JPH0133726B2 - - Google Patents

Info

Publication number
JPH0133726B2
JPH0133726B2 JP58238583A JP23858383A JPH0133726B2 JP H0133726 B2 JPH0133726 B2 JP H0133726B2 JP 58238583 A JP58238583 A JP 58238583A JP 23858383 A JP23858383 A JP 23858383A JP H0133726 B2 JPH0133726 B2 JP H0133726B2
Authority
JP
Japan
Prior art keywords
primary
fuel
nozzle
air
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58238583A
Other languages
Japanese (ja)
Other versions
JPS60129516A (en
Inventor
Yoshitoshi Sekiguchi
Kunio Sasaki
Katsuhiko Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP58238583A priority Critical patent/JPS60129516A/en
Publication of JPS60129516A publication Critical patent/JPS60129516A/en
Publication of JPH0133726B2 publication Critical patent/JPH0133726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガスバーナに関する。 従来から発熱量が低く、そのままでは燃焼の持
続が困難な低カロリーガスを燃焼させる方法とし
て、 高カロリーガスを混入してガスのカロリーア
ツプを図る方法、 高カロリー燃料の助燃バーナを設ける方法、 空気あるいは燃料ガスを予熱する方法、 などが知られている。 上記ではランニングコストが高くつき、
では従来、必要熱量が不明であつたために、すべ
ての空気または燃料ガスを予熱しており、このた
め加熱器が非常に大きくなり、設備費の増大をま
ねくという問題がある。 そこで本発明はかかる問題点を解消したガスバ
ーナを提供するものであつて、その特徴とすると
ころは、焚口先端を円錐状空間に形成し、その焚
口内に同心状に設けた一次空気ノズル内に一次燃
料ノズルを同心状に挿入し、一次空気ノズルの外
側に二次燃料ノズルを配設し、該二次燃料ノズル
の外側に二次空気ノズルを配設し、一次空気ノズ
ルに接続された一次空気供給管に酸素供給管を接
続したことにある。かかる構成によれば、燃料お
よび空気をそれぞれ一次と二次とに分け、酸素濃
度の上昇に伴つて自燃限界発熱量が低下するのに
着目して、その一次空気に酸素を添加するもので
あるから、低カロリーガスでも確実に着火させ
て、その燃焼を持続させることができ、しかも燃
料または空気を加熱するための加熱器が不要であ
り、かつ使用する酸素量も最少でよく、従来に比
ベランニングコストを下げることができる。 以下、本発明の一実施例を図に基づいて説明す
る。1は焚口であつて、その先端を円錐状空間に
形成してある。2は焚口1内に同心状に設けた一
次空気ノズル、3は該一次空気ノズル2内に同心
状に挿入された1次燃料ノズル、4は一次空気ノ
ズル2の外側に配設された二次燃料ノズル、5は
該二次燃料ノズル4の外側に配設された二次空気
ノズル、6,7は二次の燃料ノズル4および空気
ノズル5の先端に配設された旋回翼であつて、二
次燃料および二次空気を第1図にイで示すごとく
旋回させるものである。8は低カロリー燃料主供
給管であつて、これから2つに分岐した一次燃料
供給管8Aと二次燃料供給管8Bとはそれぞれ一
次、二次の燃料ノズル3,4に接続してある。9
は空気主供給管であつて、これから2つに分岐し
た一次空気供給管9Aと二次空気供給管9Bとは
それぞれ一次、二次の空気ノズル2,5に接続し
てある。16は一次空気供給管9Aに接続された
酸素供給管、11は一次燃料供給管8Aの途中に
介在させた開閉弁である。前記一次燃料ノズル3
の燃料噴射口は該ノズル3の半径方向に沿つて形
成されている。したがつてノズル3からその半径
方向に沿つて噴射された燃料ガスは一次空気ノズ
ル2内を流れる空気流によつて第1図にロで示す
ごとく焚口1から放射状に噴射されるものであ
る。 上記構成において、一次空気供給管9A内を流
れる一次空気には酸素供給管16から酸素が添加
され、酸素濃度が高い一次空気が一次空気ノズル
2内に入る。また一次燃料供給管8Aから一次燃
料ノズル3内に入つた低カロリー燃料はその噴射
口から一次燃料ノズル3の半径方向へ噴射され、
一次空気ノズル2から噴射される酸素濃度の高い
一次空気流に乗つて焚口1から第1図のロで示す
ごとく放射状に噴射される。また二次燃料ノズル
4から低カロリーの二次燃料が第1図のイに示す
ごとく旋回させられながら噴射され、さらに二次
空気ノズル5から二次空気が旋回させられながら
噴射される。そして酸素濃度の上昇によつて燃料
の自然限界発熱量が低下するから、一次燃料が酸
素濃度の高い一次空気の作用により容易に着火さ
せられると共にその燃焼を持続させられ、また一
次燃料の燃焼熱によつて二次燃料および二次空気
を必要温度まで加熱し、全体として安定した燃焼
を持続するものである。 ここで第3図に示すごとく支燃ガス(一次空
気)中に酸素を添加し、酸素濃度を高くすれば自
燃限界発熱量(QL)を低下させることができる。
さらに第4図から明らかなように全ガス基準の発
熱量(QL′)Kcal/Nm3は(1)式で示されるように
一定であることがわかつた。 QL′=QL・G/G+N=K(一定) ……(1) ただしG:可燃ガス量(Nm3/h) N:支燃ガス量(Nm3/h) 今、一次燃料ノズル3に供給される一次燃料の
全燃料に対する割合を(m)とすれば、一次燃料
ノズル3で燃焼を持続させるために必要な熱量は
m(QL−Qg)≡m・ΔQ(Kcal/Nm3)である。こ
れによつて発生する熱量はm・QL(Kcal/Nm3
であり、m・QL≧ΔQであれば燃焼は持続する。
したがつてm≧ΔQ/QLであればよい。しかしな
がら実機では、ガスの混合や熱放散などにより火
炎を十分安定させるには、次式の関係が成り立つ
ようにすることが適当であることがわかつた。 1.3×ΔQ/QL≧m≧1.1×ΔQ/QL 次に必要酸素量は(1)式から mG・Qg/mG+AL≧K mG+AL≦1/K(mG・Qg) ∴AL≦mG・Qg/K−mG=mG(Qg/K−1) ただしAL:限界支燃ガス量(Nm3/h) ここで(A)を一次燃料(mG)を燃焼させるに必
要な空気量(Nm3/h)とすれば(ただし一次バ
ーナの空気比は1.05〜1.5が適当である)、酸素供
給量 O(Nm3/h)はO=21/79(A−AL)である。 上記第1の実施例における旋回翼6,7に代え
て、第5図に示すごとくノズル4,5の内壁面に
ほぼ接線方向に沿う多数のスリツト13を形成し
てもよいし(第2の実施例)、また第6図に示す
ごとくノズル4,5の端面に周方向に沿つてのび
る傾斜穴14を形成してもよい(第3の実施例)。 (実施例) ガス発熱量600Kcal/Nm3のCH4−N2低カロリ
ーガスの燃焼実験 (計算値) 第3図より空気中(O221%)の限界発熱量は
780Kcal/Nm3である。これより一次燃料の割合
(m)は 780−600/780×1.3≧m≧780−600/780×1.1 0.3≧m≧0.25 となる。 空気比を1.2とすれば必要空気量は1.2×0.557=
0.668Nm3/Nm3ガス、又第4図より全ガス中の
自燃限界発熱量は380Kcal/Nm3である。限界支
燃ガス量AL≦0.25×1.0×(600/380−1)=0.14必要
酸 素量は O=21/79×(0.25×1.0×0.668−1.14)=0.0270N m3/Nm3Gas2.7%である。(ただし全可燃ガス量
に対する酸素供給量) (実験) 燃焼実験結果を表1に示す。
