JPH0133766B2 - - Google Patents

Info

Publication number
JPH0133766B2
JPH0133766B2 JP9731980A JP9731980A JPH0133766B2 JP H0133766 B2 JPH0133766 B2 JP H0133766B2 JP 9731980 A JP9731980 A JP 9731980A JP 9731980 A JP9731980 A JP 9731980A JP H0133766 B2 JPH0133766 B2 JP H0133766B2
Authority
JP
Japan
Prior art keywords
current
load
time
positive
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9731980A
Other languages
Japanese (ja)
Other versions
JPS5722519A (en
Inventor
Toshihiro Tsuji
Akira Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9731980A priority Critical patent/JPS5722519A/en
Priority to US06/258,512 priority patent/US4372406A/en
Priority to EP81301905A priority patent/EP0039249B1/en
Priority to DE8181301905T priority patent/DE3172963D1/en
Publication of JPS5722519A publication Critical patent/JPS5722519A/en
Publication of JPH0133766B2 publication Critical patent/JPH0133766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Stepping Motors (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 本発明は電磁力自動平衡式の電子天びんに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic self-balancing electronic balance.

一般に、電磁力自動平衛式電子天びんは、磁界
中に設けたフオースコイルに通電したとき発生す
る力と荷重をバランスさせ、そのときの電流値を
計測して秤量値を得ている。従来の装置はこの電
流値が測定する荷重によつて変化するため、測定
重量に応じてフオースコイルで発生するジユール
熱が変動し、従つて、天びん機構部の温度も変動
することになつて、精度の高い電子天びんを得よ
うとするときの大きな障害になつていた。
Generally, an electromagnetic force automatic Heihei electronic balance balances the force and load generated when electricity is applied to a force coil placed in a magnetic field, and measures the current value at that time to obtain a weight value. In conventional devices, this current value changes depending on the load being measured, so the Joule heat generated in the force coil changes depending on the weight to be measured, and the temperature of the balance mechanism also changes, resulting in poor accuracy. This has become a major obstacle when trying to obtain a high-quality electronic balance.

これに対し本発明らは、測定重量の変化、測定
時又は非測定時にかかわらずフオースコイルでの
発生熱量が常に一定に維持される電子天びんとし
て、荷重と平衡する電磁力を発生させるフオース
コイルの供給電流の向きを電流切換器により0.1
秒以下の周期で交互に切換え、上記周期中におけ
る正方向の電流と時間の積から負方向の電流と時
間の積を減じた量を算出して荷重の大きさを求め
る方式をすでに提案している。
In contrast, the present inventors developed an electronic balance in which the amount of heat generated in the force coil is always maintained constant regardless of changes in the measured weight, whether during measurement or not, and the current supplied to the force coil generates an electromagnetic force that is in balance with the load. 0.1 by changing the direction of the current
A method has already been proposed in which the magnitude of the load is determined by alternately switching at a cycle of less than a second and calculating the amount obtained by subtracting the product of the current and time in the negative direction from the product of the current and time in the positive direction during the above cycle. There is.

この方式によれば、第4図に示すように、荷重
0のときは正電流の供給量(+I×t1)と負電流
の供給量(−I×t2)が相等しく、平均電流は0
であつてフオースコイルに何らの力も生じない。
荷重が正のときは正電流の供給時間t1が負電流の
供給時間t2よりも長くなるから、平均して正の電
流が供給され、これと反対に荷重が負のときはt1
がt2よりも短くなり平均して負の電流が供給され
る。ところが、周期Tにおける正負両電流の供給
量は、斜線で示すように荷重の変動に関係なく常
に一定値に維持されており、従つて発生するジユ
ール熱も荷重により変動しないものとなる。
According to this method, as shown in Figure 4, when the load is 0, the amount of positive current supplied (+I×t 1 ) and the amount of negative current supplied (−I×t 2 ) are equal, and the average current is 0
Therefore, no force is generated in the force coil.
When the load is positive, the positive current supply time t 1 is longer than the negative current supply time t 2 , so a positive current is supplied on average, and on the other hand, when the load is negative, t 1
becomes shorter than t 2 and a negative current is supplied on average. However, the amount of supply of both positive and negative currents in the period T is always maintained at a constant value regardless of changes in load, as shown by diagonal lines, and therefore the generated Joule heat does not change depending on the load.

