.7% by weight, Mg = 5.3% by weight, and Si = 1.5% by weight. Also,
When the specific surface area was measured by the BET method, the specific surface area was too small to be measured, but it is estimated to be about 1 m 2 /g. (2) Production of catalyst component 50 milliliters of dehydrated and deoxygenated n-heptane was introduced into a flask that had been sufficiently replaced with hydrogen storage, and the entire amount of the solid component (A) synthesized above was introduced. Next, 0.04 mol of TiCl 4 and 50 ml of n-heptane were introduced, followed by 12 ml of methylhydrodiene polysiloxane, and the mixture was reacted at 70° C. for 2 hours. After the reaction is complete, n
- Washed with heptane to obtain a catalyst component. When we took out a part of it and analyzed its composition, we found that Ti
= 14.9 weight percent, Cl = 31.2 weight percent, Mg = 5.9 weight percent and Si = 6.6 weight percent. Also, by the BET method,
When the specific surface area was measured, it was 5.6 (m 2 /g). (3) Polymerization of ethylene Internal volume 1.5 with stirring and temperature control equipment
In a little stainless steel autoclave,
After repeating vacuum-ethylene displacement several times, thoroughly dehydrated and deoxygenated n-heptane was
milliliter, followed by 200 milligrams of triethylaluminum and 10 milligrams of the catalyst component synthesized above. The temperature was raised to 85° C., hydrogen was introduced at a partial pressure of 4.5 Kg/cm 2 , and ethylene was further introduced to bring the total pressure to 9 Kg/cm 2 . Polymerization was carried out for 3 hours. These reaction conditions were kept the same during the polymerization. However, the pressure, which decreases as the polymerization progresses, was kept constant by introducing only ethylene. After the polymerization was completed, ethylene and hydrogen were purged, the contents were taken out from the autoclave, and the polymer slurry was filtered and dried in a vacuum dryer overnight. 105
grams of polymer (PE) were obtained. The yield to catalyst (gPE/g solid catalyst component) is 10,500. For this polymer, load 2.16Kg at 190℃
When the melt flow ratio (MFR) was measured, it was 7.2. Polymer bulk specific gravity =
It was 0.47 (g/cc). When the particle size distribution of the polymer was measured, it was as follows.