The present invention relates to a gas burner. Conventional methods for burning low-calorie gases, which have a low calorific value and are difficult to sustain combustion as they are, include mixing high-calorie gas to increase the calorie content of the gas, installing an auxiliary combustion burner for high-calorie fuel, and using air. Alternatively, methods of preheating fuel gas are known. The above results in high running costs,
Conventionally, all the air or fuel gas was preheated because the amount of heat required was unknown, which resulted in a very large heater, leading to an increase in equipment costs. Therefore, the present invention provides a gas burner that solves these problems, and its characteristics are that the tip of the combustion opening is formed into a conical space, and the primary air nozzle is provided concentrically within the combustion opening. A primary fuel nozzle is inserted concentrically, a secondary fuel nozzle is disposed outside the primary air nozzle, a secondary air nozzle is disposed outside the secondary fuel nozzle, and the primary air nozzle is connected to the primary air nozzle. This is because the oxygen supply pipe is connected to the air supply pipe. According to this configuration, fuel and air are separated into primary and secondary air, respectively, and oxygen is added to the primary air by paying attention to the fact that the self-combustion limit calorific value decreases as the oxygen concentration increases. Therefore, even low-calorie gas can be reliably ignited and its combustion can be sustained, and there is no need for a heater to heat the fuel or air, and the amount of oxygen used is minimal, compared to conventional methods. It can reduce the running cost. Hereinafter, one embodiment of the present invention will be described based on the drawings. Reference numeral 1 is a fire pit, the tip of which is formed into a conical space. 2 is a primary air nozzle provided concentrically within the combustion opening 1; 3 is a primary fuel nozzle inserted concentrically within the primary air nozzle 2; 4 is a secondary air nozzle provided outside the primary air nozzle 2. A fuel nozzle, 5 is a secondary air nozzle disposed outside the secondary fuel nozzle 4, 6 and 7 are swirl vanes disposed at the tips of the secondary fuel nozzle 4 and air nozzle 5, The secondary fuel and secondary air are swirled as shown by A in Fig. 1. Reference numeral 8 denotes a low calorie fuel main supply pipe, and a primary fuel supply pipe 8A and a secondary fuel supply pipe 8B branched from this pipe are connected to the primary and secondary fuel nozzles 3 and 4, respectively. 9
is a main air supply pipe, and a primary air supply pipe 9A and a secondary air supply pipe 9B branched from this into two are connected to the primary and secondary air nozzles 2 and 5, respectively. 16 is an oxygen supply pipe connected to the primary air supply pipe 9A, and 11 is an on-off valve interposed in the middle of the primary fuel supply pipe 8A. The primary fuel nozzle 3
The fuel injection port is formed along the radial direction of the nozzle 3. Therefore, the fuel gas injected from the nozzle 3 along its radial direction is radially injected from the firing port 1 by the air flow flowing through the primary air nozzle 2, as shown by B in FIG. In the above configuration, oxygen is added from the oxygen supply pipe 16 to the primary air flowing through the primary air supply pipe 9A, and the primary air with a high oxygen concentration enters the primary air nozzle 2. Furthermore, the low-calorie fuel that enters the primary fuel nozzle 3 from the primary fuel supply pipe 8A is injected from its injection port in the radial direction of the primary fuel nozzle 3,