本発明はこのような新規な方式の電子天びんに
関連してなされたものであつて、フオースコイル
での発生熱量が荷重の大小に関係なく一定に維持
され、しかも構成が簡単で測定精度の高い電子天
びんの提供を目的としている。
The present invention has been made in connection with such a new type of electronic balance, and is an electronic balance in which the amount of heat generated by the force coil is maintained constant regardless of the size of the load, and which is simple in configuration and has high measurement accuracy. The purpose is to provide balances.

第1図に本発明実施例の全体構成のブロツク図
を示し、第2図に第1図のパルス幅制御器5のブ
ロツク図を示す。
FIG. 1 shows a block diagram of the overall configuration of an embodiment of the present invention, and FIG. 2 shows a block diagram of the pulse width controller 5 of FIG. 1.

第1図において、1は秤量皿、2は天びん機構
部、3は天びんの傾きを検出する位置検出器、4
はPID制御制御器、5はパルス幅制御器、6は正
負定電流発生器、7はアツプダウンカウンタ、8
はタイムクロツク信号発生器、9は演算器、10
は表示器、12はフオースコイル、13は定電流
源I0はは帰還パルス電流、I1は正方向定電流、I2
は負方向定電流である。
In FIG. 1, 1 is a weighing pan, 2 is a balance mechanism, 3 is a position detector that detects the tilt of the balance, and 4 is a weighing pan.
is a PID control controller, 5 is a pulse width controller, 6 is a positive/negative constant current generator, 7 is an up/down counter, 8
is a time clock signal generator, 9 is an arithmetic unit, 10
is the display, 12 is the force coil, 13 is the constant current source I 0 is the feedback pulse current, I 1 is the positive direction constant current, I 2
is a constant current in the negative direction.

また、第2図において、20は制御信号入力抵
抗、21はダイナミツククロツク入力抵抗、22
は帰還パルス入力抵抗、23はアンプ、24は積
分コンデンサ、25はコンパレータ、26は正負
定電流切換スイツチ、27はダイナミツククロツ
クデユテイ制御器、28は正負パルス発生器、S1
はダイナミツククロツク信号、S2は制御信号、S3
は帰還パルス信号、S4は積分出力信号である。
In FIG. 2, 20 is a control signal input resistor, 21 is a dynamic clock input resistor, and 22 is a control signal input resistor.
is a feedback pulse input resistor, 23 is an amplifier, 24 is an integrating capacitor, 25 is a comparator, 26 is a positive/negative constant current selector switch, 27 is a dynamic clock duty controller, 28 is a positive/negative pulse generator, S 1
is the dynamic clock signal, S 2 is the control signal, S 3
is the feedback pulse signal, and S4 is the integral output signal.

上記したアンプ23、積分コンデンサ24及び
入力抵抗20,21,22が積分器30を構成し
ている。
The above-described amplifier 23, integrating capacitor 24, and input resistors 20, 21, and 22 constitute an integrator 30.

次にこの実施例の作用を、第3図の波形図を参
照しながら説明する。
Next, the operation of this embodiment will be explained with reference to the waveform diagram in FIG.