【衚】 実斜䟋 〜 実斜䟋の觊媒成分の補造においお、TiCl4の
導入量を衚−に瀺すようにした以倖は党く同様
に補造を行ない、゚チレンの重合も党く同様に行
な぀た。その結果を衚−に瀺す。 実斜䟋 〜 実斜䟋の觊媒成分の補造においお、メチルハ
むドロゞ゚ンポリシロキサンの導入量を衚−に
瀺すようにした以倖は党く同様に補造を行ない、
゚チレンの重合も党く同様に行な぀た。その結果
を衚−に瀺す。 実斜䟋 〜11 実斜䟋の觊媒成分の補造の固䜓成分(A)の補造
においお、チタンテトラアルコキシドおよびメチ
ルハむドロゞ゚ンポリシロキサンの導入量をそれ
ぞれ衚−に瀺すようにした以倖は党く同様に固
䜓成分(A)の補造を行ない、觊媒成分の補造も党く
同様に行な぀た。さらに、゚チレンの重合も党く
同様に行な぀た。その結果を衚−に瀺す。 実斜䟋 12 実斜䟋の觊媒成分の補造においおTiCl4ずメ
チルハむドロゞ゚ンポリシロキサンを−ヘプタ
ン50ミリリツトルで垌釈しお導入した以倖は党く
同様に補造を行ない、゚チレンの重合も党く同様
に行な぀た。95グラムの癜色重合䜓が埗られた
〔察觊媒収率9500PE固䜓觊媒成分〕。
MFR9.6、ポリマヌ嵩密床0.47ccであ
぀た。 実斜䟋 13 実斜䟋の觊媒成分の補造においお、 Ti−nC4H94のかわりにTi−iC3H74を
䜿甚した以倖は党く同様に行ない、゚チレンの重
合も党く同様に行な぀た。92グラムの癜色重合䜓
が埗られた〔察觊媒収率9200PE固䜓觊
媒成分〕。MFR8.5、ポリマヌ嵩密床0.45
ccであ぀た。 実斜䟋 14 (1) 觊媒成分の補造 充分に窒玠眮換したフラスコに脱氎および脱
酞玠した−ヘプタンを50ミリリツトルに導入
し、次いでメチルハむドロゞ゚ンポリシロキサ
ンを12ミリリツトルを導入し、40℃にした。次
いで、予じめ反応させおおいたMgCl20.1モル
ず Ti−nC4H940.2モルず−ヘプタン50ミ
リリツトルずの反応物をフラスコぞ導入した。
40℃で時間反応させた。その埌は、実斜䟋
ず党く同様に觊媒成分の補造を行な぀た。な
お、觊媒成分内のTi含有量は、15.2重量パヌセ
ントであ぀た。 (2) ゚チレンの重合 実斜䟋においお有機アルミニりム成分をト
リ゚チルアルミニりムからトリむ゜ブチルアル
ミニりム300ミリグラムにした以倖は、党く同
様の条件で゚チレンの重合を行な぀た。91グラ
ムの癜色重合䜓が埗られた〔察觊媒収率9100
PE固䜓觊媒成分〕。MFR9.8、ポリ
マヌ嵩密床0.46c.c.であ぀た。 実斜䟋 15〜17 実斜䟋の觊媒を䜿甚し、有機アルミニりム成
分を衚−に瀺すように倉曎した以倖は党く同様
に゚チレンの重合を行な぀た。その結果を衚−
に瀺す。 比范䟋  (1) 觊媒成分の補造 実斜䟋の觊媒成分の補造においお、固䜓成
分(A)の補造埌に−ヘプタンによる掗浄を行な
うこずなくそのたた䜿甚した以倖は、実斜䟋
ず党く同様に觊媒成分の補造を行な぀た。なお
觊媒成分内Ti含有量は、12.7重量パヌセントで
あ぀た。 (2) ゚チレンの重合 実斜䟋ず党く同様の条件で重合を行な぀
た。34グラムのポリマヌが埗られた〔察觊媒収
率3400PE固䜓觊媒成分〕。MFR
4.3、ポリマヌ嵩密床0.253c.c.であ぀
た。なお、ポリマヌ粒埄分垃は、次の通りであ
぀た。
[Table] Examples 2 to 4 The catalyst components were produced in exactly the same manner as in Example 1, except that the amount of TiCl 4 introduced was changed as shown in Table 1, and the polymerization of ethylene was carried out in the same manner. Ta. The results are shown in Table-1. Examples 5 to 7 The catalyst component was produced in exactly the same manner as in Example 1, except that the amount of methylhydrodiene polysiloxane introduced was changed as shown in Table 2.
Polymerization of ethylene was carried out in exactly the same manner. The results are shown in Table-2. Examples 8 to 11 In the production of the solid component (A) in the production of the catalyst component in Example 1, the same procedure was followed except that the amounts of titanium tetraalkoxide and methylhydrodiene polysiloxane introduced were as shown in Table 3. The solid component (A) was produced, and the catalyst component was produced in exactly the same manner. Furthermore, the polymerization of ethylene was carried out in exactly the same manner. The results are shown in Table-3. Example 12 The catalyst components were produced in exactly the same manner as in Example 1, except that TiCl 4 and methylhydrodiene polysiloxane were diluted with 50 ml of n-heptane and the polymerization of ethylene was carried out in the same manner. Ta. 95 grams of white polymer was obtained (yield based on catalyst=9500 (g PE/g solid catalyst component)).
MFR=9.6 and polymer bulk density=0.47 (g/cc). Example 13 The production of the catalyst component in Example 1 was carried out in exactly the same manner except that Ti(O-iC 3 H 7 ) 4 was used instead of Ti(O-nC 4 H 9 ) 4 , and ethylene polymerization was also carried out. I did exactly the same thing. 92 grams of white polymer was obtained (yield based on catalyst = 9200 (g PE/g solid catalyst component)). MFR=8.5, polymer bulk density=0.45
(g/cc). Example 14 (1) Production of catalyst component 50 ml of dehydrated and deoxygenated n-heptane was introduced into a flask that had been sufficiently purged with nitrogen, and then 12 ml of methylhydrodiene polysiloxane was introduced, and the temperature was raised to 40°C. Next, a reactant of 0.1 mol of MgCl 2 , 0.2 mol of Ti(O-nC 4 H 9 ) 4 and 50 ml of n-heptane, which had been reacted in advance, was introduced into the flask.
The reaction was carried out at 40°C for 1 hour. After that, Example 1
The catalyst components were produced in exactly the same manner as in the previous example. Note that the Ti content in the catalyst component was 15.2% by weight. (2) Polymerization of ethylene Ethylene polymerization was carried out under exactly the same conditions as in Example 1 except that the organoaluminum component was changed from triethylaluminum to 300 mg of triisobutylaluminum. 91 grams of white polymer was obtained [yield based on catalyst = 9100
(gPE/g solid catalyst component)]. MFR=9.8 and polymer bulk density=0.46 (g/cc). Examples 15 to 17 Ethylene polymerization was carried out in the same manner as in Example 1 except that the catalyst of Example 1 was used and the organoaluminum components were changed as shown in Table 4. Table 4 shows the results.
Shown below. Comparative Example 1 (1) Production of catalyst component In the production of the catalyst component of Example 1, Example 1 was used except that solid component (A) was used as it was without washing with n-heptane after production.
The catalyst components were produced in exactly the same manner as in the previous example. Note that the Ti content in the catalyst component was 12.7% by weight. (2) Polymerization of ethylene Polymerization was carried out under exactly the same conditions as in Example 1. 34 grams of polymer was obtained (yield based on catalyst = 3400 (g PE/g solid catalyst component)). MFR
4.3, polymer bulk density = 0.253 (g/cc). The polymer particle size distribution was as follows.