The primary air stream with high oxygen concentration is injected from the primary air nozzle 2 and is radially injected from the combustion opening 1 as shown by B in FIG. Further, low-calorie secondary fuel is injected from the secondary fuel nozzle 4 while being swirled as shown in FIG. 1A, and secondary air is further injected from the secondary air nozzle 5 while being swirled. As the natural limit calorific value of the fuel decreases as the oxygen concentration increases, the primary fuel can be easily ignited and its combustion can be sustained by the action of the primary air with a high oxygen concentration, and the combustion heat of the primary fuel can be increased. This heats the secondary fuel and secondary air to the required temperature and maintains stable combustion as a whole. Here, as shown in FIG. 3, by adding oxygen to the combustion supporting gas (primary air) and increasing the oxygen concentration, the self-combustion limit calorific value (Q L ) can be lowered.
Furthermore, as is clear from FIG. 4, it was found that the calorific value (Q L ') Kcal/Nm 3 on the basis of all gases is constant as shown by equation (1). Q L ′=Q L・G/G+N=K (constant) ...(1) where G: combustible gas amount (Nm 3 /h) N: combustible gas amount (Nm 3 /h) Now, primary fuel nozzle 3 If the ratio of the primary fuel supplied to the total fuel is (m), the amount of heat required to sustain combustion in the primary fuel nozzle 3 is m(Q L −Q g )≡m・ΔQ(Kcal/Nm 3 ). The amount of heat generated by this is m・Q L (Kcal/Nm 3 )
If m・Q L ≧ΔQ, combustion continues.
Therefore, it is sufficient if m≧ΔQ/Q L. However, in actual equipment, it has been found that in order to sufficiently stabilize the flame through gas mixing and heat dissipation, it is appropriate to establish the following relationship. 1.3×ΔQ/Q L ≧m≧1.1×ΔQ/Q L Next, the required amount of oxygen is obtained from equation (1): mG・Qg/mG+A L ≧K mG+A L ≦1/K (mG・Qg) ∴A L ≦mG・Qg/K-mG=mG (Qg/K-1) where A L : Limit amount of combustion-supporting gas (Nm 3 /h) Here, (A) is the amount of air required to burn the primary fuel (mG) ( (Nm 3 /h) (however, the air ratio of the primary burner is suitably 1.05 to 1.5), the oxygen supply amount O (Nm 3 /h) is O=21/79 (A-A L ). Instead of the swirling vanes 6 and 7 in the first embodiment, a large number of slits 13 may be formed along the substantially tangential direction on the inner wall surfaces of the nozzles 4 and 5 as shown in FIG. Embodiment) Alternatively, as shown in FIG. 6, inclined holes 14 extending along the circumferential direction may be formed in the end faces of the nozzles 4 and 5 (third embodiment). (Example) Combustion experiment of CH 4 -N 2 low calorie gas with gas calorific value of 600 Kcal/Nm 3 (calculated value) From Figure 3, the limit calorific value in air (O 2 21%) is
It is 780Kcal/ Nm3 . From this, the ratio of primary fuel (m) is 780-600/780×1.3≧m≧780-600/780×1.1 0.3≧m≧0.25. If the air ratio is 1.2, the required air amount is 1.2 x 0.557 =
0.668Nm 3 /Nm 3 gas, and from Figure 4, the self-combustion limit calorific value in all gases is 380 Kcal/Nm 3 . Limit combustion supporting gas amount A L ≦0.25×1.0×(600/380−1)=0.14The required oxygen amount is O=21/79×(0.25×1.0×0.668−1.14)=0.0270N m 3 /Nm 3 Gas2. 7%. (However, the amount of oxygen supplied relative to the total amount of combustible gas) (Experiment) Table 1 shows the results of the combustion experiment.