図aは、天びんの傾きを表わす制御信号S2と、
基本方形波であるダイナミツククロツク信号S1
重畳して示した波形図である。図bは、フオース
コイルに供給される電流I0と立上り時刻、立下り
時刻が同一の帰還パルス信号S3を示した波形図で
ある。図cは積分器30の出力信号S4の波形図で
ある。図dはコンパレータ25の出力波形K1
K2を示す図であつて、これはアツプダウンカウ
ンタ7の制御入力信号と同じものである。また、
図の右側の列は正荷重の場合を例示し、左側の列
は負荷重の場合を例示している。
Figure a shows a control signal S2 representing the tilt of the balance,
FIG . 2 is a waveform diagram showing a superimposed dynamic clock signal S1, which is a basic square wave. FIG. b is a waveform diagram showing a feedback pulse signal S 3 having the same rise time and fall time as the current I 0 supplied to the force coil. FIG. c is a waveform diagram of the output signal S4 of the integrator 30. Figure d shows the output waveform K 1 of the comparator 25,
K 2 , which is the same as the control input signal of the up-down counter 7; Also,
The column on the right side of the figure illustrates the case of positive load, and the column on the left side illustrates the case of loaded weight.

図から明らかなように、ダイナミツククロツク
信号S1は所定の周期Tと所定のデユテイ比、実施
例においてはデユテイ比1/2で、正負両方向と
も同一波高値をもつ信号である。帰還パルス信号
S3はフオースコイル12に供給される帰還パルス
電流I0の一部を取り出したもので電流I0と同一の
立上り時刻、立下り時刻をもち正負両方向にある
波高値をもつ信号である。また、周期Tは、これ
が長すぎると振動が生じ、反対に短かすぎると各
部の応答速度が問題になるため、0.1秒乃至0.1m
秒の範囲が実用的であり、1m秒(周波数1kHz)
程度が最も好ましい。
As is clear from the figure, the dynamic clock signal S1 is a signal having a predetermined period T and a predetermined duty ratio, in this embodiment a duty ratio of 1/2, and having the same peak value in both the positive and negative directions. Feedback pulse signal
S 3 is a signal extracted from a part of the feedback pulse current I 0 supplied to the force coil 12, and has the same rise and fall times as the current I 0 and peak values in both positive and negative directions. In addition, if the period T is too long, vibration will occur, and if it is too short, the response speed of each part will become a problem.
A range of seconds is practical, and 1ms (frequency 1kHz)
degree is most preferred.