【衚】 実斜䟋 18 ゚チレン−ブテン−混合ガスの重合 実斜䟋で補造した固䜓成分を䜿甚し、゚チレ
ンのかわりにブテン−を7.5モルパヌセント含
む゚チレン−ブテン−混合ガスを䜿甚し、重合
槜内のH2濃床を20モルパヌセントにした以倖は、
党く同様の条件で、重合を行な぀た。178グラム
のポリマヌが、埗られた。MFR2.3、ポリマヌ
嵩密床0.45c.c.、ポリマヌ密床0.934
cm3であ぀た。
[Table] Example 18 Polymerization of ethylene-butene-1 mixed gas Using the solid component produced in Example 1, using an ethylene-butene-1 mixed gas containing 7.5 mol percent of butene-1 instead of ethylene, Except that the H2 concentration in the polymerization tank was set to 20 mol percent.
Polymerization was carried out under exactly the same conditions. 178 grams of polymer was obtained. MFR=2.3, polymer bulk density=0.45 (g/cc), polymer density=0.934
(g/cm 3 ).

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第図は、チヌグラヌ觊媒に関する本発明の技
術内容の理解を助けるためのフロヌチダヌト図で
ある。
FIG. 1 is a flowchart to help understand the technical contents of the present invention regarding Ziegler catalysts.

Claims (1)

【特蚱請求の範囲】  䞋蚘の成分(A)〜(C)の接觊生成物であるこずを
特城ずする、オレフむン重合甚觊媒成分。 成分(A) ゞハロゲン化マグネシりム、チタンテトラアル
コキシド、および【匏】で瀺される構造を 有するポリマヌケむ玠化合物より構成される固䜓
組成物。 成分(B) チタンテトラハラむド化合物 成分(C) 匏【匏】で瀺される構造を有するポリマ ヌケむ玠化合物ここで、各は同䞀たたは異な
る炭化氎玠残基である
[Scope of Claims] 1. A catalyst component for olefin polymerization, which is a contact product of the following components (A) to (C). Component (A) A solid composition composed of magnesium dihalide, titanium tetraalkoxide, and a polymeric silicon compound having the structure represented by the formula. Component (B) Titanium tetrahalide compound Component (C) Polymer silicon compound having a structure represented by the formula (wherein each R is the same or different hydrocarbon residue)
JP6622981A 1981-05-01 1981-05-01 Catalytic component for olefin polymerization Granted JPS57180612A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6622981A JPS57180612A (en) 1981-05-01 1981-05-01 Catalytic component for olefin polymerization
US06/370,666 US4399055A (en) 1981-05-01 1982-04-22 Carrier of catalyst and catalyst component composed of the carrier, for polymerization of olefins, as well as processes for production thereof
GB08212343A GB2102438B (en) 1981-05-01 1982-04-28 Magnesium halide carrier for a component of an olefine polymerisation catalyst
DE3215893A DE3215893C2 (en) 1981-05-01 1982-04-29 Catalyst supports, processes for their preparation and catalyst components for olefin polymerization and processes for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6622981A JPS57180612A (en) 1981-05-01 1981-05-01 Catalytic component for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS57180612A JPS57180612A (en) 1982-11-06
JPH0134247B2 true JPH0134247B2 (en) 1989-07-18

Family

ID=13309803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6622981A Granted JPS57180612A (en) 1981-05-01 1981-05-01 Catalytic component for olefin polymerization

Country Status (1)

Country Link
JP (1) JPS57180612A (en)

Also Published As

Publication number Publication date
JPS57180612A (en) 1982-11-06

Similar Documents

Publication Publication Date Title
US4530913A (en) Polymerization catalyst and method
US4451574A (en) Polymerization catalyst
US6511935B2 (en) Methods of making magnesium/transition metal alkoxide complexes and polymerization catalysts made therefrom
US4497906A (en) Solid catalyst component for olefin polymerization
JPS6124402B2 (en)
EP0272132B1 (en) Improved olefin polymerization catalysts, production and use
US4578440A (en) Polymerization catalyst and method
JPH0359922B2 (en)
JPH0118927B2 (en)
JPH0118926B2 (en)
JPS6354722B2 (en)
JPH0446286B2 (en)
US4211671A (en) Olefin polymerization catalyst
JPH0134247B2 (en)
JPH0680092B2 (en) Method for preparing catalyst component for olefin polymerization
JPH0118928B2 (en)
JPH0372090B2 (en)
JPS5827704A (en) Preparation of polyolefin
JPH0344084B2 (en)
JPH0358370B2 (en)
JPH0358368B2 (en)
JPH0358369B2 (en)
JPH0358371B2 (en)
JPH0360325B2 (en)
JPS6349682B2 (en)