【表】 以上述べたごとく本発明によれば、燃料および
空気をそれぞれ一次と二次とに分け、酸素濃度の
上昇に伴つて自燃限界発熱量が低下するのに着目
して、その一次空気に酸素を添加することにより
一次燃焼安定させ、その一次燃焼火炎により二次
燃焼を接続させるものであるから、低カロリーガ
スでも確実に着火させて、その燃焼を持続させる
ことができ、しかも燃料または空気を加熱するた
めの加熱器や高カロリー燃料の添加が不要であ
り、かつ使用する酸素量も最少でよく、従来に比
ベランニングコストを下げることができる。
[Table] As described above, according to the present invention, fuel and air are divided into primary and secondary, respectively, and by focusing on the fact that the limit heat value of self-combustion decreases as the oxygen concentration increases, the primary air is The primary combustion is stabilized by adding oxygen, and the primary combustion flame connects the secondary combustion, so even low-calorie gas can be reliably ignited and its combustion can be sustained. There is no need to add a heater or high-calorie fuel to heat the fuel, and the amount of oxygen used can be kept to a minimum, making it possible to reduce running costs compared to conventional systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の第1の実施例を示
し、第1図実線は概略縦断面図、第2図は要部の
概略正面図、第3図および第4図はO2濃度と自
燃限界発熱量の関係を示すグラフである。第5図
は本発明の第2の実施例を示す要部の斜視図、第
6図は本発明の第3の実施例を示す要部の斜視図
である。 1…焚口、2…一次空気ノズル、3…一次燃料
ノズル、4…二次燃料ノズル、5…二次空気ノズ
ル、9A…一次空気供給管、16…酸素供給管。
1 to 4 show a first embodiment of the present invention, in which the solid line in FIG. 1 is a schematic vertical sectional view, FIG. 2 is a schematic front view of the main parts, and FIGS. 3 and 4 are O 2 It is a graph showing the relationship between concentration and self-combustion limit calorific value. FIG. 5 is a perspective view of essential parts showing a second embodiment of the invention, and FIG. 6 is a perspective view of essential parts showing a third embodiment of the invention. 1... Fire opening, 2... Primary air nozzle, 3... Primary fuel nozzle, 4... Secondary fuel nozzle, 5... Secondary air nozzle, 9A... Primary air supply pipe, 16... Oxygen supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 焚口先端を円錐状空間に形成し、その焚口内
に同心状に設けた一次空気ノズル内に一次燃料ノ
ズルを同心状に挿入し、一次空気ノズルの外側に
二次燃料ノズルを配設し、該二次燃料ノズルの外
側に二次空気ノズルを配設し、一次空気ノズルに
接続された一次空気供給管に酸素供給管を接続し
たことを特徴とするガスバーナ。
1. The tip of the fire mouth is formed into a conical space, the primary fuel nozzle is concentrically inserted into the primary air nozzle provided concentrically within the fire mouth, and the secondary fuel nozzle is arranged outside the primary air nozzle, A gas burner characterized in that a secondary air nozzle is disposed outside the secondary fuel nozzle, and an oxygen supply pipe is connected to a primary air supply pipe connected to the primary air nozzle.
JP58238583A 1983-12-16 1983-12-16 Gas burner Granted JPS60129516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238583A JPS60129516A (en) 1983-12-16 1983-12-16 Gas burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238583A JPS60129516A (en) 1983-12-16 1983-12-16 Gas burner