天びんの皿1に試料が載ると、天びん2の傾き
は位置検出器3により検出され、その検出信号は
制御器4によつてPID制御信号に変換され、その
PID制御信号30はパルス幅制御器5に送られ
る。パルス幅制御器5内において、アンプ23、
積分コンデンサ24、制御信号入力抵抗20、帰
還パルス信号入力抵抗22、ダイナミツククロツ
ク信号入力抵抗21が積分器として動作し、積分
器出力S4のレベルを判定するコンパレータ25に
より正負の切換えが制御されるフオースコイルへ
の供給電流すなわち帰還パルスI0の一部を帰還パ
ルス信号S3として積分器30へ帰還させるサーボ
系を構成している。このようなサーボ系を構成す
ることにより、積分出力信号S4はc図に示すよう
に、ダイナミツククロツク信号S1の立上りよりも
時間Tb遅れて0ボルトとなり、S1の立下りより
も時間Td遅れて0ボルトとなる。また、積分出
力信号S4がプラス側から0ボルトになつてからダ
イナミツククロツク信号S1が立上るまでの時間を
Ta、S4がマイナス側から0ボルトとなつてから
信号S1が立下るまでの時間をTcとすれば、第3
図のa,b,c図から明らかなように、 (-S1+S2+S3)Ta+(S1+S2+S3)Tb=0 (S1+S2-S3)Tc+(-S1+S2-S3)Td=0 Ta+Td=Tb+Tc が成り立つ。上の3式から ∴S2=S3・T2−T1/T の関係式が得られる。この帰還パルス信号S3はフ
オースコイル12に供給する帰還パルス電流I0
比例しているので、(T2−T1)およびTを知るこ
とによつて荷重を求めることができる。この
(T2−T1)は、タイムクロツク発生器8のクロツ
ク信号CLをアツプダウンカウンタ7がアツプ側
とダウン側に交互に取換えて計数することにより
計測され、この計数値により演算器9が荷重値を
算出し、表示器10により表示される。
When a sample is placed on the balance pan 1, the tilt of the balance 2 is detected by the position detector 3, and the detection signal is converted into a PID control signal by the controller 4.
PID control signal 30 is sent to pulse width controller 5. In the pulse width controller 5, an amplifier 23,
Integrating capacitor 24, control signal input resistor 20, feedback pulse signal input resistor 22, and dynamic clock signal input resistor 21 operate as an integrator, and positive/negative switching is controlled by comparator 25 that determines the level of integrator output S4 . A servo system is configured to feed back a part of the current supplied to the force coil, that is, the feedback pulse I 0 to the integrator 30 as a feedback pulse signal S 3 . By configuring such a servo system, the integral output signal S4 reaches 0 volts with a delay of time Tb from the rising edge of the dynamic clock signal S1 , as shown in figure c, and reaches 0 volts more than the falling edge of the dynamic clock signal S1 . After a delay of time Td, it becomes 0 volt. Also, the time from when the integral output signal S4 goes from the positive side to 0 volts until the dynamic clock signal S1 rises.
If Tc is the time from when Ta, S 4 becomes 0 volts from the negative side until the signal S 1 falls, then the third
As is clear from figures a, b, and c, (-S 1 +S 2 +S 3 )Ta+(S 1 +S 2 +S 3 )Tb=0 (S 1 +S 2 -S 3 )Tc+ (-S 1 +S 2 -S 3 )Td=0 Ta+Td=Tb+Tc holds true. From the above three equations, the relational expression ∴S 2 =S 3 ·T 2 −T 1 /T is obtained. Since this feedback pulse signal S3 is proportional to the feedback pulse current I0 supplied to the force coil 12, the load can be determined by knowing ( T2 - T1 ) and T. This (T 2 - T 1 ) is measured by counting the clock signal CL of the time clock generator 8 by the up-down counter 7 by alternately switching it to the up side and the down side, and based on this count value, the arithmetic unit 9 A load value is calculated and displayed on the display 10.

本発明によれば、フオースコイルで発生する熱
量が一定であるため、通電後一定時間を経過して
熱平衡状態に達した後は、測定する荷重が変つて
もゼロ点ドリフト、感度変化その他の特性変化が
なく高精度の電子天びんを得ることができる。ま
た、正負両方向の荷重を測定することができる。
さらに本発明によれば、従来の電子天びんが備え
ていたようなA/D変換器を必要とせず、パルス
幅をカウンタがデジタル計測するだけであるから
構成が簡単になる。また、重量測定とA/D変換
機構とを単一のサーボ系に組み入れる巧みな構成
により測定精度が向上する。
According to the present invention, since the amount of heat generated in the force coil is constant, after a certain period of time has passed after energization and a thermal equilibrium state is reached, even if the load to be measured changes, there will be zero point drift, sensitivity change, and other characteristic changes. It is possible to obtain a high-precision electronic balance without any problems. Additionally, it is possible to measure loads in both positive and negative directions.
Further, according to the present invention, there is no need for an A/D converter as is provided in conventional electronic balances, and the configuration is simplified because the counter simply measures the pulse width digitally. Additionally, measurement accuracy is improved by a clever configuration that incorporates weight measurement and A/D conversion mechanisms into a single servo system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の全体構成を示すブロツ
ク図、第2図は第1図のパルス幅制御器5の内部
構成を示すブロツク図、第3図及び第4図は上記
実施例の作用を説明する波形図である。 1……荷重皿、2……天びん、3……位置検出
器、4……制御器、5……パルス幅制御器、6…
…正負定電流発生器、7……アツプダウンタ、8
……タイムクロツク発生器、9……演算器、10
……表示器、12……フオースコイル、25……
コンパレータ、26……正負定電流切換スイツ
チ、30……積分器。
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing the internal configuration of the pulse width controller 5 shown in FIG. 1, and FIGS. 3 and 4 show the operation of the above embodiment. FIG. DESCRIPTION OF SYMBOLS 1... Load pan, 2... Balance, 3... Position detector, 4... Controller, 5... Pulse width controller, 6...
...Positive/negative constant current generator, 7... Updownter, 8
... Time clock generator, 9 ... Arithmetic unit, 10
...Indicator, 12...Force coil, 25...
Comparator, 26... Positive/negative constant current changeover switch, 30... Integrator.

Claims (1)

【特許請求の範囲】[Claims] 1 荷重と平衡する電磁力を発生させるフオース
コイルの供給電流の向きを電流切換器により0.1
秒以下の周期で交互に切換え、上記周期中におけ
る正方向の電流と時間の積から負方向の電流と時
間の積を減じた量を算出して荷重の大きさを求め
る方式の電子天びんにおいて、上記フオースコイ
ルの供給電流に比例した帰還パルス信号、天びん
の傾きをあらわす制御信号、及び所定の周期と所
定のデユテイ比をもつダイナミツククロツク信号
が入力される積分器と、その積分器の出力レベル
の大小を所定の電圧レベルを基準に判別するコン
パレータを設け、このコンパレータの出力信号に
従い上記電流切換器を制御することを特徴とする
電子天びん。
1 The direction of the current supplied to the force coil that generates the electromagnetic force that balances the load is changed by a current switcher to 0.1
In an electronic balance that switches alternately at a cycle of seconds or less, and calculates the magnitude of the load by subtracting the product of the current and time in the negative direction from the product of the current and time in the positive direction during the cycle, An integrator to which a feedback pulse signal proportional to the current supplied to the force coil, a control signal representing the tilt of the balance, and a dynamic clock signal having a predetermined cycle and a predetermined duty ratio are input, and the output level of the integrator. 1. An electronic balance comprising: a comparator for determining the magnitude of the voltage based on a predetermined voltage level, and controlling the current switch according to an output signal of the comparator.
JP9731980A 1980-04-30 1980-07-15 Electronic balance Granted JPS5722519A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9731980A JPS5722519A (en) 1980-07-15 1980-07-15 Electronic balance
US06/258,512 US4372406A (en) 1980-04-30 1981-04-28 Electronic balance
EP81301905A EP0039249B1 (en) 1980-04-30 1981-04-30 An electronic balance
DE8181301905T DE3172963D1 (en) 1980-04-30 1981-04-30 An electronic balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9731980A JPS5722519A (en) 1980-07-15 1980-07-15 Electronic balance

Publications (2)

Publication Number Publication Date
JPS5722519A JPS5722519A (en) 1982-02-05
JPH0133766B2 true JPH0133766B2 (en) 1989-07-14

Family

ID=14189158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9731980A Granted JPS5722519A (en) 1980-04-30 1980-07-15 Electronic balance

Country Status (1)

Country Link
JP (1) JPS5722519A (en)

Also Published As

Publication number Publication date
JPS5722519A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US4851763A (en) Current-measuring device, especially for determining the motor current of a direct-current motor
US4372406A (en) Electronic balance
JPH0133770B2 (en)
JPH0133766B2 (en)
US4134468A (en) Electromagnetic scale with decreased temperature variation
JP2569486B2 (en) Electronic balance
JPS644132B2 (en)
EP0073154B1 (en) Electronic balance
JPH0532684B2 (en)
EP0506444B1 (en) Electronic balance
JP3077357B2 (en) Electronic balance
JP3949285B2 (en) electronic balance
JPH0316609B2 (en)
JPH1151757A (en) Electronic weighing apparatus
JP2699564B2 (en) Electronic balance
JP2687624B2 (en) Electronic balance
JPS6124896Y2 (en)
KR960012744B1 (en) Electronic balance
JPH0347445B2 (en)
SU1430760A1 (en) Weighing apparatus
JPH0316608B2 (en)
JP2687625B2 (en) Electronic balance
JPH0523371B2 (en)
JPH02259530A (en) Electronic balance
JP2003214932A (en) Electronic force balance