Publications (2)

Publication Number Publication Date
JPS60129516A JPS60129516A (en) 1985-07-10
JPH0133726B2 true JPH0133726B2 (en) 1989-07-14

Family

ID=17032356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238583A Granted JPS60129516A (en) 1983-12-16 1983-12-16 Gas burner

Country Status (1)

Country Link
JP (1) JPS60129516A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
SE533731C2 (en) * 2010-02-05 2010-12-14 Linde Ag Procedure for combustion of low-grade fuel
CN103196142B (en) * 2013-04-18 2015-09-16 河北海丽特种石墨制造有限公司 Combuster for roasting furnace
US20220290862A1 (en) * 2021-03-11 2022-09-15 General Electric Company Fuel mixer

Also Published As

Publication number Publication date
JPS60129516A (en) 1985-07-10

Similar Documents

Publication Publication Date Title
US4445570A (en) High pressure combustor having a catalytic air preheater
US7914280B2 (en) Combustion method and apparatus
US5156100A (en) Method and apparatus for starting the boiler of a solid-fuel fired power plant and ensuring the burning process of the fuel
BG64878B1 (en) Solid fuel burner and method for the adjustment of burning effected by the solid fuel burner
JP2010533833A (en) Plasma ignition burner
US4899670A (en) Means for providing oxygen enrichment for slurry and liquid fuel burners
US4426939A (en) Method of reducing NOx and SOx emission
US4830604A (en) Jet burner and vaporizer method and apparatus
US3804578A (en) Cyclonic combustion burner
US6145450A (en) Burner assembly with air stabilizer vane
JP3239142B2 (en) Method of controlling radial stratified flame center burner
JPH0133726B2 (en)
JPH0330650Y2 (en)
JPS6339803B2 (en)
JPH0133727B2 (en)
JP3698041B2 (en) Low calorie gas burning burner
JP3817625B2 (en) Burner equipment
JP2565980B2 (en) Gas turbine combustor for low-calorie gas
CN110006038A (en) Incinerator, which is matched, applies burning stove
JP4018809B2 (en) Additional combustion method using gas turbine exhaust gas and additional burner using this additional combustion method
US2932347A (en) Burner apparatus
JPH0122526B2 (en)
EP4253838A1 (en) Gas burner with low nox emission
JPS6287709A (en) Pulverized coal burner using low calorie gas as assist fuel
JPS6335227Y2 (en)